Spaces:
Running
Running
File size: 33,085 Bytes
b5bd1aa 26a5842 c5987cc 58b97f2 b91d93b a750190 9aeacca d4637e4 a8b2fd4 32696d3 980018a de9239a 5d5cb52 a8b2fd4 f0ba455 81e0f3f 35e6a69 f0ba455 383a137 a8b2fd4 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 0611560 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 f0ba455 9deb7e1 383a137 35e6a69 383a137 0b69bda 35e6a69 3eb256b 383a137 32696d3 f0ba455 35e6a69 9aeacca de9239a 35e6a69 de9239a 9aeacca de9239a 9aeacca 35e6a69 9782585 35e6a69 d9be852 9782585 35e6a69 d9be852 9782585 35e6a69 d9be852 9782585 35e6a69 a8b2fd4 9782585 35e6a69 d9be852 53e1625 35e6a69 53e1625 16e8b2c 50da573 16e8b2c 50da573 16e8b2c 50da573 16e8b2c 53e1625 16e8b2c 53e1625 16e8b2c 35e6a69 6f91bff fb18efe 6f91bff 60e6faa 53e1625 0611560 53e1625 3c2118a 53e1625 3c2118a 53e1625 3c2118a 53e1625 3c2118a 53e1625 16e8b2c 35e6a69 3d05c16 3eb256b 35e6a69 6d65a62 3fd75cd 6d65a62 3c2118a 50da573 59a8f26 d8bfff4 59a8f26 d8bfff4 35e6a69 50da573 35e6a69 3c2118a b91d93b 35e6a69 b91d93b 35e6a69 0b69bda df426cf d4637e4 35e6a69 b91d93b 3c2118a 5a6b076 50da573 5a6b076 e1a12ee 55fd7b2 e1a12ee 55fd7b2 e1a12ee f1ce1c6 35e6a69 4a53fd8 9b5077c 4a53fd8 35e6a69 0497130 8cc0898 0497130 35e6a69 8c347a4 35e6a69 de9239a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 |
import streamlit as st
from pathlib import Path
import streamlit as st
import numpy as np
import matplotlib.pyplot as plt
from PIL import Image, ImageDraw, ImageFont
import time
from transformers import AutoModelForCausalLM, AutoTokenizer
import seaborn as sns
from io import BytesIO
import base64
from streamlit_drawable_canvas import st_canvas
import io
import torch
import cv2
import mediapipe as mp
import base64
import gc
import accelerate
# Set page config
st.set_page_config(page_title="NeuraSense AI", page_icon="🧠", layout="wide")
# Enhanced Custom CSS for a hyper-cyberpunk realistic look
custom_css = """
<style>
@import url('https://fonts.googleapis.com/css2?family=Orbitron:wght@400;500;700&family=Roboto+Mono:wght@400;700&display=swap');
:root {
--neon-blue: #00FFFF;
--neon-pink: #FF00FF;
--neon-green: #39FF14;
--dark-bg: #0a0a0a;
--darker-bg: #050505;
--light-text: #E0E0E0;
}
body {
color: var(--light-text);
background-color: var(--dark-bg);
font-family: 'Roboto Mono', monospace;
overflow-x: hidden;
}
.stApp {
background:
linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%),
repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%),
repeating-linear-gradient(-45deg, #111 0%, #111 1%, transparent 1%, transparent 3%);
background-blend-mode: overlay;
animation: backgroundPulse 20s infinite alternate;
}
@keyframes backgroundPulse {
0% { background-position: 0% 50%; }
100% { background-position: 100% 50%; }
}
h1, h2, h3 {
font-family: 'Orbitron', sans-serif;
position: relative;
text-shadow:
0 0 5px var(--neon-blue),
0 0 10px var(--neon-blue),
0 0 20px var(--neon-blue),
0 0 40px var(--neon-blue);
animation: textGlitch 5s infinite alternate;
}
@keyframes textGlitch {
0% { transform: skew(0deg); }
20% { transform: skew(5deg); text-shadow: 3px 3px 0 var(--neon-pink); }
40% { transform: skew(-5deg); text-shadow: -3px -3px 0 var(--neon-green); }
60% { transform: skew(3deg); text-shadow: 2px -2px 0 var(--neon-blue); }
80% { transform: skew(-3deg); text-shadow: -2px 2px 0 var(--neon-pink); }
100% { transform: skew(0deg); }
}
.stButton>button {
color: var(--neon-blue);
border: 2px solid var(--neon-blue);
border-radius: 5px;
background: linear-gradient(45deg, rgba(0,255,255,0.1), rgba(0,255,255,0.3));
box-shadow: 0 0 15px var(--neon-blue);
transition: all 0.3s ease;
text-transform: uppercase;
letter-spacing: 2px;
backdrop-filter: blur(5px);
}
.stButton>button:hover {
transform: scale(1.05) translateY(-3px);
box-shadow: 0 0 30px var(--neon-blue);
