Readme details
Browse files- README.md +120 -3
- app.py +119 -4
- results/Bgym-GPT-3.5/{workarena++-l2.json β workarena-l2.json} +1 -1
- results/Bgym-GPT-3.5/{workarena++-l3.json β workarena-l3.json} +1 -1
- results/Bgym-GPT-4o-V/{workarena++-l2.json β workarena-l2.json} +1 -1
- results/Bgym-GPT-4o-V/{workarena++-l3.json β workarena-l3.json} +1 -1
- results/Bgym-GPT-4o/{workarena++-l2.json β workarena-l2.json} +1 -1
- results/Bgym-GPT-4o/{workarena++-l3.json β workarena-l3.json} +1 -1
- results/Bgym-Llama-3-70b/{workarena++-l2.json β workarena-l2.json} +1 -1
- results/Bgym-Llama-3-70b/{workarena++-l3.json β workarena-l3.json} +1 -1
- results/Bgym-Mixtral-8x22b/{workarena++-l2.json β workarena-l2.json} +1 -1
- results/Bgym-Mixtral-8x22b/{workarena++-l3.json β workarena-l3.json} +1 -1
README.md
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: green
|
| 6 |
sdk: docker
|
|
@@ -8,4 +8,121 @@ pinned: false
|
|
| 8 |
license: mit
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
title: BrowserGym Leaderboard
|
| 3 |
+
emoji: π
|
| 4 |
colorFrom: purple
|
| 5 |
colorTo: green
|
| 6 |
sdk: docker
|
|
|
|
| 8 |
license: mit
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# BrowserGym Leaderboard
|
| 12 |
+
|
| 13 |
+
This leaderboard tracks performance of various agents on web navigation tasks.
|
| 14 |
+
|
| 15 |
+
## How to Submit Results for New Agents
|
| 16 |
+
|
| 17 |
+
### 1. Create Results Directory
|
| 18 |
+
Create a new folder in the `results` directory with your agent's name:
|
| 19 |
+
```bash
|
| 20 |
+
results/
|
| 21 |
+
βββ your-agent-name/
|
| 22 |
+
βββ README.md
|
| 23 |
+
βββ webarena.json
|
| 24 |
+
βββ workarena-l1.json
|
| 25 |
+
βββ workarena++-l2.json
|
| 26 |
+
βββ workarena++-l3.json
|
| 27 |
+
βββ miniwob.json
|
| 28 |
+
```
|
| 29 |
+
|
| 30 |
+
|
| 31 |
+
### 2. Add Agent Details
|
| 32 |
+
|
| 33 |
+
Create a `README.md` in your agent's folder with the following details:
|
| 34 |
+
|
| 35 |
+
#### Required Information
|
| 36 |
+
- **Model Name**: Base model used (e.g., GPT-4, Claude-2)
|
| 37 |
+
- **Model Architecture**: Architecture details and any modifications
|
| 38 |
+
- **Input/Output Format**: How inputs are processed and outputs generated
|
| 39 |
+
- **Training Details**: Training configuration if applicable
|
| 40 |
+
- Dataset used
|
| 41 |
+
- Number of training steps
|
| 42 |
+
- Hardware used
|
| 43 |
+
- Training time
|
| 44 |
+
|
| 45 |
+
#### Optional Information
|
| 46 |
+
- **Paper Link**: Link to published paper/preprint if available
|
| 47 |
+
- **Code Repository**: Link to public code implementation
|
| 48 |
+
- **Additional Notes**: Any special configurations or requirements
|
| 49 |
+
- **License**: License information for your agent
|
| 50 |
+
|
| 51 |
+
Make sure to organize the information in clear sections using Markdown.
