Spaces:
Sleeping
Sleeping
File size: 12,204 Bytes
50bf100 8f563da 50bf100 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import numpy as np
import pandas as pd
import streamlit as st
import plotly.express as px
import matplotlib.pyplot as plt
import scipy.spatial as spatial
from sklearn.neighbors import KDTree
import warnings
from multiprocessing.pool import ThreadPool as Pool
from matplotlib.patches import Ellipse
warnings.simplefilter("ignore")
from scipy.interpolate import Rbf
import matplotlib as mpl
import plotly.graph_objects as go
from plotly.subplots import make_subplots
color_seq = np.array(['grey', 'blue', 'green', 'yellow', 'orange', 'red', 'purple', 'purple'])
cog = np.array([-99, 0., 1.0, 1.5, 2.0, 2.5, 3.0, 3.0001])
cmap = mpl.colors.ListedColormap(color_seq)
norm = mpl.colors.BoundaryNorm(cog, cmap.N)
#@st.cache
def get_text_block(fname):
# this is how to read a block of text:
path = ""
f = open(fname, "r")
# and then write it to the app
return f.read();
def pad_matrix(mat, dim=2):
mat = np.array(mat)
if dim == 2:
mat = np.pad(mat, (0, 1), 'constant', constant_values=(1))
mat[-1, -1] = 0.
else:
mat = np.pad(mat, (0, 1), 'constant', constant_values=(1, 1))
return mat;
def variogram(h, var, nugget):
gamma = nugget
for i in range(2):
gam = (var[i, 0]) * ((3 * h) / (2 * var[i, 1]) - (h ** 3) / (2 * var[i, 1] ** 3))
gam[h > var[i, 1]] = var[i, 0]
gamma += gam
gamma[h == 0] = 0.
return gamma;
def OK(x, y, var, nugget):
# x is samples
# y in blocks
x = np.array(x)
y = np.array(y)
xx = spatial.distance_matrix(x, x)
xx_gamma = variogram(xx, var, nugget)
xx_gamma = pad_matrix(xx_gamma)
xy_gamma = variogram(y, var, nugget)
xy_gamma = pad_matrix(xy_gamma, dim=1)
xx_inv = np.linalg.inv(xx_gamma)
return np.dot(xy_gamma, xx_inv)[:-1];
def rotate(pts, rot):
c = np.cos(np.radians(rot))
s = np.sin(np.radians(rot))
rotmat = np.array([[c, -s], [s, c]])
pts = np.dot(pts, rotmat)
return pts;
def plot_samps(df):
aniso = (300.) / (750.)
fig, ax = plt.subplots(figsize=(15, 15 * aniso))
xx, yy = dgrid(1.)
rbfi = Rbf(df.YPT, df.ZPT, df.AU_G_T, function='cubic')
zz = rbfi(xx, yy)
ax.contour(xx, yy, zz, cog, colors=color_seq, alpha=0.5)
ax.imshow(zz, origin='lower', extent=(0., 750, 0., 300.), alpha=0.2, cmap=cmap, norm=norm)
scat = ax.scatter(df.YPT, df.ZPT, c=df.AU_G_T, cmap=cmap, norm=norm, edgecolor="black", s=40)
cbar = fig.colorbar(scat, ticks=cog)
cbar.set_label('Au g/t', rotation=0)
plt.xlim((0,750))
plt.ylim((0, 300))
plt.xlabel('X')
plt.ylabel('Y')
return fig, ax;
def plot_blocks(block_size, grades, df):
aniso = (300. + block_size) / (750. + block_size)
fig, ax = plt.subplots(figsize=(15, 15 * aniso))
xx, yy = dgrid(block_size)
extents = (0., 750 + block_size, 0., 300. + block_size)
ax.imshow(np.reshape(grades, xx.shape), origin='lower', extent=extents, alpha=0.8, cmap=cmap, norm=norm)
scat = ax.scatter(df.YPT, df.ZPT, c=df.AU_G_T, cmap=cmap, norm=norm, edgecolor="black", s=40)
cbar = fig.colorbar(scat, ticks=cog)
cbar.set_label('Au g/t', rotation=0)
plt.xlim((0, 750))
plt.ylim((0, 300))
plt.xlabel('X')
plt.ylabel('Y')
return fig, ax;
def dgrid(block_size=5.):
x = np.arange(0., 750. + block_size, block_size)
y = np.arange(0., 300. + block_size, block_size)
return np.meshgrid(x, y);
def gtcurve(grades, block_size):
cogs = [0., 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0]
grades[grades<0.] = 0.
