Sephfox commited on
Commit
9782585
β€’
1 Parent(s): 50eabc7

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +131 -48
app.py CHANGED
@@ -53,52 +53,64 @@ def load_model():
53
 
54
  tokenizer, model = load_model()
55
 
56
- # Simulated Sensor Classes
57
- class AdvancedSensors:
58
  @staticmethod
59
- def measure_pressure(base_sensitivity, pressure, duration):
60
- return base_sensitivity * pressure * (1 - np.exp(-duration / 2))
61
 
 
62
  @staticmethod
63
- def measure_temperature(base_temp, pressure, duration):
64
- return base_temp + 10 * pressure * (1 - np.exp(-duration / 3))
65
 
 
 
 
 
 
 
66
  @staticmethod
67
- def measure_texture(x, y):
68
- textures = [
69
- "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
70
- "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
71
- ]
72
- return textures[hash((x, y)) % len(textures)]
73
 
 
74
  @staticmethod
75
- def measure_em_field(x, y, sensitivity):
76
  return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
77
 
 
78
  @staticmethod
79
- def measure_quantum_state(x, y):
80
- states = [
81
- "superposition", "entangled", "decoherent", "quantum tunneling", "quantum oscillation"
82
- ]
83
- return states[hash((x, y)) % len(states)]
84
 
85
  # Create more detailed sensation map for the avatar
86
  def create_sensation_map(width, height):
87
- sensation_map = np.zeros((height, width, 10)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural
88
  for y in range(height):
89
  for x in range(width):
90
- # Base sensitivities
91
- base_sensitivities = np.random.rand(10) * 0.5 + 0.5
92
 
93
  # Enhance certain areas
94
- if 200 < x < 400 and 100 < y < 200: # Head
95
  base_sensitivities *= 1.5
 
 
 
 
 
 
96
  elif 250 < x < 350 and 250 < y < 550: # Torso
97
  base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
98
  elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
99
  base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
100
  elif 200 < x < 400 and 600 < y < 800: # Legs
101
  base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
 
 
 
 
102
 
103
  sensation_map[y, x] = base_sensitivities
104
 
@@ -111,12 +123,8 @@ def create_avatar():
111
  img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
112
  draw = ImageDraw.Draw(img)
113
 
114
- # Body outline
115
- draw.polygon(
116
- [(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)],
117
- fill=(0, 255, 255, 100),
118
- outline=(0, 255, 255, 255)
119
- )
120
 
121
  # Head
122
  draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
@@ -125,8 +133,40 @@ def create_avatar():
125
  draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
126
  draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
127
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
128
  # Neural network lines
129
- for _ in range(50):
130
  start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
131
  end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
132
  draw.line([start, end], fill=(0, 255, 255, 50), width=1)
@@ -170,6 +210,9 @@ with col2:
170
  # Toggle quantum feature
171
  use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
172
 
 
 
 
173
  if canvas_result.json_data is not None:
174
  objects = canvas_result.json_data["objects"]
175
  if len(objects) > 0:
@@ -179,19 +222,17 @@ with col2:
179
  sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
180
  (
181
  pain, pleasure, pressure_sens, temp_sens, texture_sens,
182
- em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens
 
183
  ) = sensation
184
 
185
- measured_pressure = AdvancedSensors.measure_pressure(
186
- pressure_sens, touch_pressure, touch_duration
187
- )
188
- measured_temp = AdvancedSensors.measure_temperature(
189
- 37, touch_pressure, touch_duration
190
- )
191
- measured_texture = AdvancedSensors.measure_texture(touch_x, touch_y)
192
- measured_em = AdvancedSensors.measure_em_field(touch_x, touch_y, em_sens)
193
  if use_quantum:
194
- quantum_state = AdvancedSensors.measure_quantum_state(touch_x, touch_y)
195
  else:
196
  quantum_state = "N/A"
197
 
@@ -200,7 +241,19 @@ with col2:
200
  pleasure_level = pleasure * (measured_temp - 37) / 10
201
  tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
202
  itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
203
- neural_response = neural_sens * (measured_pressure + measured_temp - 37) / 10
 