|
| 52 |
+
|
| 53 |
+
### 3. Add Benchmark Results
|
| 54 |
+
|
| 55 |
+
Create separate JSON files for each benchmark following this format:
|
| 56 |
+
|
| 57 |
+
```json
|
| 58 |
+
[
|
| 59 |
+
{
|
| 60 |
+
"agent_name": "your-agent-name",
|
| 61 |
+
"study_id": "unique-study-identifier-from-agentlab",
|
| 62 |
+
"date_time": "YYYY-MM-DD HH:MM:SS",
|
| 63 |
+
"benchmark": "WebArena",
|
| 64 |
+
"score": 0.0,
|
| 65 |
+
"std_err": 0.0,
|
| 66 |
+
"benchmark_specific": "Yes/No",
|
| 67 |
+
"benchmark_tuned": "Yes/No",
|
| 68 |
+
"followed_evaluation_protocol": "Yes/No",
|
| 69 |
+
"reproducible": "Yes/No",
|
| 70 |
+
"comments": "Additional details",
|
| 71 |
+
"original_or_reproduced": "Original"
|
| 72 |
+
}
|
| 73 |
+
]
|
| 74 |
+
```
|
| 75 |
+
|
| 76 |
+
Please add all the benchmark files in separate json files named as follows:
|
| 77 |
+
|
| 78 |
+
- `webarena.json`
|
| 79 |
+
- `workarena-l1.json`
|
| 80 |
+
- `workarena-l2.json`
|
| 81 |
+
- `workarena-l3.json`
|
| 82 |
+
- `miniwob.json`
|
| 83 |
+
|
| 84 |
+
Each file must contain a JSON array with a single object following the format above. The benchmark field in each file must match the benchmark name exactly ([`WebArena`, `WorkArena-L1`, `WorkArena-L2`, `WorkArena-L3`, `MiniWoB`]) and benchmark_lowercase.json as the filename.
|
| 85 |
+
|
| 86 |
+
### 4. Submit PR
|
| 87 |
+
|
| 88 |
+
1. Fork the repository
|
| 89 |
+
2. Add your results following the structure above and in the PR comments add more details about your agent and the submission
|
| 90 |
+
3. Create a pull request to the main branch
|
| 91 |
+
|
| 92 |
+
## How to Submit Reproducibility Results for Existing Agents
|
| 93 |
+
|
| 94 |
+
Open the results file for the agent and benchmark you reproduced the results for.
|
| 95 |
+
|
| 96 |
+
### 1. Add reproduced results
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
Append the following entry in the json file. Ensure you set `original_or_reproduced` as `Reproduced`.
|
| 100 |
+
|
| 101 |
+
```json
|
| 102 |
+
[
|
| 103 |
+
{
|
| 104 |
+
"agent_name": "your-agent-name",
|
| 105 |
+
"study_id": "unique-study-identifier-from-agentlab",
|
| 106 |
+
"date_time": "YYYY-MM-DD HH:MM:SS",
|
| 107 |
+
"benchmark": "WebArena",
|
| 108 |
+
"score": 0.0,
|
| 109 |
+
"std_err": 0.0,
|
| 110 |
+
"benchmark_specific": "Yes/No",
|
| 111 |
+
"benchmark_tuned": "Yes/No",
|
| 112 |
+
"followed_evaluation_protocol": "Yes/No",
|
| 113 |
+
"reproducible": "Yes/No",
|
| 114 |
+
"comments": "Additional details",
|
| 115 |
+
"original_or_reproduced": "Reproduced"
|
| 116 |
+
}
|
| 117 |
+
]
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
### 2. Submit PR
|
| 121 |
+
|
| 122 |
+
1. Fork the repository
|
| 123 |
+
2. Add your results following the structure above and in the PR comments add more details about your agent and the submission
|
| 124 |
+
3. Create a pull request to the main branch
|
| 125 |
+
|
| 126 |
+
## License
|
| 127 |
+
|
| 128 |
+
MIT
|
app.py
CHANGED
|
@@ -16,8 +16,7 @@ import re
|
|
| 16 |
import html
|
| 17 |
from typing import Dict, Any
|
| 18 |
|
| 19 |
-
|
| 20 |
-
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena++-L2", "WorkArena++-L3", "MiniWoB",]
|
| 21 |
|
| 22 |
def sanitize_agent_name(agent_name):
|
| 23 |
# Only allow alphanumeric chars, hyphen, underscore
|
|
@@ -191,7 +190,6 @@ def main():
|
|
| 191 |
st.title("π BrowserGym Leaderboard")
|
| 192 |
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
|
| 193 |
# content = create_yall()
|
| 194 |
-
# tab1, tab2, tab3, tab4 = st.tabs(["π WebAgent Leaderboard", "WorkArena++-L2 Leaderboard", "WorkArena++-L3 Leaderboard", "π About"])
|
| 195 |
tabs = st.tabs(["π Main Leaderboard",] + BENCHMARKS + ["π About"])
|
| 196 |
|
| 197 |
with tabs[0]:
|
|
@@ -268,7 +266,124 @@ def main():
|
|
| 268 |
|
| 269 |
with tabs[-1]:
|
| 270 |
st.markdown('''
|
| 271 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 272 |
''')
|
| 273 |
for i, benchmark in enumerate(BENCHMARKS, start=1):
|
| 274 |
with tabs[i]:
|
|
|
|
| 16 |
import html
|
| 17 |
from typing import Dict, Any
|
| 18 |
|
| 19 |
+
BENCHMARKS = ["WebArena", "WorkArena-L1", "WorkArena-L2", "WorkArena-L3", "MiniWoB",]
|
|
|
|
| 20 |
|
| 21 |
def sanitize_agent_name(agent_name):
|
| 22 |
# Only allow alphanumeric chars, hyphen, underscore
|
|
|
|
| 190 |
st.title("π BrowserGym Leaderboard")
|
| 191 |
st.markdown("Leaderboard to evaluate LLMs, VLMs, and agents on web navigation tasks.")
