File size: 11,689 Bytes
a39758a
 
 
4267dd3
a39758a
4267dd3
 
ea95c39
 
7854b75
 
ea95c39
a39758a
4267dd3
a39758a
 
 
 
 
 
 
 
 
 
 
 
 
 
1d5e41e
 
4267dd3
511d5ac
4267dd3
 
511d5ac
7854b75
 
 
 
 
 
3e76729
 
4267dd3
 
8ac7da7
4267dd3
a71afed
a39758a
4267dd3
 
a39758a
4267dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ea95c39
4267dd3
 
 
f895199
4267dd3
a71afed
ea95c39
0fbcae1
 
 
a71afed
ea95c39
4267dd3
 
a71afed
a39758a
4267dd3
 
 
 
a39758a
4267dd3
a39758a
7854b75
 
 
 
 
 
 
a39758a
0bc058e
 
0fbcae1
0bc058e
 
 
 
 
 
 
 
a39758a
 
 
 
 
 
 
4267dd3
 
 
 
a39758a
4267dd3
a39758a
 
4267dd3
 
a39758a
4267dd3
e79610d
a39758a
 
4267dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
a39758a
 
 
 
306ceb5
a39758a
4267dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39758a
4267dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39758a
4267dd3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a39758a
 
 
 
 
 
c8f6784
a39758a
 
 
 
 
 
 
c8f6784
a39758a
7854b75
 
 
efed3f8
 
 
 
 
7854b75
 
4267dd3
0bc058e
 
 
4267dd3
 
ea95c39
a39758a
4267dd3
a39758a
 
 
 
 
 
4267dd3
aa06fd4
4267dd3
ea95c39
4267dd3
 
 
 
 
 
 
7854b75
 
a39758a
4267dd3
a39758a
 
 
4267dd3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
import gradio as gr
import numpy as np
import random
import os
import torch
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
from diffusers.utils import load_image
from peft import PeftModel, LoraConfig

from rembg import remove 


device = "cuda" if torch.cuda.is_available() else "cpu"
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"

if torch.cuda.is_available():
    torch_dtype = torch.float16
else:
    torch_dtype = torch.float32

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024


# @spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    negative_prompt,
    width=512,
    height=512,
    model_id=model_id_default,
    seed=42,
    guidance_scale=7.0,
    lora_scale=1.0,
    num_inference_steps=20,
    controlnet_checkbox=False,        
    controlnet_strength=0.0,          
    controlnet_mode="edge_detection", 
    controlnet_image=None,            
    ip_adapter_checkbox=False,      
    ip_adapter_scale=0.0,   
    ip_adapter_image=None,            
    remove_bg=None,     
    progress=gr.Progress(track_tqdm=True),    
):  
    ckpt_dir='./lora_pussinboots_logos'
    unet_sub_dir = os.path.join(ckpt_dir, "unet")
    #text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")

    if model_id is None:
        raise ValueError("Please specify the base model name or path")

    generator = torch.Generator(device).manual_seed(seed)
    params = {'prompt': prompt,
              'negative_prompt': negative_prompt,
              'guidance_scale': guidance_scale,
              'num_inference_steps': num_inference_steps,
              'width': width,
              'height': height,
              'generator': generator
             }

    if controlnet_checkbox:
        if controlnet_mode == "depth_map":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-depth",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "pose_estimation":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-openpose",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "normal_map":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-normal",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        elif controlnet_mode == "scribbles":
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-scribble",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        else:
            controlnet = ControlNetModel.from_pretrained(
                "lllyasviel/sd-controlnet-canny",
                cache_dir="./models_cache",
                torch_dtype=torch_dtype
            )
        pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id, 
                                                                 controlnet=controlnet,
                                                                 torch_dtype=torch_dtype, 
                                                                 safety_checker=None).to(device)
        params['image'] = controlnet_image
        params['controlnet_conditioning_scale'] = float(controlnet_strength)
    else:
        pipe = StableDiffusionPipeline.from_pretrained(model_id, 
                                                       torch_dtype=torch_dtype, 
                                                       safety_checker=None).to(device)

    pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
    #pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)