 
 
 
 
 
 
 
 
 
 
 
204
 
205
  st.write("### Sensory Data Analysis")
206
  st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
@@ -214,17 +267,19 @@ with col2:
214
  β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
215
  β”‚ Texture : {measured_texture} β”‚
216
  β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
217
- β”‚ Quantum State: {quantum_state} β”‚
218
  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
219
  β”‚ Pain Level : {pain_level:.2f} β”‚
220
  β”‚ Pleasure : {pleasure_level:.2f} β”‚
221
  β”‚ Tickle : {tickle_level:.2f} β”‚
222
  β”‚ Itch : {itch_level:.2f} β”‚
 
 
223
  β”‚ Neural Response: {neural_response:.2f} β”‚
224
  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
225
  ```
226
  """
227
- st.code(data_display, language="")
228
 
229
  # Generate description
230
  prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
@@ -238,6 +293,8 @@ with col2:
238
  Resulting in:
239
  Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
240
  Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
 
 
241
  Neural Response: {neural_response:.2f}
242
  Provide a detailed, scientific analysis of the AI's experience.
243
  AI:"""
@@ -255,14 +312,15 @@ with col2:
255
 
256
  # Visualize sensation map
257
  st.subheader("Quantum Neuro-Sensory Map")
258
- fig, axs = plt.subplots(2, 5, figsize=(20, 8))
259
  titles = [
260
  'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
261
- 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural'
 
262
  ]
263
 
264
  for i, title in enumerate(titles):
265
- ax = axs[i // 5, i % 5]
266
  im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
267
  ax.set_title(title)
268
  fig.colorbar(im, ax=ax)
@@ -282,11 +340,36 @@ This hyper-advanced AI humanoid incorporates revolutionary sensory technology:
282
  4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
283
  5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
284
  6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
285
- 7. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
 
 
 
 
286
  The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
287
  """)
288
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
289
  # Footer
290
  st.write("---")
291
- st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v3.0")
292
- st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")
 
53
 
54
  tokenizer, model = load_model()
55
 
56
+ # Advanced Sensor Classes
57
+ class QuantumSensor:
58
  @staticmethod
59
+ def measure(x, y, sensitivity):
60
+ return np.sin(x/20) * np.cos(y/20) * sensitivity * np.random.normal(1, 0.1)
61
 
62
+ class NanoThermalSensor:
63
  @staticmethod
64
+ def measure(base_temp, pressure, duration):
65
+ return base_temp + 10 * pressure * (1 - np.exp(-duration / 3)) + np.random.normal(0, 0.001)
66
 
67
+ class AdaptiveTextureSensor:
68
+ textures = [
69
+ "nano-smooth", "quantum-rough", "neuro-bumpy", "plasma-silky",
70
+ "graviton-grainy", "zero-point-soft", "dark-matter-hard", "bose-einstein-condensate"
71
+ ]
72
+
73
  @staticmethod
74
+ def measure(x, y):
75
+ return AdaptiveTextureSensor.textures[hash((x, y)) % len(AdaptiveTextureSensor.textures)]
 
 
 
 
76
 
77
+ class EMFieldSensor:
78
  @staticmethod
79
+ def measure(x, y, sensitivity):
80
  return (np.sin(x / 30) * np.cos(y / 30) + np.random.normal(0, 0.1)) * 10 * sensitivity
