Spaces:
Sleeping
Sleeping
File size: 6,212 Bytes
cc14865 99eeda2 cc14865 99eeda2 10cd19c 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 cc14865 99eeda2 10cd19c 99eeda2 10cd19c 99eeda2 10cd19c 99eeda2 10cd19c 99eeda2 10cd19c cc14865 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 |
import streamlit as st
import yfinance as yf
import twstock
import plotly.graph_objects as go
from plotly.subplots import make_subplots
import pandas as pd
from datetime import datetime, timedelta
def plot_stock_data(stock_symbols, period='1y'):
"""
繪製股票價格圖表
:param stock_symbols: 股票代號列表
:param period: 時間區間
:return: Plotly figure
"""
# 創建子圖
fig = make_subplots(
rows=len(stock_symbols),
cols=1,
subplot_titles=[f"股價走勢: {symbol}" for symbol in stock_symbols],
vertical_spacing=0.05,
specs=[[{"secondary_y": True}] for _ in stock_symbols]
)
# 為每個股票繪製圖形
for idx, symbol in enumerate(stock_symbols, 1):
try:
# 獲取股票數據
stock = yf.Ticker(symbol)
df = stock.history(period=period)
if df.empty:
st.warning(f"無法獲取 {symbol} 的股票數據")
continue
# 添加蠟燭圖
fig.add_trace(
go.Candlestick(
x=df.index,
open=df['Open'],
high=df['High'],
low=df['Low'],
close=df['Close'],
name=f'{symbol} 價格'
),
row=idx, col=1
)
# 添加成交量柱狀圖
fig.add_trace(
go.Bar(
x=df.index,
y=df['Volume'],
name=f'{symbol} 成交量',
opacity=0.3
),
row=idx, col=1,
secondary_y=True
)
# 添加移動平均線
for ma_days in [5, 20, 60]:
ma = df['Close'].rolling(window=ma_days).mean()
fig.add_trace(
go.Scatter(
x=df.index,
y=ma,
name=f'{symbol} MA{ma_days}',
line=dict(width=1)
),
row=idx, col=1
)
except Exception as e:
st.error(f"處理 {symbol} 時發生錯誤: {str(e)}")
# 更新布局
fig.update_layout(
height=400 * len(stock_symbols),
title_text="台股分析圖",
showlegend=True,
xaxis_rangeslider_visible=False,
template="plotly_white"
)
# 更新軸標籤
for i in range(1, len(stock_symbols) + 1):
fig.update_xaxes(title_text="日期", row=i, col=1)
fig.update_yaxes(title_text="價格 (TWD)", row=i, col=1)
fig.update_yaxes(title_text="成交量", row=i, col=1, secondary_y=True)
return fig
def fetch_recent_stock_data(stock_code):
"""
使用 twstock 獲取近 30 天的交易數據
"""
try:
# 使用 twstock 獲取近 30 天的交易數據
stock = twstock.Stock(stock_code)
recent_data = stock.fetch_31() # 抓取最近 31 天的交易數據
if not recent_data:
st.warning(f"無法找到 {stock_code} 的交易數據。")
return None
# 將數據整理為 DataFrame 格式
data_list = [
{
"Date": data.date.strftime('%Y-%m-%d'), # 日期
"Open": data.open, # 開盤價
"High": data.high, # 最高價
"Low": data.low, # 最低價
"Close": data.close, # 收盤價
"Transaction": data.transaction, # 成交筆數
"Capacity": data.capacity, # 成交股數
"Turnover": data.turnover # 成交金額
}
for data in recent_data
]
df = pd.DataFrame(data_list)
return df
except Exception as e:
st.error(f"發生錯誤: {e}")
st.error("請確認股票代碼是否正確,或是否為台股上市/上櫃股票。")
return None
def main():
st.set_page_config(page_title="台股分析工具", layout="wide")
st.title("台股分析工具")
# 選擇分析模式
mode = st.sidebar.radio("選擇分析模式", ["歷史股價圖", "近期交易資料"])
if mode == "歷史股價圖":
# 股票代號輸入
stock_input = st.text_input(
"股票代號 (用逗號分隔)",
value="2330.TW,2454.TW",
placeholder="例如: 2330,2454"
)
# 時間區間選擇
period_select = st.selectbox(
"時間區間",
["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
index=3 # 預設為 1y
)
# 處理股票代號
stocks = [s.strip() for s in stock_input.split(',')]
stocks = [f"{s}.TW" if not s.endswith('.TW') and s.isdigit() else s for s in stocks]
# 繪製圖表按鈕
if st.button("繪製圖表"):
fig = plot_stock_data(stocks, period_select)
st.plotly_chart(fig, use_container_width=True)
else: # 近期交易資料模式
stock_code = st.text_input("請輸入股票代碼", value="2330")
if st.button("查詢資料"):
df = fetch_recent_stock_data(stock_code)
if df is not None:
# 顯示 DataFrame
st.subheader(f"股票代碼: {stock_code} - 最近30天交易數據")
st.dataframe(df)
# 基本統計
st.subheader("基本統計")
col1, col2, col3 = st.columns(3)
col1.metric("平均收盤價", f"{df['Close'].mean():.2f}")
col2.metric("最高價", f"{df['High'].max():.2f}")
col3.metric("最低價", f"{df['Low'].min():.2f}")
# 下載 CSV
csv = df.to_csv(index=False, encoding="utf-8-sig")
st.download_button(
label="下載 CSV 檔案",
data=csv,
file_name=f"{stock_code}_recent_30days.csv",
mime="text/csv"
)
if __name__ == "__main__":
main() |