Spaces:
Sleeping
Sleeping
File size: 11,689 Bytes
a39758a 4267dd3 a39758a 4267dd3 ea95c39 7854b75 ea95c39 a39758a 4267dd3 a39758a 1d5e41e 4267dd3 511d5ac 4267dd3 511d5ac 7854b75 3e76729 4267dd3 8ac7da7 4267dd3 a71afed a39758a 4267dd3 a39758a 4267dd3 ea95c39 4267dd3 f895199 4267dd3 a71afed ea95c39 0fbcae1 a71afed ea95c39 4267dd3 a71afed a39758a 4267dd3 a39758a 4267dd3 a39758a 7854b75 a39758a 0bc058e 0fbcae1 0bc058e a39758a 4267dd3 a39758a 4267dd3 a39758a 4267dd3 a39758a 4267dd3 e79610d a39758a 4267dd3 a39758a 306ceb5 a39758a 4267dd3 a39758a 4267dd3 a39758a 4267dd3 a39758a c8f6784 a39758a c8f6784 a39758a 7854b75 efed3f8 7854b75 4267dd3 0bc058e 4267dd3 ea95c39 a39758a 4267dd3 a39758a 4267dd3 aa06fd4 4267dd3 ea95c39 4267dd3 7854b75 a39758a 4267dd3 a39758a 4267dd3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
from diffusers.utils import load_image
from peft import PeftModel, LoraConfig
from rembg import remove
device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
if torch.cuda.is_available():
torch_dtype = torch.float16
else:
torch_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
prompt,
negative_prompt,
width=512,
height=512,
model_id=model_id_default,
seed=42,
guidance_scale=7.0,
lora_scale=1.0,
num_inference_steps=20,
controlnet_checkbox=False,
controlnet_strength=0.0,
controlnet_mode="edge_detection",
controlnet_image=None,
ip_adapter_checkbox=False,
ip_adapter_scale=0.0,
ip_adapter_image=None,
remove_bg=None,
progress=gr.Progress(track_tqdm=True),
):
ckpt_dir='./lora_pussinboots_logos'
unet_sub_dir = os.path.join(ckpt_dir, "unet")
#text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
if model_id is None:
raise ValueError("Please specify the base model name or path")
generator = torch.Generator(device).manual_seed(seed)
params = {'prompt': prompt,
'negative_prompt': negative_prompt,
'guidance_scale': guidance_scale,
'num_inference_steps': num_inference_steps,
'width': width,
'height': height,
'generator': generator
}
if controlnet_checkbox:
if controlnet_mode == "depth_map":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-depth",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "pose_estimation":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-openpose",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "normal_map":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-normal",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
elif controlnet_mode == "scribbles":
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-scribble",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
else:
controlnet = ControlNetModel.from_pretrained(
"lllyasviel/sd-controlnet-canny",
cache_dir="./models_cache",
torch_dtype=torch_dtype
)
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
controlnet=controlnet,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
params['image'] = controlnet_image
params['controlnet_conditioning_scale'] = float(controlnet_strength)
else:
pipe = StableDiffusionPipeline.from_pretrained(model_id,
torch_dtype=torch_dtype,
safety_checker=None).to(device)
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
#pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
# исправляем ошибку устанорвки lora_scale - меняем на параметр "cross_attention_kwargs"
# pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
params['cross_attention_kwargs'] = {"scale": float(lora_scale)}
#pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
if torch_dtype in (torch.float16, torch.bfloat16):
pipe.unet.half()
#pipe.text_encoder.half()
if ip_adapter_checkbox:
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
pipe.set_ip_adapter_scale(ip_adapter_scale)
params['ip_adapter_image'] = ip_adapter_image
pipe.to(device)
image = pipe(**params).images[0]
# Если выбрано удаление фона
if remove_bg:
image = remove(image)
return image
examples = [
"Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
"Cat wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
"A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
"A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
"A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
def controlnet_params(show_extra):
return gr.update(visible=show_extra)
with gr.Blocks(css=css, fill_height=True) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(" # Text-to-Image demo")
with gr.Row():
model_id = gr.Textbox(
label="Model ID",
max_lines=1,
placeholder="Enter model id",
value=model_id_default,
)
prompt = gr.Textbox(
label="Prompt",
max_lines=1,
placeholder="Enter your prompt",
)
negative_prompt = gr.Textbox(
label="Negative prompt",
max_lines=1,
placeholder="Enter your negative prompt",
)
with gr.Row():
seed = gr.Number(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=30.0,
step=0.1,
value=7.0, # Replace with defaults that work for your model
)
with gr.Row():
lora_scale = gr.Slider(
label="LoRA scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=100,
step=1,
value=20, # Replace with defaults that work for your model
)
with gr.Row():
controlnet_checkbox = gr.Checkbox(
label="ControlNet",
value=False
)
with gr.Column(visible=False) as controlnet_params:
controlnet_strength = gr.Slider(
label="ControlNet conditioning scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
controlnet_mode = gr.Dropdown(
label="ControlNet mode",
choices=["edge_detection",
"depth_map",
"pose_estimation",
"normal_map",
"scribbles"],
value="edge_detection",
max_choices=1
)
controlnet_image = gr.Image(
label="ControlNet condition image",
type="pil",
format="png"
)
controlnet_checkbox.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=controlnet_checkbox,
outputs=controlnet_params
)
with gr.Row():
ip_adapter_checkbox = gr.Checkbox(
label="IPAdapter",
value=False
)
with gr.Column(visible=False) as ip_adapter_params:
ip_adapter_scale = gr.Slider(
label="IPAdapter scale",
minimum=0.0,
maximum=1.0,
step=0.01,
value=1.0,
)
ip_adapter_image = gr.Image(
label="IPAdapter condition image",
type="pil"
)
ip_adapter_checkbox.change(
fn=lambda x: gr.Row.update(visible=x),
inputs=ip_adapter_checkbox,
outputs=ip_adapter_params
)
with gr.Accordion("Optional Settings", open=False):
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512, # Replace with defaults that work for your model
)
# Удаление фона------------------------------------------------------------------------------------------------
# Checkbox для удаления фона
remove_bg = gr.Checkbox(
label="Remove Background",
value=False,
interactive=True
)
# -------------------------------------------------------------------------------------------------------------
gr.Examples(examples=examples, inputs=[prompt])
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False)
gr.on(
triggers=[run_button.click],
fn=infer,
inputs=[
prompt,
negative_prompt,
width,
height,
model_id,
seed,
guidance_scale,
lora_scale,
num_inference_steps,
controlnet_checkbox,
controlnet_strength,
controlnet_mode,
controlnet_image,
ip_adapter_checkbox,
ip_adapter_scale,
ip_adapter_image,
remove_bg,
],
outputs=[result],
)
if __name__ == "__main__":
demo.launch() |