grades[np.isnan(grades)]=-99.
bt = block_size*2.7
g = []
t = []
c = []
for cog in cogs:
filt = grades>cog
if np.sum(filt) > 0:
g.append(np.average(grades[filt]))
t.append(np.sum(filt)*bt)
c.append(cog)
return pd.DataFrame({'COG':c, 'Tonnes':t, 'Grade':g});
def block_modelling():
st.title("Block Modelling Exercise")
st.markdown("The figure below is an orthogonal projection of full width intercepts within a narrow vein.")
st.markdown("## **Visual Trend Analysis**")
df = pd.read_csv("data//sim_pts.csv")
df = df[df.use==1].copy().reset_index(drop=True)
fig, ax = plot_samps(df)
st.pyplot(fig)
xx = spatial.distance_matrix(df[['YPT', 'ZPT']], df[['YPT', 'ZPT']])
xx = np.array(xx)
#-----------------------------------------------------------------------------------------------------------------#
# Variogram
# ----------------------------------------------------------------------------------------------------------------#
st.markdown("## **Variogram**")
st.markdown("The omni-directional variogram is given in the chart that follows." +
" Keep in mind that no direction has been chosen and that the range shown will be shorter than" +
" the longest direction and longer than the shortest direction. Your job is to estimate the range" +
" in the longest direction given your observations from the plot above.")
g1, g2 = np.meshgrid(df.AU_G_T, df.AU_G_T)
col1, col2, col3 = st.beta_columns((1,1,1))
with col1:
st.markdown('#### Experimental Variogram')
lag_dist = st.slider('Lag Distance', min_value=5., max_value=50., value=10., step=5.,key='var_lag')
vartype = st.selectbox('Select Experimental Variogram Type',
options=['Traditional Variogram', 'Correlogram'],
index=0)
with col2:
st.markdown('#### Variogram Model (Variances)')
nugget = st.slider('Nugget Effect',min_value=0.0, max_value=1.0, value=0.1, step=0.05)
c1 = st.slider('C1', min_value=0.0, max_value=1.0-nugget, value=0.0, step=0.05)
c2 = 1.0 - (c1 + nugget)
with col3:
st.markdown('#### Variogram Model (Ranges)')
r1 = st.slider('Range s1', min_value=0.0, max_value=200.0, value=10., step=5., key='k1')
r2 = st.slider('Range s2', min_value=0.0, max_value=200.0, value=10., step=5., key='k2')
var = np.array([[c1, r1], [c2, r2]])
h = np.arange(0.,200., 1.)
vmod = variogram(h, var, nugget)
lags = np.arange(lag_dist, 200., lag_dist)
gammas = np.zeros(len(lags))
numpairs = np.zeros(len(lags))
fig, ax = plt.subplots()
for i, lag in enumerate(lags):
filt = (xx>=lag-lag_dist*0.75)&(xx<lag+lag_dist*0.75)
sq_dif = np.sum((g1[filt]-g2[filt])**2)
m = np.average(g1[filt])
s = np.std(g1[filt])
ns = np.sum(filt)
numpairs[i] = ns
if vartype == 'Traditional Variogram':
gammas[i] = sq_dif/(2*float(np.sum(filt))) / np.var(df.AU_G_T)
else:
gammas[i] = (np.sum(g1[filt]*g2[filt]) - ns*m**2)/(ns*s**2)
gammas[i] = 1.0 - gammas[i]
ax.annotate(str(ns), (lag, gammas[i]+0.05), size=5)
ax.bar(lags, numpairs/np.max(numpairs), width=lag_dist/2)
ax.plot(lags, gammas, '-or', markeredgecolor='k', markersize=4, markeredgewidth=0.5)
ax.plot(h, vmod, '-g', markeredgecolor='k', markersize=4, markeredgewidth=0.5)
plt.xlim((0, 200))
plt.ylim((0, 1.5))
ax.plot([0., 200], [1.0, 1.0], '--k')
plt.xlabel("Separation Distance/Lag Distance")
plt.ylabel("Gamma")
st.pyplot(fig)
#-----------------------------------------------------------------------------------------------------------------#
# Set up search ellipse
# ----------------------------------------------------------------------------------------------------------------#
st.markdown("## **Search Ellipse**")
scol1, scol2 = st.beta_columns((1, 1))
with scol1:
st.markdown('#### Ellipse Shape')
rot = st.number_input('Pick a Rotation (-360 to 360)', min_value=-360., max_value=360., value=0., step=5.)
