Spaces:
Sleeping
Sleeping
Update app.py
Browse filesвыполнение ДЗ6
app.py
CHANGED
@@ -1,77 +1,21 @@
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
-
|
5 |
-
# import spaces #[uncomment to use ZeroGPU]
|
6 |
-
from diffusers import DiffusionPipeline
|
7 |
import torch
|
8 |
-
|
|
|
9 |
from peft import PeftModel, LoraConfig
|
10 |
-
import os
|
11 |
|
12 |
-
def get_lora_sd_pipeline(
|
13 |
-
ckpt_dir='./lora_logos',
|
14 |
-
base_model_name_or_path=None,
|
15 |
-
dtype=torch.float16,
|
16 |
-
adapter_name="default"
|
17 |
-
):
|
18 |
-
|
19 |
-
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
20 |
-
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
21 |
-
|
22 |
-
if os.path.exists(text_encoder_sub_dir) and base_model_name_or_path is None:
|
23 |
-
config = LoraConfig.from_pretrained(text_encoder_sub_dir)
|
24 |
-
base_model_name_or_path = config.base_model_name_or_path
|
25 |
-
|
26 |
-
if base_model_name_or_path is None:
|
27 |
-
raise ValueError("Please specify the base model name or path")
|
28 |
-
|
29 |
-
pipe = DiffusionPipeline.from_pretrained(base_model_name_or_path, torch_dtype=dtype)
|
30 |
-
before_params = pipe.unet.parameters()
|
31 |
-
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir, adapter_name=adapter_name)
|
32 |
-
pipe.unet.set_adapter(adapter_name)
|
33 |
-
after_params = pipe.unet.parameters()
|
34 |
-
print("Parameters changed:", any(torch.any(b != a) for b, a in zip(before_params, after_params)))
|
35 |
-
|
36 |
-
if os.path.exists(text_encoder_sub_dir):
|
37 |
-
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir, adapter_name=adapter_name)
|
38 |
-
|
39 |
-
if dtype in (torch.float16, torch.bfloat16):
|
40 |
-
pipe.unet.half()
|
41 |
-
pipe.text_encoder.half()
|
42 |
-
|
43 |
-
return pipe
|
44 |
-
|
45 |
-
def process_prompt(prompt, tokenizer, text_encoder, max_length=77):
|
46 |
-
tokens = tokenizer(prompt, truncation=False, return_tensors="pt")["input_ids"]
|
47 |
-
chunks = [tokens[:, i:i + max_length] for i in range(0, tokens.shape[1], max_length)]
|
48 |
-
|
49 |
-
with torch.no_grad():
|
50 |
-
embeds = [text_encoder(chunk.to(text_encoder.device))[0] for chunk in chunks]
|
51 |
-
|
52 |
-
return torch.cat(embeds, dim=1)
|
53 |
-
|
54 |
-
def align_embeddings(prompt_embeds, negative_prompt_embeds):
|
55 |
-
max_length = max(prompt_embeds.shape[1], negative_prompt_embeds.shape[1])
|
56 |
-
return torch.nn.functional.pad(prompt_embeds, (0, 0, 0, max_length - prompt_embeds.shape[1])), \
|
57 |
-
torch.nn.functional.pad(negative_prompt_embeds, (0, 0, 0, max_length - negative_prompt_embeds.shape[1]))
|
58 |
|
59 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
60 |
-
|
61 |
-
model_id_default = "sd-legacy/stable-diffusion-v1-5"
|
62 |
-
model_dropdown = ['stabilityai/sdxl-turbo', 'CompVis/stable-diffusion-v1-4', 'sd-legacy/stable-diffusion-v1-5' ]
|
63 |
-
|
64 |
-
model_lora_default = "lora_pussinboots_logos"
|
65 |
-
model_lora_dropdown = ['lora_lady_and_cats_logos', 'lora_pussinboots_logos' ]
|
66 |
|
67 |