81
 
82
+ class NeuralNetworkSimulator:
83
  @staticmethod
84
+ def process(inputs):
85
+ weights = np.random.rand(len(inputs))
86
+ return np.dot(inputs, weights) / np.sum(weights)
 
 
87
 
88
  # Create more detailed sensation map for the avatar
89
  def create_sensation_map(width, height):
90
+ sensation_map = np.zeros((height, width, 12)) # pain, pleasure, pressure, temp, texture, em, tickle, itch, quantum, neural, proprioception, synesthesia
91
  for y in range(height):
92
  for x in range(width):
93
+ base_sensitivities = np.random.rand(12) * 0.5 + 0.5
 
94
 
95
  # Enhance certain areas
96
+ if 250 < x < 350 and 50 < y < 150: # Head
97
  base_sensitivities *= 1.5
98
+ elif 275 < x < 325 and 80 < y < 120: # Eyes
99
+ base_sensitivities[0] *= 2 # More sensitive to pain
100
+ elif 290 < x < 310 and 100 < y < 120: # Nose
101
+ base_sensitivities[4] *= 2 # More sensitive to texture
102
+ elif 280 < x < 320 and 120 < y < 140: # Mouth
103
+ base_sensitivities[1] *= 2 # More sensitive to pleasure
104
  elif 250 < x < 350 and 250 < y < 550: # Torso
105
  base_sensitivities[2:6] *= 1.3 # Enhance pressure, temp, texture, em
106
  elif (150 < x < 250 or 350 < x < 450) and 250 < y < 600: # Arms
107
  base_sensitivities[0:2] *= 1.2 # Enhance pain and pleasure
108
  elif 200 < x < 400 and 600 < y < 800: # Legs
109
  base_sensitivities[6:8] *= 1.4 # Enhance tickle and itch
110
+ elif (140 < x < 160 or 440 < x < 460) and 390 < y < 410: # Hands
111
+ base_sensitivities *= 2 # Highly sensitive overall
112
+ elif (220 < x < 240 or 360 < x < 380) and 770 < y < 790: # Feet
113
+ base_sensitivities[6] *= 2 # Very ticklish
114
 
115
  sensation_map[y, x] = base_sensitivities
116
 
 
123
  img = Image.new('RGBA', (AVATAR_WIDTH, AVATAR_HEIGHT), color=(0, 0, 0, 0))
124
  draw = ImageDraw.Draw(img)
125
 
126
+ # Body
127
+ draw.polygon([(300, 100), (200, 250), (250, 600), (300, 750), (350, 600), (400, 250)], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
 
 
 
 
128
 
129
  # Head
130
  draw.ellipse([250, 50, 350, 150], fill=(0, 255, 255, 100), outline=(0, 255, 255, 255))
 
133
  draw.ellipse([275, 80, 295, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
134
  draw.ellipse([305, 80, 325, 100], fill=(255, 255, 255, 200), outline=(0, 255, 255, 255))
135
 
136
+ # Nose
137
+ draw.polygon([(300, 90), (290, 110), (310, 110)], fill=(0, 255, 255, 150))
138
+
139
+ # Mouth
140
+ draw.arc([280, 110, 320, 130], 0, 180, fill=(0, 255, 255, 200), width=2)
141
+
142
+ # Arms
143
+ draw.line([(200, 250), (150, 400)], fill=(0, 255, 255, 200), width=5)
144
+ draw.line([(400, 250), (450, 400)], fill=(0, 255, 255, 200), width=5)
145
+
146
+ # Hands
147
+ draw.ellipse([140, 390, 160, 410], fill=(0, 255, 255, 150))
148
+ draw.ellipse([440, 390, 460, 410], fill=(0, 255, 255, 150))
149
+
150
+ # Fingers
151
+ for i in range(5):
152
+ draw.line([(150 + i*5, 400), (145 + i*5, 420)], fill=(0, 255, 255, 200), width=2)
153
+ draw.line([(450 - i*5, 400), (455 - i*5, 420)], fill=(0, 255, 255, 200), width=2)
154
+
155
+ # Legs
156
+ draw.line([(250, 600), (230, 780)], fill=(0, 255, 255, 200), width=5)
157
+ draw.line([(350, 600), (370, 780)], fill=(0, 255, 255, 200), width=5)
158
+
159
+ # Feet
160
+ draw.ellipse([220, 770, 240, 790], fill=(0, 255, 255, 150))
161