    # исправляем ошибку устанорвки lora_scale - меняем на параметр "cross_attention_kwargs"
    # pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
    params['cross_attention_kwargs'] = {"scale": float(lora_scale)}
    #pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
    
    if torch_dtype in (torch.float16, torch.bfloat16):
        pipe.unet.half()
        #pipe.text_encoder.half()

    if ip_adapter_checkbox:
        pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
        pipe.set_ip_adapter_scale(ip_adapter_scale)
        params['ip_adapter_image'] = ip_adapter_image

    pipe.to(device)

    image = pipe(**params).images[0]

    # Если выбрано удаление фона
    if remove_bg:
        image = remove(image)       

    return image

examples = [
    "Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
    "Cat wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
    "A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
    "A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
    "A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

def controlnet_params(show_extra):
    return gr.update(visible=show_extra)
    
with gr.Blocks(css=css, fill_height=True) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown(" # Text-to-Image demo")

        with gr.Row():
            model_id = gr.Textbox(
                label="Model ID",
                max_lines=1,
                placeholder="Enter model id",
                value=model_id_default,
            )

        prompt = gr.Textbox(
            label="Prompt",
            max_lines=1,
            placeholder="Enter your prompt",
        )
        
        negative_prompt = gr.Textbox(
            label="Negative prompt",
            max_lines=1,
            placeholder="Enter your negative prompt",
        )
        
        with gr.Row():
            seed = gr.Number(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            
            guidance_scale = gr.Slider(
                label="Guidance scale",
                minimum=0.0,
                maximum=30.0,
                step=0.1,
                value=7.0,  # Replace with defaults that work for your model
            )
        with gr.Row():
            lora_scale = gr.Slider(
                label="LoRA scale",
                minimum=0.0,
                maximum=1.0,
                step=0.01,
                value=1.0,
            )

            num_inference_steps = gr.Slider(
                label="Number of inference steps",
                minimum=1,
                maximum=100,
                step=1,
                value=20,  # Replace with defaults that work for your model
            )
        with gr.Row():
            controlnet_checkbox = gr.Checkbox(
                label="ControlNet",
                value=False
            )
            with gr.Column(visible=False) as controlnet_params:
                controlnet_strength = gr.Slider(
                    label="ControlNet conditioning scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=1.0,  
                )
                controlnet_mode = gr.Dropdown(
                    label="ControlNet mode",
                    choices=["edge_detection", 
                             "depth_map",
                             "pose_estimation", 
                             "normal_map",
                             "scribbles"],
                    value="edge_detection",
                    max_choices=1
                )
                controlnet_image = gr.Image(
                    label="ControlNet condition image",
                    type="pil",
                    format="png"
                )
            controlnet_checkbox.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=controlnet_checkbox,
                outputs=controlnet_params
            )

        with gr.Row():
            ip_adapter_checkbox = gr.Checkbox(
                label="IPAdapter",
                value=False
            )
            with gr.Column(visible=False) as ip_adapter_params:
                ip_adapter_scale = gr.Slider(
                    label="IPAdapter scale",
                    minimum=0.0,
                    maximum=1.0,
                    step=0.01,
                    value=1.0,  
                )
                ip_adapter_image = gr.Image(
                    label="IPAdapter condition image",
                    type="pil"
                )
            ip_adapter_checkbox.change(
                fn=lambda x: gr.Row.update(visible=x),
                inputs=ip_adapter_checkbox,
                outputs=ip_adapter_params
            )
            
        with gr.Accordion("Optional Settings", open=False):
            
            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=512,  # Replace with defaults that work for your model
                )

                # Удаление фона------------------------------------------------------------------------------------------------
                # Checkbox для удаления фона
                remove_bg = gr.Checkbox(
                    label="Remove Background",
                    value=False,
                    interactive=True
                )
                # -------------------------------------------------------------------------------------------------------------

        
        gr.Examples(examples=examples, inputs=[prompt])


        run_button = gr.Button("Run", scale=0, variant="primary")
        result = gr.Image(label="Result", show_label=False)
            
    gr.on(
        triggers=[run_button.click],
        fn=infer,
        inputs=[
            prompt,
            negative_prompt,
            width,
            height,
            model_id,
            seed,
            guidance_scale,      
            lora_scale,
            num_inference_steps,
            controlnet_checkbox,
            controlnet_strength,
            controlnet_mode,
            controlnet_image,
            ip_adapter_checkbox,
            ip_adapter_scale,
            ip_adapter_image, 
            remove_bg, 
        ],
        outputs=[result],
    )

if __name__ == "__main__":
    demo.launch()