|
| 192 |
# content = create_yall()
|
|
|
|
| 193 |
tabs = st.tabs(["π Main Leaderboard",] + BENCHMARKS + ["π About"])
|
| 194 |
|
| 195 |
with tabs[0]:
|
|
|
|
| 266 |
|
| 267 |
with tabs[-1]:
|
| 268 |
st.markdown('''
|
| 269 |
+
# BrowserGym Leaderboard
|
| 270 |
+
|
| 271 |
+
This leaderboard tracks performance of various agents on web navigation tasks.
|
| 272 |
+
|
| 273 |
+
## How to Submit Results for New Agents
|
| 274 |
+
|
| 275 |
+
### 1. Create Results Directory
|
| 276 |
+
Create a new folder in the `results` directory with your agent's name:
|
| 277 |
+
```bash
|
| 278 |
+
results/
|
| 279 |
+
βββ your-agent-name/
|
| 280 |
+
βββ README.md
|
| 281 |
+
βββ webarena.json
|
| 282 |
+
βββ workarena-l1.json
|
| 283 |
+
βββ workarena++-l2.json
|
| 284 |
+
βββ workarena++-l3.json
|
| 285 |
+
βββ miniwob.json
|
| 286 |
+
```
|
| 287 |
+
|
| 288 |
+
|
| 289 |
+
### 2. Add Agent Details
|
| 290 |
+
|
| 291 |
+
Create a `README.md` in your agent's folder with the following details:
|
| 292 |
+
|
| 293 |
+
#### Required Information
|
| 294 |
+
- **Model Name**: Base model used (e.g., GPT-4, Claude-2)
|
| 295 |
+
- **Model Architecture**: Architecture details and any modifications
|
| 296 |
+
- **Input/Output Format**: How inputs are processed and outputs generated
|
| 297 |
+
- **Training Details**: Training configuration if applicable
|
| 298 |
+
- Dataset used
|
| 299 |
+
- Number of training steps
|
| 300 |
+
- Hardware used
|
| 301 |
+
- Training time
|
| 302 |
+
|
| 303 |
+
#### Optional Information
|
| 304 |
+
- **Paper Link**: Link to published paper/preprint if available
|
| 305 |
+
- **Code Repository**: Link to public code implementation
|
| 306 |
+
- **Additional Notes**: Any special configurations or requirements
|
| 307 |
+
- **License**: License information for your agent
|
| 308 |
+
|
| 309 |
+
Make sure to organize the information in clear sections using Markdown.
|
| 310 |
+
|
| 311 |
+
### 3. Add Benchmark Results
|
| 312 |
+
|
| 313 |
+
Create separate JSON files for each benchmark following this format:
|
| 314 |
+
|
| 315 |
+
```json
|
| 316 |
+
[
|
| 317 |
+
{
|
| 318 |
+
"agent_name": "your-agent-name",
|
| 319 |
+
"study_id": "unique-study-identifier-from-agentlab",
|
| 320 |
+
"date_time": "YYYY-MM-DD HH:MM:SS",
|
| 321 |
+
"benchmark": "WebArena",
|
| 322 |
+
"score": 0.0,
|
| 323 |
+
"std_err": 0.0,
|
| 324 |
+
"benchmark_specific": "Yes/No",
|
| 325 |
+
"benchmark_tuned": "Yes/No",
|
| 326 |
+
"followed_evaluation_protocol": "Yes/No",
|
| 327 |
+
"reproducible": "Yes/No",
|
| 328 |
+
"comments": "Additional details",
|
| 329 |
+
"original_or_reproduced": "Original"
|
| 330 |
+
}
|
| 331 |
+
]
|
| 332 |
+
```
|
| 333 |
+
|
| 334 |
+
Please add all the benchmark files in separate json files named as follows:
|
| 335 |
+
|
| 336 |
+
- `webarena.json`
|
| 337 |
+
- `workarena-l1.json`
|
| 338 |
+
- `workarena-l2.json`
|
| 339 |
+
- `workarena-l3.json`
|
| 340 |
+
- `miniwob.json`
|
| 341 |
+
|
| 342 |
+
Each file must contain a JSON array with a single object following the format above. The benchmark field in each file must match the benchmark name exactly ([`WebArena`, `WorkArena-L1`, `WorkArena-L2`, `WorkArena-L3`, `MiniWoB`]) and benchmark_lowercase.json as the filename.