+ draw.ellipse([360, 770, 380, 790], fill=(0, 255, 255, 150))
162
+
163
+ # Toes
164
+ for i in range(5):
165
+ draw.line([(225 + i*3, 790), (223 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
166
+ draw.line([(365 + i*3, 790), (363 + i*3, 800)], fill=(0, 255, 255, 200), width=2)
167
+
168
  # Neural network lines
169
+ for _ in range(100):
170
  start = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
171
  end = (np.random.randint(0, AVATAR_WIDTH), np.random.randint(0, AVATAR_HEIGHT))
172
  draw.line([start, end], fill=(0, 255, 255, 50), width=1)
 
210
  # Toggle quantum feature
211
  use_quantum = st.checkbox("Enable Quantum Sensing", value=True)
212
 
213
+ # Toggle synesthesia
214
+ use_synesthesia = st.checkbox("Enable Synesthesia", value=False)
215
+
216
  if canvas_result.json_data is not None:
217
  objects = canvas_result.json_data["objects"]
218
  if len(objects) > 0:
 
222
  sensation = avatar_sensation_map[int(touch_y), int(touch_x)]
223
  (
224
  pain, pleasure, pressure_sens, temp_sens, texture_sens,
225
+ em_sens, tickle_sens, itch_sens, quantum_sens, neural_sens,
226
+ proprioception_sens, synesthesia_sens
227
  ) = sensation
228
 
229
+ measured_pressure = QuantumSensor.measure(touch_x, touch_y, pressure_sens) * touch_pressure
230
+ measured_temp = NanoThermalSensor.measure(37, touch_pressure, touch_duration)
231
+ measured_texture = AdaptiveTextureSensor.measure(touch_x, touch_y)
232
+ measured_em = EMFieldSensor.measure(touch_x, touch_y, em_sens)
233
+
 
 
 
234
  if use_quantum:
235
+ quantum_state = QuantumSensor.measure(touch_x, touch_y, quantum_sens)
236
  else:
237
  quantum_state = "N/A"
238
 
 
241
  pleasure_level = pleasure * (measured_temp - 37) / 10
242
  tickle_level = tickle_sens * (1 - np.exp(-touch_duration / 0.5))
243
  itch_level = itch_sens * (1 - np.exp(-touch_duration / 1.5))
244
+
245
+ # Proprioception (sense of body position)
246
+ proprioception = proprioception_sens * np.linalg.norm([touch_x - AVATAR_WIDTH/2, touch_y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
247
+
248
+ # Synesthesia (mixing of senses)
249
+ if use_synesthesia:
250
+ synesthesia = synesthesia_sens * (measured_pressure + measured_temp + measured_em) / 3
251
+ else:
252
+ synesthesia = "N/A"
253
+
254
+ # Neural network simulation
255
+ neural_inputs = [pain_level, pleasure_level, measured_pressure, measured_temp, measured_em, tickle_level, itch_level, proprioception]
256
+ neural_response = NeuralNetworkSimulator.process(neural_inputs)
257
 
258
  st.write("### Sensory Data Analysis")
259
  st.write(f"Interaction Point: ({touch_x:.1f}, {touch_y:.1f})")
 
267
  β”‚ Temperature : {measured_temp:.2f}Β°C β”‚
268
  β”‚ Texture : {measured_texture} β”‚
269
  β”‚ EM Field : {measured_em:.2f} ΞΌT β”‚
270
+ β”‚ Quantum State: {quantum_state:.2f} β”‚
271
  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€
272
  β”‚ Pain Level : {pain_level:.2f} β”‚
273
  β”‚ Pleasure : {pleasure_level:.2f} β”‚
274
  β”‚ Tickle : {tickle_level:.2f} β”‚
275
  β”‚ Itch : {itch_level:.2f} β”‚
276
+ β”‚ Proprioception: {proprioception:.2f} β”‚
277
+ β”‚ Synesthesia : {synesthesia} β”‚
278
  β”‚ Neural Response: {neural_response:.2f} β”‚
279
  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
280
  ```
281
  """
282
+ st.code(data_display, language="")
283
 