text-shadow: 0 0 5px var(--neon-blue);
}
.stTextInput>div>div>input, .stTextArea>div>div>textarea, .stSelectbox>div>div>div {
background-color: rgba(0, 255, 255, 0.1);
border: 1px solid var(--neon-blue);
border-radius: 5px;
color: var(--neon-blue);
backdrop-filter: blur(5px);
}
.stTextInput>div>div>input:focus, .stTextArea>div>div>textarea:focus, .stSelectbox>div>div>div:focus {
box-shadow: 0 0 20px var(--neon-blue);
}
.stSlider>div>div>div>div {
background-color: var(--neon-blue);
}
.stSlider>div>div>div>div>div {
background-color: var(--neon-pink);
box-shadow: 0 0 10px var(--neon-pink);
}
::-webkit-scrollbar {
width: 10px;
height: 10px;
}
::-webkit-scrollbar-track {
background: var(--darker-bg);
border-radius: 5px;
}
::-webkit-scrollbar-thumb {
background: var(--neon-blue);
border-radius: 5px;
box-shadow: 0 0 5px var(--neon-blue);
}
::-webkit-scrollbar-thumb:hover {
background: var(--neon-pink);
box-shadow: 0 0 5px var(--neon-pink);
}
.stPlot, .stDataFrame {
border: 1px solid var(--neon-blue);
border-radius: 5px;
overflow: hidden;
box-shadow: 0 0 15px rgba(0, 255, 255, 0.3);
}
.stImage, .stIcon {
filter: drop-shadow(0 0 5px var(--neon-blue));
}
.stSidebar, .stContainer {
background:
linear-gradient(45deg, var(--darker-bg) 0%, var(--dark-bg) 100%),
repeating-linear-gradient(45deg, #000 0%, #000 2%, transparent 2%, transparent 4%);
animation: sidebarPulse 10s infinite alternate;
}
@keyframes sidebarPulse {
0% { background-position: 0% 50%; }
100% { background-position: 100% 50%; }
}
.element-container {
position: relative;
}
.element-container::before {
content: '';
position: absolute;
top: -5px;
left: -5px;
right: -5px;
bottom: -5px;
border: 1px solid var(--neon-blue);
border-radius: 10px;
opacity: 0.5;
pointer-events: none;
}
.stMarkdown a {
color: var(--neon-pink);
text-decoration: none;
position: relative;
transition: all 0.3s ease;
}
.stMarkdown a::after {
content: '';
position: absolute;
width: 100%;
height: 1px;
bottom: -2px;
left: 0;
background-color: var(--neon-pink);
transform: scaleX(0);
transform-origin: bottom right;
transition: transform 0.3s ease;
}
.stMarkdown a:hover::after {
transform: scaleX(1);
transform-origin: bottom left;
}
/* Cyberpunk-style progress bar */
.stProgress > div > div {
background-color: var(--neon-blue);
background-image: linear-gradient(
45deg,
var(--neon-pink) 25%,
transparent 25%,
transparent 50%,
var(--neon-pink) 50%,
var(--neon-pink) 75%,
transparent 75%,
transparent
);
background-size: 40px 40px;
animation: progress-bar-stripes 1s linear infinite;
}
@keyframes progress-bar-stripes {
0% { background-position: 40px 0; }
100% { background-position: 0 0; }
}
/* Glowing checkbox */
.stCheckbox > label > div {
border-color: var(--neon-blue);
transition: all 0.3s ease;
}
.stCheckbox > label > div[data-checked="true"] {
background-color: var(--neon-blue);
box-shadow: 0 0 10px var(--neon-blue);
}
/* Futuristic radio button */
.stRadio > div {
background-color: rgba(0, 255, 255, 0.1);
border-radius: 10px;
padding: 10px;
}
.stRadio > div > label > div {
border-color: var(--neon-blue);
transition: all 0.3s ease;
}
.stRadio > div > label > div[data-checked="true"] {
background-color: var(--neon-blue);
box-shadow: 0 0 10px var(--neon-blue);
}
/* Cyberpunk-style tables */
.stDataFrame table {
border-collapse: separate;
border-spacing: 0;
border: 1px solid var(--neon-blue);
border-radius: 10px;
overflow: hidden;
}
.stDataFrame th {
background-color: rgba(0, 255, 255, 0.2);
color: var(--neon-blue);
text-transform: uppercase;
letter-spacing: 1px;
}
.stDataFrame td {
border-bottom: 1px solid rgba(0, 255, 255, 0.2);
}
.stDataFrame tr:last-child td {
border-bottom: none;
}
/* Futuristic file uploader */
.stFileUploader > div {
border: 2px dashed var(--neon-blue);