|
| 343 |
+
|
| 344 |
+
### 4. Submit PR
|
| 345 |
+
|
| 346 |
+
1. Fork the repository
|
| 347 |
+
2. Add your results following the structure above and in the PR comments add more details about your agent and the submission
|
| 348 |
+
3. Create a pull request to the main branch
|
| 349 |
+
|
| 350 |
+
## How to Submit Reproducibility Results for Existing Agents
|
| 351 |
+
|
| 352 |
+
Open the results file for the agent and benchmark you reproduced the results for.
|
| 353 |
+
|
| 354 |
+
### 1. Add reproduced results
|
| 355 |
+
|
| 356 |
+
|
| 357 |
+
Append the following entry in the json file. Ensure you set `original_or_reproduced` as `Reproduced`.
|
| 358 |
+
|
| 359 |
+
```json
|
| 360 |
+
[
|
| 361 |
+
{
|
| 362 |
+
"agent_name": "your-agent-name",
|
| 363 |
+
"study_id": "unique-study-identifier-from-agentlab",
|
| 364 |
+
"date_time": "YYYY-MM-DD HH:MM:SS",
|
| 365 |
+
"benchmark": "WebArena",
|
| 366 |
+
"score": 0.0,
|
| 367 |
+
"std_err": 0.0,
|
| 368 |
+
"benchmark_specific": "Yes/No",
|
| 369 |
+
"benchmark_tuned": "Yes/No",
|
| 370 |
+
"followed_evaluation_protocol": "Yes/No",
|
| 371 |
+
"reproducible": "Yes/No",
|
| 372 |
+
"comments": "Additional details",
|
| 373 |
+
"original_or_reproduced": "Reproduced"
|
| 374 |
+
}
|
| 375 |
+
]
|
| 376 |
+
```
|
| 377 |
+
|
| 378 |
+
### 2. Submit PR
|
| 379 |
+
|
| 380 |
+
1. Fork the repository
|
| 381 |
+
2. Add your results following the structure above and in the PR comments add more details about your agent and the submission
|
| 382 |
+
3. Create a pull request to the main branch
|
| 383 |
+
|
| 384 |
+
## License
|
| 385 |
+
|
| 386 |
+
MIT
|
| 387 |
''')
|
| 388 |
for i, benchmark in enumerate(BENCHMARKS, start=1):
|
| 389 |
with tabs[i]:
|
results/Bgym-GPT-3.5/{workarena++-l2.json β workarena-l2.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L2",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-GPT-3.5/{workarena++-l3.json β workarena-l3.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-GPT-3.5",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L3",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-GPT-4o-V/{workarena++-l2.json β workarena-l2.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 3.8,
|
| 8 |
"std_err": 0.6,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L2",
|
| 7 |
"score": 3.8,
|
| 8 |
"std_err": 0.6,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-GPT-4o-V/{workarena++-l3.json β workarena-l3.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-GPT-4o-V",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L3",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-GPT-4o/{workarena++-l2.json β workarena-l2.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-GPT-4o",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 3.0,
|
| 8 |
"std_err": 0.6,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-GPT-4o",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L2",
|
| 7 |
"score": 3.0,
|
| 8 |
"std_err": 0.6,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-GPT-4o/{workarena++-l3.json β workarena-l3.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-GPT-4o",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-GPT-4o",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L3",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-Llama-3-70b/{workarena++-l2.json β workarena-l2.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L2",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-Llama-3-70b/{workarena++-l3.json β workarena-l3.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-Llama-3-70b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L3",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-Mixtral-8x22b/{workarena++-l2.json β workarena-l2.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L2",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
results/Bgym-Mixtral-8x22b/{workarena++-l3.json β workarena-l3.json}
RENAMED
|
@@ -3,7 +3,7 @@
|
|
| 3 |
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
-
"benchmark": "WorkArena
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|
|
|
|
| 3 |
"agent_name": "Bgym-Mixtral-8x22b",
|
| 4 |
"study_id": "study_id",
|
| 5 |
"date_time": "2021-01-01 12:00:00",
|
| 6 |
+
"benchmark": "WorkArena-L3",
|
| 7 |
"score": 0.0,
|
| 8 |
"std_err": 0.0,
|
| 9 |
"benchmark_specific": "No",
|