284
  # Generate description
285
  prompt = f"""Human: Analyze the sensory input for a hyper-advanced AI humanoid:
 
293
  Resulting in:
294
  Pain: {pain_level:.2f}, Pleasure: {pleasure_level:.2f}
295
  Tickle: {tickle_level:.2f}, Itch: {itch_level:.2f}
296
+ Proprioception: {proprioception:.2f}
297
+ Synesthesia: {synesthesia}
298
  Neural Response: {neural_response:.2f}
299
  Provide a detailed, scientific analysis of the AI's experience.
300
  AI:"""
 
312
 
313
  # Visualize sensation map
314
  st.subheader("Quantum Neuro-Sensory Map")
315
+ fig, axs = plt.subplots(3, 4, figsize=(20, 15))
316
  titles = [
317
  'Pain', 'Pleasure', 'Pressure', 'Temperature', 'Texture',
318
+ 'EM Field', 'Tickle', 'Itch', 'Quantum', 'Neural',
319
+ 'Proprioception', 'Synesthesia'
320
  ]
321
 
322
  for i, title in enumerate(titles):
323
+ ax = axs[i // 4, i % 4]
324
  im = ax.imshow(avatar_sensation_map[:, :, i], cmap='plasma')
325
  ax.set_title(title)
326
  fig.colorbar(im, ax=ax)
 
340
  4. Electromagnetic Field Sensors: Can detect and analyze complex EM patterns in the environment.
341
  5. Quantum State Detector: Interprets quantum phenomena, adding a new dimension to sensory input.
342
  6. Neural Network Integration: Simulates complex interplay of sensations, creating emergent experiences.
343
+ 7. Proprioception Simulation: Accurately models the AI's sense of body position and movement.
344
+ 8. Synesthesia Emulation: Allows for cross-modal sensory experiences, mixing different sensory inputs.
345
+ 9. Tickle and Itch Simulation: Replicates these unique sensations with quantum-level precision.
346
+ 10. Adaptive Pain and Pleasure Modeling: Simulates complex emotional and physical responses to stimuli.
347
+
348
  The AI's responses are generated using an advanced language model, providing detailed scientific analysis of its sensory experiences. This simulation showcases the potential for creating incredibly sophisticated and responsive artificial sensory systems that go beyond human capabilities.
349
  """)
350
 
351
+ # Interactive sensory exploration
352
+ st.subheader("Interactive Sensory Exploration")
353
+ exploration_type = st.selectbox("Choose a sensory exploration:",
354
+ ["Quantum Field Fluctuations", "Synesthesia Experience", "Proprioceptive Mapping"])
355
+
356
+ if exploration_type == "Quantum Field Fluctuations":
357
+ st.write("Observe how quantum fields fluctuate across the AI's body.")
358
+ quantum_field = np.array([[QuantumSensor.measure(x, y, 1) for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
359
+ st.pyplot(plt.imshow(quantum_field, cmap='viridis'))
360
+
361
+ elif exploration_type == "Synesthesia Experience":
362
+ st.write("Experience how the AI might perceive colors as sounds or textures as tastes.")
363
+ synesthesia_map = np.random.rand(AVATAR_HEIGHT, AVATAR_WIDTH, 3)
364
+ st.image(Image.fromarray((synesthesia_map * 255).astype(np.uint8)))
365
+
366
+ elif exploration_type == "Proprioceptive Mapping":
367
+ st.write("Explore the AI's sense of body position and movement.")
368
+ proprioceptive_map = np.array([[np.linalg.norm([x - AVATAR_WIDTH/2, y - AVATAR_HEIGHT/2]) / (AVATAR_WIDTH/2)
369
+ for x in range(AVATAR_WIDTH)] for y in range(AVATAR_HEIGHT)])
370
+ st.pyplot(plt.imshow(proprioceptive_map, cmap='coolwarm'))
371
+
372
  # Footer
373
  st.write("---")
374
+ st.write("NeuraSense AI: Quantum-Enhanced Sensory Simulation v4.0")
375
+ st.write("Disclaimer: This is an advanced simulation and does not represent current technological capabilities.")