if torch.cuda.is_available():
|
68 |
torch_dtype = torch.float16
|
69 |
else:
|
70 |
torch_dtype = torch.float32
|
71 |
|
72 |
-
# pipe = DiffusionPipeline.from_pretrained(model_repo_id, torch_dtype=torch_dtype)
|
73 |
-
# pipe = pipe.to(device)
|
74 |
-
|
75 |
MAX_SEED = np.iinfo(np.int32).max
|
76 |
MAX_IMAGE_SIZE = 1024
|
77 |
|
@@ -80,82 +24,99 @@ MAX_IMAGE_SIZE = 1024
|
|
80 |
def infer(
|
81 |
prompt,
|
82 |
negative_prompt,
|
83 |
-
randomize_seed,
|
84 |
width=512,
|
85 |
height=512,
|
86 |
-
|
87 |
seed=42,
|
88 |
-
guidance_scale=7,
|
|
|
89 |
num_inference_steps=20,
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
-
|
|
|
99 |
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
else:
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
prompt_embeds = process_prompt(prompt, pipe.tokenizer, pipe.text_encoder)
|
115 |
-
negative_prompt_embeds = process_prompt(negative_prompt, pipe.tokenizer, pipe.text_encoder)
|
116 |
-
prompt_embeds, negative_prompt_embeds = align_embeddings(prompt_embeds, negative_prompt_embeds)
|
117 |
-
print(f"LoRA adapter loaded: {pipe.unet.active_adapters}")
|
118 |
-
print(f"LoRA scale applied: {lora_scale}")
|
119 |
-
pipe.fuse_lora(lora_scale=lora_scale)
|
120 |
|
|
|
|
|
121 |
|
122 |
-
|
123 |
-
|
124 |
-
# prompt=prompt,
|
125 |
-
# negative_prompt=negative_prompt,
|
126 |
-
# guidance_scale=guidance_scale,
|
127 |
-
# num_inference_steps=num_inference_steps,
|
128 |
-
# width=width,
|
129 |
-
# height=height,
|
130 |
-
# generator=generator,
|
131 |
-
#).images[0]
|
132 |
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
'prompt_embeds': prompt_embeds,
|
137 |
-
'negative_prompt_embeds': negative_prompt_embeds,
|
138 |
-
'guidance_scale': guidance_scale,
|
139 |
-
'num_inference_steps': num_inference_steps,
|
140 |
-
'width': width,
|
141 |
-
'height': height,
|
142 |
-
'generator': generator,
|
143 |
-
}
|
144 |
-
|
145 |
-
return pipe(**params).images[0], seed
|
146 |
|
147 |
-
|
|
|
|
|
|
|
148 |
|
|
|
149 |
|
150 |
-
|
151 |
-
"Puss in Boots wearing a sombrero crosses the Grand Canyon on a tightrope with a guitar.",
|
152 |
-
"A cat is playing a song called ""About the Cat"" on an accordion by the sea at sunset. The sun is quickly setting behind the horizon, and the light is fading.",
|
153 |
-
"A cat walks through the grass on the streets of an abandoned city. The camera view is always focused on the cat's face.",
|
154 |
-
"A young lady in a Russian embroidered kaftan is sitting on a beautiful carved veranda, holding a cup to her mouth and drinking tea from the cup. With her other hand, the girl holds a saucer. The cup and saucer are painted with gzhel. Next to the girl on the table stands a samovar, and steam can be seen above it.",
|
155 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
156 |
-
"An astronaut riding a green horse",
|
157 |
-
"A delicious ceviche cheesecake slice",
|
158 |
-
]
|
159 |
|
160 |
css = """
|
161 |
#col-container {
|
@@ -164,58 +125,124 @@ css = """
|
|
164 |
}
|
165 |
"""
|
166 |
|
167 |
-
|
|
|
|
|