border-radius: 10px;
background-color: rgba(0, 255, 255, 0.05);
transition: all 0.3s ease;
}
.stFileUploader > div:hover {
background-color: rgba(0, 255, 255, 0.1);
box-shadow: 0 0 15px rgba(0, 255, 255, 0.3);
}
/* Cyberpunk-style tooltips */
.stTooltipIcon {
color: var(--neon-pink);
transition: all 0.3s ease;
}
.stTooltipIcon:hover {
color: var(--neon-blue);
text-shadow: 0 0 5px var(--neon-blue);
}
/* Futuristic date input */
.stDateInput > div > div > input {
background-color: rgba(0, 255, 255, 0.1);
border: 1px solid var(--neon-blue);
border-radius: 5px;
color: var(--neon-blue);
backdrop-filter: blur(5px);
}
.stDateInput > div > div > input:focus {
box-shadow: 0 0 20px var(--neon-blue);
}
/* Cyberpunk-style code blocks */
.stCodeBlock {
background-color: rgba(0, 0, 0, 0.6);
border: 1px solid var(--neon-green);
border-radius: 5px;
color: var(--neon-green);
font-family: 'Roboto Mono', monospace;
padding: 10px;
position: relative;
overflow: hidden;
}
.stCodeBlock::before {
content: '';
position: absolute;
top: -10px;
left: -10px;
right: -10px;
bottom: -10px;
background: linear-gradient(45deg, var(--neon-green), transparent);
opacity: 0.1;
z-index: -1;
}
</style>
"""
# Apply the custom CSS
st.markdown(custom_css, unsafe_allow_html=True)
AVATAR_WIDTH = 600
AVATAR_HEIGHT = 800
# Your Streamlit app code goes here
st.title("NeuraSense AI")
# Set up DialoGPT model
@st.cache_resource
def load_tokenizer():
return AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium")
@st.cache_resource
def load_model():
model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium",
device_map="auto",
torch_dtype=torch.float16)
return model
tokenizer = load_tokenizer()
model = load_model()
# Advanced Sensor Classes
class QuantumSensor:
@staticmethod
def measure(x, y, sensitivity):
return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
class NanoThermalSensor:
@staticmethod
def measure(base_temp, pressure, duration):
return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
class AdaptiveTextureSensor:
textures = [
"nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
"graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
]
@staticmethod
def measure(x, y):
return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
class EMFieldSensor:
@staticmethod
def measure(x, y, sensitivity):
return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
class NeuralNetworkSimulator:
@staticmethod
def process(inputs):
weights = np.random.rand(len(inputs))
return np.dot(inputs, weights) / np.sum(weights)
# Set up MediaPipe Pose
mp_pose = mp.solutions.pose
pose = mp_pose.Pose(static_image_mode=True, min_detection_confidence=0.5)
def detect_humanoid(image):
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
results = pose.process(image_rgb)
if results.pose_landmarks:
landmarks = results.pose_landmarks.landmark
image_height, image_width, _ = image.shape
keypoints = []
for landmark in landmarks:
x = int(landmark.x * image_width)
y = int(landmark.y * image_height)
keypoints.append((x, y))
return keypoints
return []
def apply_touch_points(image, keypoints):
draw = ImageDraw.Draw(image)
for point in keypoints:
draw.ellipse([point[0]-5, point[1]-5, point[0]+5, point[1]+5], fill='red')
return image
def create_sensation_map(width, height, keypoints):
sensation_map = np.zeros((height, width, 12))
for y in range(height):
for x in range(width):
base_sensitivities = np.random.rand(12) * 0.5 + 0.5
# Enhance sensitivities near keypoints
for kp in keypoints:
distance = np.sqrt((x - kp[0])**2 + (y - kp[1])**2)
if distance < 30: # Adjust this value to change the area of influence
base_sensitivities *= 1.5
sensation_map[y, x, 0] = base_sensitivities[0] * np.random.rand() # Pain
sensation_map[y, x, 1] = base_sensitivities[1] * np.random.rand() # Pleasure
