Spaces:
Sleeping
Sleeping
image
#1
by
Sek2810
- opened
- README.md +5 -4
- app.py +0 -140
- .gitattributes β gitattributes +1 -1
- image_dataset.zip +0 -3
- requirements.txt +0 -4
README.md
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
---
|
2 |
title: Image Classification
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
-
colorTo:
|
6 |
sdk: gradio
|
7 |
-
sdk_version: 4.
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
title: Image Classification
|
3 |
+
emoji: πΌοΈ
|
4 |
+
colorFrom: green
|
5 |
+
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.22.0
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: mit
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
DELETED
@@ -1,140 +0,0 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import logging
|
4 |
-
import gradio as gr
|
5 |
-
from PIL import Image
|
6 |
-
from zipfile import ZipFile
|
7 |
-
from typing import Any, Dict,List
|
8 |
-
from transformers import pipeline
|
9 |
-
|
10 |
-
class Image_classification:
|
11 |
-
def __init__(self):
|
12 |
-
pass
|
13 |
-
|
14 |
-
|
15 |
-
def unzip_image_data(self) -> str:
|
16 |
-
"""
|
17 |
-
Unzips an image dataset into a specified directory.
|
18 |
-
|
19 |
-
Returns:
|
20 |
-
str: The path to the directory containing the extracted image files.
|
21 |
-
"""
|
22 |
-
try:
|
23 |
-
with ZipFile("image_dataset.zip","r") as extract:
|
24 |
-
|
25 |
-
directory_path=str("dataset")
|
26 |
-
os.mkdir(directory_path)
|
27 |
-
extract.extractall(f"{directory_path}")
|
28 |
-
return f"{directory_path}"
|
29 |
-
|
30 |
-
except Exception as e:
|
31 |
-
logging.error(f"An error occurred during extraction: {e}")
|
32 |
-
return ""
|
33 |
-
|
34 |
-
def example_images(self) -> List[str]:
|
35 |
-
"""
|
36 |
-
Unzips the image dataset and generates a list of paths to the individual image files and use image for showing example
|
37 |
-
|
38 |
-
Returns:
|
39 |
-
List[str]: A list of file paths to each image in the dataset.
|
40 |
-
"""
|
41 |
-
try:
|
42 |
-
image_dataset_folder = self.unzip_image_data()
|
43 |
-
image_extensions = ['.jpg', '.jpeg', '.png', '.gif', '.bmp', '.tiff', '.webp']
|
44 |
-
image_count = len([name for name in os.listdir(image_dataset_folder) if os.path.isfile(os.path.join(image_dataset_folder, name)) and os.path.splitext(name)[1].lower() in image_extensions])
|
45 |
-
example=[]
|
46 |
-
for i in range(image_count):
|
47 |
-
for name in os.listdir(image_dataset_folder):
|
48 |
-
path=(os.path.join(os.path.dirname(image_dataset_folder),os.path.join(image_dataset_folder,name)))
|
49 |
-
example.append(path)
|
50 |
-
return example
|
51 |
-
|
52 |
-
except Exception as e:
|
53 |
-
logging.error(f"An error occurred in example images: {e}")
|
54 |
-
return ""
|
55 |
-
|
56 |
-
def classify(self, image: Image.Image, model: Any) -> Dict[str, float]:
|
57 |
-
"""
|
58 |
-
Classifies an image using a specified model.
|
59 |
-
|
60 |
-
Args:
|
61 |
-
image (Image.Image): The image to classify.
|
62 |
-
model (Any): The model used for classification.
|
63 |
-
|
64 |
-
Returns:
|
65 |
-
Dict[str, float]: A dictionary of classification labels and their corresponding scores.
|
66 |
-
"""
|
67 |
-
try:
|
68 |
-
|
69 |
-
classifier = pipeline("image-classification", model=model)
|
70 |
-
result= classifier(image)
|
71 |
-
return result
|
72 |
-
except Exception as e:
|
73 |
-
logging.error(f"An error occurred during image classification: {e}")
|
74 |
-
raise
|
75 |
-
|
76 |
-
def format_the_result(self, image: Image.Image, model: Any) -> Dict[str, float]:
|
77 |
-
"""
|
78 |
-
Formats the classification result by retaining the highest score for each label.
|
79 |
-
|
80 |
-
Args:
|
81 |
-
image (Image.Image): The image to classify.
|
82 |
-
model (Any): The model used for classification.
|
83 |
-
|
84 |
-
Returns:
|
85 |
-
Dict[str, float]: A dictionary with unique labels and the highest score for each label.
|
86 |
-
"""
|
87 |
-
try:
|
88 |
-
data=self.classify(image,model)
|
89 |
-
new_dict = {}
|
90 |
-
for item in data:
|
91 |
-
label = item['label']
|
92 |
-
score = item['score']
|
93 |
-
|
94 |
-
if label in new_dict:
|
95 |
-
if new_dict[label] < score:
|
96 |
-
new_dict[label] = score
|
97 |
-
else:
|
98 |
-
new_dict[label] = score
|
99 |
-
return new_dict
|
100 |
-
except Exception as e:
|
101 |
-
logging.error(f"An error occurred while formatting the results: {e}")
|
102 |
-
raise
|
103 |
-
|
104 |
-
def interface(self):
|
105 |
-
|
106 |
-
with gr.Blocks(css="""
|
107 |
-
|
108 |
-
.gradio-container {background: #314755;
|
109 |
-
background: -webkit-linear-gradient(to right, #26a0da, #314755);
|
110 |
-
background: linear-gradient(to right, #26a0da, #314755);}
|
111 |
-
.block svelte-90oupt padded{background:314755;
|
112 |
-
margin:0;
|
113 |
-
padding:0;}""") as demo:
|
114 |
-
|
115 |
-
gr.HTML("""
|
116 |
-
<center><h1 style="color:#fff">Image Classification</h1></center>""")
|
117 |
-
|
118 |
-
exam_img=self.example_images()
|
119 |
-
with gr.Row():
|
120 |
-
model = gr.Dropdown(["facebook/regnet-x-040","google/vit-large-patch16-384","microsoft/resnet-50",""],label="Choose a model")
|
121 |
-
with gr.Row():
|
122 |
-
image = gr.Image(type="filepath",sources="upload")
|
123 |
-
with gr.Column():
|
124 |
-
output=gr.Label()
|
125 |
-
with gr.Row():
|
126 |
-
button=gr.Button()
|
127 |
-
button.click(self.format_the_result,[image,model],output)
|
128 |
-
gr.Examples(
|
129 |
-
examples=exam_img,
|
130 |
-
inputs=[image],
|
131 |
-
outputs=output,
|
132 |
-
fn=self.format_the_result,
|
133 |
-
cache_examples=False,
|
134 |
-
)
|
135 |
-
demo.launch(debug=True)
|
136 |
-
|
137 |
-
if __name__=="__main__":
|
138 |
-
|
139 |
-
image_classification=Image_classification()
|
140 |
-
result=image_classification.interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
.gitattributes β gitattributes
RENAMED
@@ -32,4 +32,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
32 |
*.xz filter=lfs diff=lfs merge=lfs -text
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
image_dataset.zip
DELETED
@@ -1,3 +0,0 @@
|
|
1 |
-
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:611febdc03ee83d4b47ec112b4ee2e25b35e3369dc13df8afb5316db7873c438
|
3 |
-
size 1875790
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
gradio
|
2 |
-
transformers
|
3 |
-
tensorflow
|
4 |
-
tf-keras
|
|
|
|
|
|
|
|
|
|