|
|
168 |
with gr.Column(elem_id="col-container"):
|
169 |
-
gr.Markdown(" # Text-to-Image
|
170 |
|
171 |
with gr.Row():
|
172 |
-
|
173 |
-
label="
|
174 |
-
show_label=False,
|
175 |
max_lines=1,
|
176 |
-
placeholder="Enter
|
177 |
-
container=False,
|
178 |
-
)
|
179 |
-
|
180 |
-
run_button = gr.Button("Run", scale=0, variant="primary")
|
181 |
-
|
182 |
-
result = gr.Image(label="Result", show_label=False)
|
183 |
-
|
184 |
-
with gr.Accordion("Advanced Settings", open=False):
|
185 |
-
# model_repo_id = gr.Text(
|
186 |
-
# label="Model Id",
|
187 |
-
# max_lines=1,
|
188 |
-
# placeholder="Choose model",
|
189 |
-
# visible=True,
|
190 |
-
# value=model_repo_id,
|
191 |
-
# )
|
192 |
-
model_repo_id = gr.Dropdown(
|
193 |
-
label="Model Id",
|
194 |
-
choices=model_dropdown,
|
195 |
-
info="Choose model",
|
196 |
-
visible=True,
|
197 |
-
allow_custom_value=True,
|
198 |
-
# value=model_repo_id,
|
199 |
value=model_id_default,
|
200 |
-
)
|
201 |
-
|
202 |
-
negative_prompt = gr.Text(
|
203 |
-
label="Negative prompt",
|
204 |
-
max_lines=1,
|
205 |
-
placeholder="Enter a negative prompt",
|
206 |
-
visible=True,
|
207 |
)
|
208 |
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
210 |
label="Seed",
|
211 |
minimum=0,
|
212 |
maximum=MAX_SEED,
|
213 |
step=1,
|
214 |
value=42,
|
215 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
|
217 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
219 |
with gr.Row():
|
220 |
width = gr.Slider(
|
221 |
label="Width",
|
@@ -232,61 +259,33 @@ with gr.Blocks(css=css) as demo:
|
|
232 |
step=32,
|
233 |
value=512, # Replace with defaults that work for your model
|
234 |
)
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
label="Guidance scale",
|
239 |
-
minimum=0.0,
|
240 |
-
maximum=10.0,
|
241 |
-
step=0.1,
|
242 |
-
value=7.0, # Replace with defaults that work for your model
|
243 |
-
)
|
244 |
-
|
245 |
-
num_inference_steps = gr.Slider(
|
246 |
-
label="Number of inference steps",
|
247 |
-
minimum=1,
|
248 |
-
maximum=50,
|
249 |
-
step=1,
|
250 |
-
value=20, # Replace with defaults that work for your model
|
251 |
-
)
|
252 |
-
|
253 |
-
with gr.Row():
|
254 |
-
model_lora_id = gr.Dropdown(
|
255 |
-
label="Lora Id",
|
256 |
-
choices=model_lora_dropdown,
|
257 |
-
info="Choose LoRA model",
|
258 |
-
visible=True,
|
259 |
-
allow_custom_value=True,
|
260 |
-
value=model_lora_default,
|
261 |
-
)
|
262 |
|
263 |
-
lora_scale = gr.Slider(
|
264 |
-
label="LoRA scale",
|
265 |
-
minimum=0.0,
|
266 |
-
maximum=1.0,
|
267 |
-
step=0.1,
|
268 |
-
value=0.5,
|
269 |
-
)
|
270 |
-
|
271 |
-
gr.Examples(examples=examples, inputs=[prompt])
|
272 |
gr.on(
|
273 |
-
triggers=[run_button.click
|
274 |
fn=infer,
|
275 |
inputs=[
|
276 |
prompt,
|
277 |
negative_prompt,
|
278 |
-
randomize_seed,
|
279 |
width,
|
280 |
height,
|
281 |
-
|
282 |
seed,
|
283 |
-
guidance_scale,
|
284 |
-
num_inference_steps,
|
285 |
-
model_lora_id,
|
286 |
lora_scale,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
287 |
],
|
288 |
-