sensation_map[y, x, 2] = base_sensitivities[2] * np.random.rand() # Pressure
sensation_map[y, x, 3] = base_sensitivities[3] * (np.random.rand() * 10 + 30) # Temperature
sensation_map[y, x, 4] = base_sensitivities[4] * np.random.rand() # Texture
sensation_map[y, x, 5] = base_sensitivities[5] * np.random.rand() # EM field
sensation_map[y, x, 6] = base_sensitivities[6] * np.random.rand() # Tickle
sensation_map[y, x, 7] = base_sensitivities[7] * np.random.rand() # Itch
sensation_map[y, x, 8] = base_sensitivities[8] * np.random.rand() # Quantum
sensation_map[y, x, 9] = base_sensitivities[9] * np.random.rand() # Neural
sensation_map[y, x, 10] = base_sensitivities[10] * np.random.rand() # Proprioception
sensation_map[y, x, 11] = base_sensitivities[11] * np.random.rand() # Synesthesia
return sensation_map
def create_heatmap(sensation_map, sensation_type):
plt.figure(figsize=(10, 15))
sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
def create_heatmap(sensation_map, sensation_type):
plt.figure(figsize=(10, 15))
sns.heatmap(sensation_map[:, :, sensation_type], cmap='viridis')
plt.title(f'{["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field", "Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"][sensation_type]} Sensation Map')
plt.axis('off')
# Instead of displaying, save to a buffer
buf = io.BytesIO()
plt.savefig(buf, format='png')
buf.seek(0)
plt.close() # Close the figure to free up memory
# Create an image from the buffer
heatmap_img = Image.open(buf)
return heatmap_img
def generate_ai_response(keypoints, sensation_map):
num_keypoints = len(keypoints)
avg_sensations = np.mean(sensation_map, axis=(0, 1))
response = f"I detect {num_keypoints} key points on the humanoid figure. "
response += "The average sensations across the body are:\n"
for i, sensation in enumerate(["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
"Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]):
response += f"{sensation}: {avg_sensations[i]:.2f}\n"
return response
# Create and display avatar with heatmap
st.subheader("Avatar with Sensation Heatmap")
# You need to define sensation_map and sensation_type before this
sensation_map = np.random.rand(AVATAR_HEIGHT, 600, AVATAR_WIDTH, 300) # Example random sensation map
sensation_type = 0 # Example sensation type (0 for Pain)
avatar_with_heatmap = create_avatar_with_heatmap(sensation_map, sensation_type)
st.image(avatar_with_heatmap, use_column_width=True)
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
if uploaded_file is not None:
# Read the image
image = Image.open(uploaded_file)
image_np = np.array(image)
# Detect humanoid keypoints
keypoints = detect_humanoid(image_np)
# Apply touch points to the image
processed_image = apply_touch_points(image.copy(), keypoints)
# Display the processed image
st.image(processed_image, caption='Processed Image with Touch Points', use_column_width=True)
# Create sensation map
sensation_map = create_sensation_map(image.width, image.height, keypoints)
# Display heatmaps for different sensations
sensation_types = ["Pain", "Pleasure", "Pressure", "Temperature", "Texture", "EM Field",
"Tickle", "Itch", "Quantum", "Neural", "Proprioception", "Synesthesia"]
selected_sensation = st.selectbox("Select a sensation to view:", sensation_types)
heatmap = create_heatmap(sensation_map, sensation_types.index(selected_sensation))
st.image(heatmap, use_column_width=True)
# Generate AI response based on the image and sensations
if st.button("Generate AI Response"):
response = generate_ai_response(keypoints, sensation_map)
st.write("AI Response:", response)
# Create futuristic human-like avatar
def create_avatar():
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
draw = ImageDraw.Draw(img)
# Body
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Head