rot = (360. - rot)
srange_major = st.number_input('Major Axis Range', min_value=10., max_value=500., value=100., step=5.)
srange_minor = st.number_input('Minor Axis Range', min_value=10., max_value=500., value=100., step=5.)
with scol2:
st.markdown('#### Sample Selection')
min_samps = st.number_input("Minimum Samples", min_value=1, max_value=40, value=2, step=1)
max_samps = st.number_input("Maximum Samples", min_value=1, max_value=40, value=10, step=1)
fig, ax = plot_samps(df)
e = Ellipse(xy=[350, 150], width=srange_minor * 2, height=srange_major * 2, angle=rot, linewidth=2)
ax.add_artist(e)
e.set_facecolor('None')
e.set_edgecolor('black')
st.pyplot(fig)
#-----------------------------------------------------------------------------------------------------------------#
# Block modelling parameters
# ----------------------------------------------------------------------------------------------------------------#
st.markdown("## **Additional Parameters**")
bcol1, bcol2 = st.beta_columns((1, 1))
with bcol1:
block_size = st.number_input('Block Size', min_value=5., max_value=100., value=10., step=5.)
with bcol2:
id_exponent = st.number_input('ID Exponent', min_value=0.0, max_value=10.0, value=2., step=1.)
if st.button("Run Interpolation"):
xx, yy = dgrid(block_size)
grid = np.array([xx.flatten(), yy.flatten()]).transpose()
points = np.array(df.loc[:, ['YPT', 'ZPT']])
AUID = np.zeros(len(grid))
AUNN = np.zeros(len(grid))
AUOK = np.zeros(len(grid))
NDIST = np.zeros(len(grid))
AUID[:] = np.nan
AUID[:] = np.nan
AUNN[:] = np.nan
AUOK[:] = np.nan
NDIST[:] = np.nan
# rotate
# grid2 = grid.copy()
grid = rotate(grid, rot)
points = rotate(points, rot)
# apply anisotropy
grid[:, 0] *= srange_major / srange_minor
points[:, 0] *= srange_major / srange_minor
point_tree = KDTree(points)
idx, dist = point_tree.query_radius(grid, r=srange_major, return_distance=True, sort_results=True)
for i, ix in enumerate(idx):
mx = max_samps
if len(ix) <= mx:
mx = len(ix)
dists = dist[i][:mx]
grades = np.array(df.loc[ix[:mx], 'AU_G_T'])
if len(ix) >= min_samps:
AUID[i] = (np.average(grades, weights=1.0 / dists ** id_exponent))
AUNN[i] = (grades[0])
NDIST[i] = (dists[0])
OK_weights = OK(x=points[ix[:mx]], y=dists, var=var, nugget=nugget)
AUOK[i] = (np.sum(OK_weights * grades))
fig, ax = plot_blocks(block_size, AUNN, df)
plt.title("Nearest Neighbour Interpolation")
st.pyplot(fig)
fig, ax = plot_blocks(block_size, AUID, df)
plt.title("Inverse Distance Interpolation")
st.pyplot(fig)
fig, ax = plot_blocks(block_size, AUOK, df)
plt.title("Ordinary Kriging Interpolation")
st.pyplot(fig)
st.write("Grade Tonnage Curve:")
fig = make_subplots(specs=[[{"secondary_y": True}]])
curve = gtcurve(AUNN, block_size)
fig.add_trace(
go.Scatter(x=curve.COG, y=curve.Tonnes, name="NN Tonnes"),
secondary_y=False,
)
fig.add_trace(
go.Scatter(x=curve.COG, y=curve.Grade, name="NN Grade"),
secondary_y=True,
)
curve = gtcurve(AUID, block_size)
fig.add_trace(
go.Scatter(x=curve.COG, y=curve.Tonnes, name="ID Tonnes"),
secondary_y=False,
)
fig.add_trace(
go.Scatter(x=curve.COG, y=curve.Grade, name="ID Grade"),
secondary_y=True,
)
curve = gtcurve(AUOK, block_size)
fig.add_trace(
go.Scatter(x=curve.COG, y=curve.Tonnes, name="OK Tonnes"),
secondary_y=False,
)
fig.add_trace(
go.Scatter(x=curve.COG, y=curve.Grade, name="OK Grade"),
secondary_y=True,
)
fig.update_xaxes(title_text="Cut-off (Au g/t)")
fig.update_yaxes(title_text="Tonnes", secondary_y=False)
fig.update_yaxes(title_text="Grade (Au g/t)", secondary_y=True)
st.plotly_chart(fig)
|