outputs=[result
|
289 |
)
|
290 |
|
291 |
if __name__ == "__main__":
|
292 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
import random
|
4 |
+
import os
|
|
|
|
|
5 |
import torch
|
6 |
+
from diffusers import StableDiffusionPipeline, ControlNetModel, StableDiffusionControlNetPipeline
|
7 |
+
from diffusers.utils import load_image
|
8 |
from peft import PeftModel, LoraConfig
|
|
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
model_id_default = "stable-diffusion-v1-5/stable-diffusion-v1-5"
|
|
|
|
|
|
|
|
|
|
|
13 |
|
14 |
if torch.cuda.is_available():
|
15 |
torch_dtype = torch.float16
|
16 |
else:
|
17 |
torch_dtype = torch.float32
|
18 |
|
|
|
|
|
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
MAX_IMAGE_SIZE = 1024
|
21 |
|
|
|
24 |
def infer(
|
25 |
prompt,
|
26 |
negative_prompt,
|
|
|
27 |
width=512,
|
28 |
height=512,
|
29 |
+
model_id=model_id_default,
|
30 |
seed=42,
|
31 |
+
guidance_scale=7.0,
|
32 |
+
lora_scale=1.0,
|
33 |
num_inference_steps=20,
|
34 |
+
controlnet_checkbox=False,
|
35 |
+
controlnet_strength=0.0,
|
36 |
+
controlnet_mode="edge_detection",
|
37 |
+
controlnet_image=None,
|
38 |
+
ip_adapter_checkbox=False,
|
39 |
+
ip_adapter_scale=0.0,
|
40 |
+
ip_adapter_image=None,
|
41 |
+
progress=gr.Progress(track_tqdm=True),
|
42 |
+
):
|
43 |
+
ckpt_dir='./model_output'
|
44 |
+
unet_sub_dir = os.path.join(ckpt_dir, "unet")
|
45 |
+
text_encoder_sub_dir = os.path.join(ckpt_dir, "text_encoder")
|
46 |
|
47 |
+
if model_id is None:
|
48 |
+
raise ValueError("Please specify the base model name or path")
|
49 |
|
50 |
+
generator = torch.Generator(device).manual_seed(seed)
|
51 |
+
params = {'prompt': prompt,
|
52 |
+
'negative_prompt': negative_prompt,
|
53 |
+
'guidance_scale': guidance_scale,
|
54 |
+
'num_inference_steps': num_inference_steps,
|
55 |
+
'width': width,
|
56 |
+
'height': height,
|
57 |
+
'generator': generator
|
58 |
+
}
|
59 |
+
|
60 |
+
if controlnet_checkbox:
|
61 |
+
if controlnet_mode == "depth_map":
|
62 |
+
controlnet = ControlNetModel.from_pretrained(
|
63 |
+
"lllyasviel/sd-controlnet-depth",
|
64 |
+
cache_dir="./models_cache",
|
65 |
+
torch_dtype=torch_dtype
|
66 |
+
)
|
67 |
+
elif controlnet_mode == "pose_estimation":
|
68 |
+
controlnet = ControlNetModel.from_pretrained(
|
69 |
+
"lllyasviel/sd-controlnet-openpose",
|
70 |
+
cache_dir="./models_cache",
|
71 |
+
torch_dtype=torch_dtype
|
72 |
+
)
|
73 |
+
elif controlnet_mode == "normal_map":
|
74 |
+
controlnet = ControlNetModel.from_pretrained(
|
75 |
+
"lllyasviel/sd-controlnet-normal",
|
76 |
+
cache_dir="./models_cache",
|
77 |
+
torch_dtype=torch_dtype
|
78 |
+
)
|
79 |
+
elif controlnet_mode == "scribbles":
|
80 |
+
controlnet = ControlNetModel.from_pretrained(
|
81 |
+
"lllyasviel/sd-controlnet-scribble",
|
82 |
+
cache_dir="./models_cache",
|
83 |
+
torch_dtype=torch_dtype
|
84 |
+
)
|
85 |
+
else:
|
86 |
+
controlnet = ControlNetModel.from_pretrained(
|
87 |
+
"lllyasviel/sd-controlnet-canny",
|
88 |
+
cache_dir="./models_cache",
|
89 |
+
torch_dtype=torch_dtype