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Eyes
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
# Nose
draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
# Mouth
draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
# Arms
draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
# Hands
draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
# Fingers
for i in range(5):
draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
# Legs
draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
# Feet
draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
# Toes
for i in range(5):
draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
def generate_neural_network_lines(img, draw):
# Neural network lines
for _ in range(100):
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
return img
# Create and display avatar with heatmap
st.subheader("Avatar with Sensation Heatmap")
avatar_with_heatmap = create_avatar_with_heatmap()
st.image(avatar_with_heatmap, use_column_width=True)
# Create avatar function
def create_avatar():
img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
draw = ImageDraw.Draw(img)
# Body
draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Head
draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
# Eyes
draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
# Nose
draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
# Mouth
draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
# Arms
draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
# Hands
draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
# Fingers
for i in range(5):
draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
# Legs
draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
# Feet
draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
# Toes
for i in range(5):
draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
# Neural network lines
for _ in range(100):
start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
draw.line([start, end], fill=(0, 255, 255, 50), width=1)
return img
def create_avatar_with_heatmap(show_heatmap=True):
# Load avatar image
avatar_img = Image.open("avatar.png").resize((AVATAR_WIDTH, AVATAR_HEIGHT))
if not show_heatmap:
return avatar_img # Return the avatar image without heatmap
# Create a heatmap
heatmap_img = create_heatmap(sensation_map, sensation_type)
# Resize heatmap to match avatar size
heatmap_img = heatmap_img.resize((AVATAR_WIDTH, AVATAR_HEIGHT))
# Adjust alpha channel of heatmap
data = np.array(heatmap_img)
if data.shape[2] == 3: # If RGB, add an alpha channel
data = np.concatenate([data, np.full((data.shape[0], data.shape[1], 1), 255, dtype=np.uint8)], axis=2)
data[:, :, 3] = data[:, :, 3] * 0.5 # Reduce opacity to 50%
heatmap_img = Image.fromarray(data)
# Combine avatar and heatmap
combined_img = Image.alpha_composite(avatar_img.convert('RGBA'), heatmap_img.convert('RGBA'))
return combined_img
# Create and display avatar with optional heatmap
st.subheader("Avatar with Optional Sensation Heatmap")
avatar_with_heatmap = create_avatar_with_heatmap(show_heatmap)
st.image(avatar_with_heatmap, use_column_width=True)
# Create three columns
col1, col2, col3 = st.columns(3)
# Avatar display with touch interface
with col1:
st.subheader("Humanoid Avatar Interface")
# Use st_canvas for touch input
canvas_result = st_canvas(
fill_color="rgba(0, 255, 255, 0.3)",
stroke_width=2,
stroke_color="#00FFFF",
background_image=avatar_with_heatmap,
height=AVATAR_HEIGHT,
width=AVATAR_WIDTH,
drawing_mode="point",
key="canvas",
)
with col3:
st.subheader("Sensation Heatmap")
heatmap = create_heatmap(avatar_sensation_map)
st.image(heatmap, use_column_width=True)
# Touch controls and output
with col2:
