File size: 12,204 Bytes
50bf100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f563da
50bf100
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import numpy as np
import pandas as pd
import streamlit as st
import plotly.express as px
import matplotlib.pyplot as plt
import scipy.spatial as spatial
from sklearn.neighbors import KDTree
import warnings
from multiprocessing.pool import ThreadPool as Pool
from matplotlib.patches import Ellipse
warnings.simplefilter("ignore")
from scipy.interpolate import Rbf
import matplotlib as mpl
import plotly.graph_objects as go
from plotly.subplots import make_subplots

color_seq = np.array(['grey', 'blue', 'green', 'yellow', 'orange', 'red', 'purple', 'purple'])
cog = np.array([-99, 0., 1.0, 1.5, 2.0, 2.5, 3.0, 3.0001])
cmap = mpl.colors.ListedColormap(color_seq)
norm = mpl.colors.BoundaryNorm(cog, cmap.N)

#@st.cache

def get_text_block(fname):
  # this is how to read a block of text:
  path = ""
  f = open(fname, "r")
  # and then write it to the app
  return f.read();


def pad_matrix(mat, dim=2):
    mat = np.array(mat)
    if dim == 2:
        mat = np.pad(mat, (0, 1), 'constant', constant_values=(1))
        mat[-1, -1] = 0.
    else:
        mat = np.pad(mat, (0, 1), 'constant', constant_values=(1, 1))
    return mat;


def variogram(h, var, nugget):
    gamma = nugget
    for i in range(2):
        gam = (var[i, 0]) * ((3 * h) / (2 * var[i, 1]) - (h ** 3) / (2 * var[i, 1] ** 3))
        gam[h > var[i, 1]] = var[i, 0]
        gamma += gam
    gamma[h == 0] = 0.
    return gamma;


def OK(x, y, var, nugget):
    # x is samples
    # y in blocks
    x = np.array(x)
    y = np.array(y)
    xx = spatial.distance_matrix(x, x)
    xx_gamma = variogram(xx, var, nugget)
    xx_gamma = pad_matrix(xx_gamma)
    xy_gamma = variogram(y, var, nugget)
    xy_gamma = pad_matrix(xy_gamma, dim=1)
    xx_inv = np.linalg.inv(xx_gamma)
    return np.dot(xy_gamma, xx_inv)[:-1];


def rotate(pts, rot):
    c = np.cos(np.radians(rot))
    s = np.sin(np.radians(rot))
    rotmat = np.array([[c, -s], [s, c]])
    pts = np.dot(pts, rotmat)
    return pts;

def plot_samps(df):
    aniso = (300.) / (750.)
    fig, ax = plt.subplots(figsize=(15, 15 * aniso))
    xx, yy = dgrid(1.)
    rbfi = Rbf(df.YPT, df.ZPT,  df.AU_G_T, function='cubic')
    zz = rbfi(xx, yy)
    ax.contour(xx, yy, zz, cog, colors=color_seq, alpha=0.5)
    ax.imshow(zz, origin='lower', extent=(0., 750, 0., 300.), alpha=0.2, cmap=cmap, norm=norm)
    scat = ax.scatter(df.YPT, df.ZPT, c=df.AU_G_T, cmap=cmap, norm=norm, edgecolor="black", s=40)
    cbar = fig.colorbar(scat, ticks=cog)
    cbar.set_label('Au g/t', rotation=0)
    plt.xlim((0,750))
    plt.ylim((0, 300))
    plt.xlabel('X')
    plt.ylabel('Y')
    return fig, ax;

def plot_blocks(block_size, grades, df):
    aniso = (300. + block_size) / (750. + block_size)
    fig, ax = plt.subplots(figsize=(15, 15 * aniso))
    xx, yy = dgrid(block_size)
    extents = (0., 750 + block_size, 0., 300. + block_size)
    ax.imshow(np.reshape(grades, xx.shape), origin='lower', extent=extents, alpha=0.8, cmap=cmap, norm=norm)
    scat = ax.scatter(df.YPT, df.ZPT, c=df.AU_G_T, cmap=cmap, norm=norm, edgecolor="black", s=40)
    cbar = fig.colorbar(scat, ticks=cog)
    cbar.set_label('Au g/t', rotation=0)
    plt.xlim((0, 750))
    plt.ylim((0, 300))
    plt.xlabel('X')
    plt.ylabel('Y')
    return fig, ax;


def dgrid(block_size=5.):
    x = np.arange(0., 750. + block_size, block_size)
    y = np.arange(0., 300. + block_size, block_size)
    return np.meshgrid(x, y);

def gtcurve(grades, block_size):

    cogs = [0., 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
    grades[grades<0.] = 0.
    grades[np.isnan(grades)]=-99.
    bt = block_size*2.7