|
90 |
+
)
|
91 |
+
pipe = StableDiffusionControlNetPipeline.from_pretrained(model_id,
|
92 |
+
controlnet=controlnet,
|
93 |
+
torch_dtype=torch_dtype,
|
94 |
+
safety_checker=None).to(device)
|
95 |
+
params['image'] = controlnet_image
|
96 |
+
params['controlnet_conditioning_scale'] = float(controlnet_strength)
|
97 |
else:
|
98 |
+
pipe = StableDiffusionPipeline.from_pretrained(model_id,
|
99 |
+
torch_dtype=torch_dtype,
|
100 |
+
safety_checker=None).to(device)
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
+
pipe.unet = PeftModel.from_pretrained(pipe.unet, unet_sub_dir)
|
103 |
+
pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, text_encoder_sub_dir)
|
104 |
|
105 |
+
pipe.unet.load_state_dict({k: lora_scale*v for k, v in pipe.unet.state_dict().items()})
|
106 |
+
pipe.text_encoder.load_state_dict({k: lora_scale*v for k, v in pipe.text_encoder.state_dict().items()})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
|
108 |
+
if torch_dtype in (torch.float16, torch.bfloat16):
|
109 |
+
pipe.unet.half()
|
110 |
+
pipe.text_encoder.half()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
111 |
|
112 |
+
if ip_adapter_checkbox:
|
113 |
+
pipe.load_ip_adapter("h94/IP-Adapter", subfolder="models", weight_name="ip-adapter-plus_sd15.bin")
|
114 |
+
pipe.set_ip_adapter_scale(ip_adapter_scale)
|
115 |
+
params['ip_adapter_image'] = ip_adapter_image
|
116 |
|
117 |
+
pipe.to(device)
|
118 |
|
119 |
+
return pipe(**params).images[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
120 |
|
121 |
css = """
|
122 |
#col-container {
|
|
|
125 |
}
|
126 |
"""
|
127 |
|
128 |
+
def controlnet_params(show_extra):
|
129 |
+
return gr.update(visible=show_extra)
|
130 |
+
|
131 |
+
with gr.Blocks(css=css, fill_height=True) as demo:
|
132 |
with gr.Column(elem_id="col-container"):
|
133 |
+
gr.Markdown(" # Text-to-Image demo")
|
134 |
|
135 |
with gr.Row():
|
136 |
+
model_id = gr.Textbox(
|
137 |
+
label="Model ID",
|
|
|
138 |
max_lines=1,
|
139 |
+
placeholder="Enter model id",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
140 |
value=model_id_default,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
)
|
142 |
|
143 |
+
prompt = gr.Textbox(
|
144 |
+
label="Prompt",
|
145 |
+
max_lines=1,
|
146 |
+
placeholder="Enter your prompt",
|
147 |
+
)
|
148 |
+
|
149 |
+
negative_prompt = gr.Textbox(
|
150 |
+
label="Negative prompt",
|
151 |
+
max_lines=1,
|
152 |
+
placeholder="Enter your negative prompt",
|
153 |
+
)
|
154 |
+
|
155 |
+
with gr.Row():
|
156 |
+
seed = gr.Number(
|
157 |
label="Seed",
|
158 |
minimum=0,
|
159 |
maximum=MAX_SEED,
|
160 |
step=1,
|
161 |
value=42,
|
162 |
)
|
163 |
+
|
164 |
+
guidance_scale = gr.Slider(
|
165 |
+
label="Guidance scale",
|
166 |
+
minimum=0.0,
|
167 |
+
maximum=30.0,
|
168 |
+
step=0.1,
|
169 |
+
value=7.0, # Replace with defaults that work for your model
|
170 |
+
)
|
171 |
+
with gr.Row():
|
172 |
+
lora_scale = gr.Slider(
|
173 |
+
label="LoRA scale",
|
174 |
+
minimum=0.0,
|
175 |
+
maximum=1.0,
|
176 |
+