st.subheader("Neural Interface Controls")
# Touch duration
touch_duration = st.slider("Interaction Duration (s)", 0.1, 5.0, 1.0, 0.1)
# Touch pressure
touch_pressure = st.slider("Interaction Intensity", 0.1, 2.0, 1.0, 0.1)
# Toggle quantum feature
use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
# Toggle synesthesia
use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
# Add this with your other UI elements
show_heatmap = st.checkbox("Show Sensation Heatmap", value=True)
if canvas_result.json_data is not None:
objects = canvas_result.json_data["objects"]
if len(objects) > 0:
last_touch = objects[-1]
touch_x, touch_y = last_touch["left"], last_touch["top"]
sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
(
pain, pleasure, pressure_sens, temp_sens, texture_sens,
em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
proprioception_sens, synesthesia_sens
) = sensation
measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
if use_quantum:
quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
else:
quantum_state = "N/A"
# Calculate overall sensations
pain_level = pain * measured_pressure * touch_pressure
pleasure_level = pleasure * (measured_temp - 37) / 10
tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
# Proprioception (sense of body position)
proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
# Synesthesia (mixing of senses)
if use_synesthesia:
synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
else:
synesthesia = "N/A"
# Neural network simulation
neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
neural_response = NeuralNetworkSimulator.process(neural_inputs)
st.write("### Sensory Data Analysis")
st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
st.write(f"Duration: {touch_duration:.1f} s | Intensity: {touch_pressure:.2f}")
# Create a futuristic data display
data_display = (
"```\n"
"+---------------------------------------------+\n"
f"| Pressure : {measured_pressure:.2f}".ljust(45) + "|\n"
f"| Temperature : {measured_temp:.2f}°C".ljust(45) + "|\n"
f"| Texture : {measured_texture}".ljust(45) + "|\n"
f"| EM Field : {measured_em:.2f} μT".ljust(45) + "|\n"
f"| Quantum State: {quantum_state:.2f}".ljust(45) + "|\n"
"+---------------------------------------------+\n"
f"| Pain Level : {pain_level:.2f}".ljust(45) + "|\n"
f"| Pleasure : {pleasure_level:.2f}".ljust(45) + "|\n"
f"| Tickle : {tickle_level:.2f}".ljust(45) + "|\n"
f"| Itch : {itch_level:.2f}".ljust(45) + "|\n"
f"| Proprioception: {proprioception:.2f}".ljust(44) + "|\n"
f"| Synesthesia : {synesthesia}".ljust(45) + "|\n"
f"| Neural Response: {neural_response:.2f}".ljust(43) + "|\n"
"+---------------------------------------------+\n"
"```"
)
st.code(data_display, language="")
# Generate description
prompt = (
"Human: Analyze the sensory input for a hyper-advanced AI humanoid:\n"
" Location: (" + str(round(touch_x, 1)) + ", " + str(round(touch_y, 1)) + ")\n"
" Duration: " + str(round(touch_duration, 1)) + "s, Intensity: " + str(round(touch_pressure, 2)) + "\n"
" Pressure: " + str(round(measured_pressure, 2)) + "\n"
" Temperature: " + str(round(measured_temp, 2)) + "°C\n"
" Texture: " + measured_texture + "\n"
" EM Field: " + str(round(measured_em, 2)) + " μT\n"
" Quantum State: " + str(quantum_state) + "\n"
" Resulting in:\n"
" Pain: " + str(round(pain_level, 2)) + ", Pleasure: " + str(round(pleasure_level, 2)) + "\n"
" Tickle: " + str(round(tickle_level, 2)) + ", Itch: " + str(round(itch_level, 2)) + "\n"
" Proprioception: " + str(round(proprioception, 2)) + "\n"
" Synesthesia: " + synesthesia + "\n"
" Neural Response: " + str(round(neural_response, 2)) + "\n"
" Provide a detailed, scientific analysis of the AI's experience.\n"
" AI:"
)
input_ids = tokenizer.encode(prompt, return_tensors="pt")
output = model.generate(