    g = []
    t = []
    c = []

    for cog in cogs:
        filt = grades>cog
        if np.sum(filt) > 0:
            g.append(np.average(grades[filt]))
            t.append(np.sum(filt)*bt)
            c.append(cog)

    return pd.DataFrame({'COG':c, 'Tonnes':t, 'Grade':g});

def block_modelling():

    st.title("Block Modelling Exercise")
    st.markdown("The figure below is an orthogonal projection of full width intercepts within a narrow vein.")
    st.markdown("## **Visual Trend Analysis**")
    df = pd.read_csv("data//sim_pts.csv")
    df = df[df.use==1].copy().reset_index(drop=True)
    fig, ax = plot_samps(df)
    st.pyplot(fig)
    xx = spatial.distance_matrix(df[['YPT', 'ZPT']], df[['YPT', 'ZPT']])
    xx = np.array(xx)

    #-----------------------------------------------------------------------------------------------------------------#
    # Variogram
    # ----------------------------------------------------------------------------------------------------------------#

    st.markdown("## **Variogram**")
    st.markdown("The omni-directional variogram is given in the chart that follows." +
                " Keep in mind that no direction has been chosen and that the range shown will be shorter than" +
                " the longest direction and longer than the shortest direction. Your job is to estimate the range" +
                " in the longest direction given your observations from the plot above.")

    g1, g2 = np.meshgrid(df.AU_G_T, df.AU_G_T)
    col1, col2, col3  = st.beta_columns((1,1,1))

    with col1:
        st.markdown('#### Experimental Variogram')
        lag_dist = st.slider('Lag Distance', min_value=5., max_value=50., value=10., step=5.,key='var_lag')
        vartype = st.selectbox('Select Experimental Variogram Type',
                               options=['Traditional Variogram', 'Correlogram'],
                               index=0)
    with col2:
        st.markdown('#### Variogram Model (Variances)')
        nugget = st.slider('Nugget Effect',min_value=0.0, max_value=1.0, value=0.1, step=0.05)
        c1 = st.slider('C1', min_value=0.0, max_value=1.0-nugget, value=0.0, step=0.05)
        c2 = 1.0 - (c1 + nugget)
    with col3:
        st.markdown('#### Variogram Model (Ranges)')
        r1 = st.slider('Range s1', min_value=0.0, max_value=200.0, value=10., step=5., key='k1')
        r2 = st.slider('Range s2', min_value=0.0, max_value=200.0, value=10., step=5., key='k2')

    var = np.array([[c1, r1], [c2, r2]])
    h = np.arange(0.,200., 1.)
    vmod = variogram(h, var, nugget)
    lags = np.arange(lag_dist, 200., lag_dist)
    gammas = np.zeros(len(lags))
    numpairs = np.zeros(len(lags))
    fig, ax = plt.subplots()

    for i, lag in enumerate(lags):
        filt = (xx>=lag-lag_dist*0.75)&(xx<lag+lag_dist*0.75)
        sq_dif = np.sum((g1[filt]-g2[filt])**2)
        m = np.average(g1[filt])
        s = np.std(g1[filt])
        ns = np.sum(filt)
        numpairs[i] = ns

        if vartype == 'Traditional Variogram':
            gammas[i] = sq_dif/(2*float(np.sum(filt))) / np.var(df.AU_G_T)
        else:
            gammas[i] = (np.sum(g1[filt]*g2[filt]) - ns*m**2)/(ns*s**2)
            gammas[i] = 1.0 - gammas[i]
        ax.annotate(str(ns), (lag, gammas[i]+0.05), size=5)

    ax.bar(lags, numpairs/np.max(numpairs), width=lag_dist/2)
    ax.plot(lags, gammas, '-or', markeredgecolor='k', markersize=4, markeredgewidth=0.5)
    ax.plot(h, vmod, '-g', markeredgecolor='k', markersize=4, markeredgewidth=0.5)

    plt.xlim((0, 200))
    plt.ylim((0, 1.5))
    ax.plot([0., 200], [1.0, 1.0], '--k')
    plt.xlabel("Separation Distance/Lag Distance")
    plt.ylabel("Gamma")
    st.pyplot(fig)