step=0.01,
|
177 |
+
value=1.0,
|
178 |
+
)
|
179 |
|
180 |
+
num_inference_steps = gr.Slider(
|
181 |
+
label="Number of inference steps",
|
182 |
+
minimum=1,
|
183 |
+
maximum=100,
|
184 |
+
step=1,
|
185 |
+
value=20, # Replace with defaults that work for your model
|
186 |
+
)
|
187 |
+
with gr.Row():
|
188 |
+
controlnet_checkbox = gr.Checkbox(
|
189 |
+
label="ControlNet",
|
190 |
+
value=False
|
191 |
+
)
|
192 |
+
with gr.Column(visible=False) as controlnet_params:
|
193 |
+
controlnet_strength = gr.Slider(
|
194 |
+
label="ControlNet conditioning scale",
|
195 |
+
minimum=0.0,
|
196 |
+
maximum=1.0,
|
197 |
+
step=0.01,
|
198 |
+
value=1.0,
|
199 |
+
)
|
200 |
+
controlnet_mode = gr.Dropdown(
|
201 |
+
label="ControlNet mode",
|
202 |
+
choices=["edge_detection",
|
203 |
+
"depth_map",
|
204 |
+
"pose_estimation",
|
205 |
+
"normal_map",
|
206 |
+
"scribbles"],
|
207 |
+
value="edge_detection",
|
208 |
+
max_choices=1
|
209 |
+
)
|
210 |
+
controlnet_image = gr.Image(
|
211 |
+
label="ControlNet condition image",
|
212 |
+
type="pil",
|
213 |
+
format="png"
|
214 |
+
)
|
215 |
+
controlnet_checkbox.change(
|
216 |
+
fn=lambda x: gr.Row.update(visible=x),
|
217 |
+
inputs=controlnet_checkbox,
|
218 |
+
outputs=controlnet_params
|
219 |
+
)
|
220 |
|
221 |
+
with gr.Row():
|
222 |
+
ip_adapter_checkbox = gr.Checkbox(
|
223 |
+
label="IPAdapter",
|
224 |
+
value=False
|
225 |
+
)
|
226 |
+
with gr.Column(visible=False) as ip_adapter_params:
|
227 |
+
ip_adapter_scale = gr.Slider(
|
228 |
+
label="IPAdapter scale",
|
229 |
+
minimum=0.0,
|
230 |
+
maximum=1.0,
|
231 |
+
step=0.01,
|
232 |
+
value=1.0,
|
233 |
+
)
|
234 |
+
ip_adapter_image = gr.Image(
|
235 |
+
label="IPAdapter condition image",
|
236 |
+
type="pil"
|
237 |
+
)
|
238 |
+
ip_adapter_checkbox.change(
|
239 |
+
fn=lambda x: gr.Row.update(visible=x),
|
240 |
+
inputs=ip_adapter_checkbox,
|
241 |
+
outputs=ip_adapter_params
|
242 |
+
)
|
243 |
+
|
244 |
+
with gr.Accordion("Optional Settings", open=False):
|
245 |
+
|
246 |
with gr.Row():
|
247 |
width = gr.Slider(
|
248 |
label="Width",
|
|
|
259 |
step=32,
|
260 |
value=512, # Replace with defaults that work for your model
|
261 |
)
|
262 |
+
|
263 |
+
run_button = gr.Button("Run", scale=0, variant="primary")
|
264 |
+
result = gr.Image(label="Result", show_label=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
265 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
266 |
gr.on(
|
267 |
+
triggers=[run_button.click],
|
268 |
fn=infer,
|
269 |
inputs=[
|
270 |
prompt,
|
271 |
negative_prompt,
|
|
|
272 |
width,
|
273 |
height,
|
274 |
+
model_id,
|
275 |
seed,
|
276 |
+
guidance_scale,
|
|
|
|
|
277 |
lora_scale,
|
278 |
+
num_inference_steps,
|
279 |
+
controlnet_checkbox,
|
280 |
+
controlnet_strength,
|
281 |
+
controlnet_mode,
|
282 |
+
controlnet_image,
|
283 |
+
ip_adapter_checkbox,
|
284 |
+
ip_adapter_scale,
|
285 |
+
ip_adapter_image,
|
286 |
],
|
287 |
+
outputs=[result],
|
288 |
)
|
289 |
|
290 |
if __name__ == "__main__":
|
291 |
+
demo.launch()
|