input_ids,
max_length=400,
num_return_sequences=1,
no_repeat_ngram_size=2,
top_k=50,
top_p=0.95,
temperature=0.7
)
response = tokenizer.decode(output[0], skip_special_tokens=True).split("AI:")[-1].strip()
st.write("### AI's Sensory Analysis:")
st.write(response)
# Visualize sensation map
st.subheader("Quantum Neuro-Sensory Map")
fig, axs = plt.subplots(3, 4, figsize=(20, 15))
titles = [
'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural',
'Proprioception', 'Synesthesia'
]
for i, title in enumerate(titles):
ax = axs[i // 4, i % 4]
im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
ax.set_title(title)
fig.colorbar(im, ax=ax)
plt.tight_layout()
st.pyplot(fig)
st.write("The quantum neuro-sensory map illustrates the varying sensitivities across the AI's body. Brighter areas indicate heightened responsiveness to specific stimuli.")
# Add information about the AI's advanced capabilities
st.subheader("NeuraSense AI: Cutting-Edge Sensory Capabilities")
st.write("This hyper-advanced AI humanoid incorporates revolutionary sensory technology:")
capabilities = [
"1. Quantum-Enhanced Pressure Sensors: Utilize quantum tunneling effects for unparalleled sensitivity.",
"2. Nano-scale Thermal Detectors: Capable of detecting temperature variations to 0.001°C.",
"3. Adaptive Texture Analysis: Employs machine learning to continually refine texture perception.",
"4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.",
"5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.",
"6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.",
"7. Proprioception Simulation: Accurately models the AI's sense of body position and movement.",
"8. Synesthesia Emulation: Allows for cross-modal sensory experiences, mixing different sensory inputs.",
"9. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.",
"10. Adaptive Pain and Pleasure Modeling: Simulates complex emotional and physical responses to stimuli."
]
for capability in capabilities:
st.write(capability)
st.write("The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences.")
st.write("This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.")
# Interactive sensory exploration
st.subheader("Interactive Sensory Exploration")
exploration_type = st.selectbox("Choose a sensory exploration:",
["Quantum Field Fluctuations", "Synesthesia Experience", "Proprioceptive Mapping"])
if exploration_type == "Quantum Field Fluctuations":
st.write("Observe how quantum fields fluctuate across the AI's body.")
quantum_field = np.array([[QuantumSensor.measure(x, y, 1) for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
# Save the plot to an in-memory buffer
buf = io.BytesIO()
plt.figure(figsize=(8, 6))
plt.imshow(quantum_field, cmap='viridis')
plt.savefig(buf, format='png')
# Create a PIL Image object from the buffer
quantum_image = Image.open(buf)
# Display the image using st.image()
st.image(quantum_image, use_column_width=True)
elif exploration_type == "Synesthesia Experience":
st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)), use_column_width=True)
elif exploration_type == "Proprioceptive Mapping":
st.write("Explore the AI's sense of body position and movement.")
proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
# Save the plot to an in-memory buffer
buf = io.BytesIO()
plt.figure(figsize=(8, 6))
plt.imshow(proprioceptive_map, cmap='coolwarm')
plt.savefig(buf, format='png')
# Create a PIL Image object from the buffer
proprioceptive_image = Image.open(buf)
# Display the image using st.image()
st.image(proprioceptive_image, use_column_width=True)
# Footer
st.write("---")
st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v4.0")
st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.""")
# After processing
torch.cuda.empty_cache()
gc.collect() |