    #-----------------------------------------------------------------------------------------------------------------#
    # Set up search ellipse
    # ----------------------------------------------------------------------------------------------------------------#
    st.markdown("## **Search Ellipse**")

    scol1, scol2 = st.beta_columns((1, 1))
    with scol1:
        st.markdown('#### Ellipse Shape')
        rot = st.number_input('Pick a Rotation (-360 to 360)', min_value=-360., max_value=360., value=0., step=5.)
        rot = (360. - rot)
        srange_major = st.number_input('Major Axis Range', min_value=10., max_value=500., value=100., step=5.)
        srange_minor = st.number_input('Minor Axis Range', min_value=10., max_value=500., value=100., step=5.)
    with scol2:
        st.markdown('#### Sample Selection')
        min_samps = st.number_input("Minimum Samples", min_value=1, max_value=40, value=2, step=1)
        max_samps = st.number_input("Maximum Samples", min_value=1, max_value=40, value=10, step=1)
    fig, ax = plot_samps(df)
    e = Ellipse(xy=[350, 150], width=srange_minor * 2, height=srange_major * 2, angle=rot, linewidth=2)
    ax.add_artist(e)
    e.set_facecolor('None')
    e.set_edgecolor('black')
    st.pyplot(fig)

    #-----------------------------------------------------------------------------------------------------------------#
    # Block modelling parameters
    # ----------------------------------------------------------------------------------------------------------------#

    st.markdown("## **Additional Parameters**")

    bcol1, bcol2 = st.beta_columns((1, 1))
    with bcol1:
        block_size = st.number_input('Block Size', min_value=5., max_value=100., value=10., step=5.)
    with bcol2:
        id_exponent = st.number_input('ID Exponent', min_value=0.0, max_value=10.0, value=2., step=1.)

    if st.button("Run Interpolation"):

        xx, yy = dgrid(block_size)
        grid = np.array([xx.flatten(), yy.flatten()]).transpose()
        points = np.array(df.loc[:, ['YPT', 'ZPT']])

        AUID = np.zeros(len(grid))
        AUNN = np.zeros(len(grid))
        AUOK = np.zeros(len(grid))
        NDIST = np.zeros(len(grid))

        AUID[:] = np.nan
        AUID[:] = np.nan
        AUNN[:] = np.nan
        AUOK[:] = np.nan
        NDIST[:] = np.nan

        # rotate
        # grid2 = grid.copy()
        grid = rotate(grid, rot)
        points = rotate(points, rot)
        # apply anisotropy
        grid[:, 0] *= srange_major / srange_minor
        points[:, 0] *= srange_major / srange_minor

        point_tree = KDTree(points)
        idx, dist = point_tree.query_radius(grid, r=srange_major, return_distance=True, sort_results=True)

        for i, ix in enumerate(idx):
            mx = max_samps
            if len(ix) <= mx:
                mx = len(ix)
            dists = dist[i][:mx]
            grades = np.array(df.loc[ix[:mx], 'AU_G_T'])
            if len(ix) >= min_samps:
                AUID[i] = (np.average(grades, weights=1.0 / dists ** id_exponent))
                AUNN[i] = (grades[0])
                NDIST[i] = (dists[0])
                OK_weights = OK(x=points[ix[:mx]], y=dists, var=var, nugget=nugget)
                AUOK[i] = (np.sum(OK_weights * grades))


        fig, ax = plot_blocks(block_size, AUNN, df)
        plt.title("Nearest Neighbour Interpolation")
        st.pyplot(fig)

        fig, ax = plot_blocks(block_size, AUID, df)
        plt.title("Inverse Distance Interpolation")
        st.pyplot(fig)

        fig, ax = plot_blocks(block_size, AUOK, df)
        plt.title("Ordinary Kriging Interpolation")
        st.pyplot(fig)

        st.write("Grade Tonnage Curve:")
        fig = make_subplots(specs=[[{"secondary_y": True}]])
        curve = gtcurve(AUNN, block_size)
        fig.add_trace(
            go.Scatter(x=curve.COG, y=curve.Tonnes, name="NN Tonnes"),
            secondary_y=False,
        )
        fig.add_trace(
            go.Scatter(x=curve.COG, y=curve.Grade, name="NN Grade"),
            secondary_y=True,
        )

        curve = gtcurve(AUID, block_size)
        fig.add_trace(
            go.Scatter(x=curve.COG, y=curve.Tonnes, name="ID Tonnes"),
            secondary_y=False,
        )
        fig.add_trace(
            go.Scatter(x=curve.COG, y=curve.Grade, name="ID Grade"),
            secondary_y=True,
        )

        curve = gtcurve(AUOK, block_size)
        fig.add_trace(
            go.Scatter(x=curve.COG, y=curve.Tonnes, name="OK Tonnes"),
            secondary_y=False,
        )
        fig.add_trace(
            go.Scatter(x=curve.COG, y=curve.Grade, name="OK Grade"),
            secondary_y=True,
        )

        fig.update_xaxes(title_text="Cut-off (Au g/t)")
        fig.update_yaxes(title_text="Tonnes", secondary_y=False)
        fig.update_yaxes(title_text="Grade (Au g/t)", secondary_y=True)

        st.plotly_chart(fig)