Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,102 @@
|
|
1 |
import streamlit as st
|
|
|
2 |
import twstock
|
|
|
|
|
3 |
import pandas as pd
|
4 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
def fetch_recent_stock_data(stock_code):
|
7 |
"""
|
8 |
-
使用 twstock
|
9 |
"""
|
10 |
try:
|
|
|
11 |
stock = twstock.Stock(stock_code)
|
12 |
recent_data = stock.fetch_31() # 抓取最近 31 天的交易數據
|
13 |
|
@@ -18,100 +107,80 @@ def fetch_recent_stock_data(stock_code):
|
|
18 |
# 將數據整理為 DataFrame 格式
|
19 |
data_list = [
|
20 |
{
|
21 |
-
"Date": data.date.strftime('%Y-%m-%d'),
|
22 |
-
"Open": data.open,
|
23 |
-
"High": data.high,
|
24 |
-
"Low": data.low,
|
25 |
-
"Close": data.close,
|
26 |
-
"Transaction": data.transaction,
|
27 |
-
"Capacity": data.capacity,
|
28 |
-
"Turnover": data.turnover
|
29 |
}
|
30 |
for data in recent_data
|
31 |
]
|
32 |
df = pd.DataFrame(data_list)
|
33 |
-
|
34 |
return df
|
35 |
|
36 |
except Exception as e:
|
37 |
st.error(f"發生錯誤: {e}")
|
|
|
38 |
return None
|
39 |
|
40 |
-
def plot_stock_price(df):
|
41 |
-
"""
|
42 |
-
使用 matplotlib 繪製股價走勢
|
43 |
-
"""
|
44 |
-
plt.figure(figsize=(12, 6))
|
45 |
-
plt.plot(df['Date'], df['Close'], label='收盤價')
|
46 |
-
plt.plot(df['Date'], df['Close'].rolling(window=5).mean(), label='5日移動平均', linestyle='--')
|
47 |
-
plt.title('股價走勢')
|
48 |
-
plt.xlabel('日期')
|
49 |
-
plt.ylabel('股價')
|
50 |
-
plt.legend()
|
51 |
-
plt.xticks(rotation=45)
|
52 |
-
plt.tight_layout()
|
53 |
-
return plt
|
54 |
-
|
55 |
def main():
|
56 |
-
st.set_page_config(page_title="
|
57 |
-
|
58 |
-
st.title("🚀 台股分析工具")
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
#
|
65 |
-
|
66 |
-
"股票代號",
|
67 |
-
value="2330",
|
68 |
-
placeholder="例如: 2330"
|
69 |
)
|
70 |
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
|
76 |
-
if
|
77 |
-
# 獲取股票數據
|
78 |
-
df = fetch_recent_stock_data(stock_code)
|
79 |
-
|
80 |
-
if df is not None:
|
81 |
-
# 繪製股價圖
|
82 |
-
fig = plot_stock_price(df)
|
83 |
-
st.pyplot(fig)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
|
|
|
|
|
|
91 |
df = fetch_recent_stock_data(stock_code)
|
92 |
|
93 |
if df is not None:
|
94 |
-
#
|
|
|
95 |
st.dataframe(df)
|
96 |
-
|
97 |
-
#
|
98 |
st.subheader("基本統計")
|
99 |
col1, col2, col3 = st.columns(3)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
with col3:
|
108 |
-
st.metric("最低價", f"{df['Low'].min():.2f}")
|
109 |
-
|
110 |
-
# 匯出 CSV
|
111 |
-
csv_data = df.to_csv(index=False).encode('utf-8-sig')
|
112 |
st.download_button(
|
113 |
-
label="下載CSV",
|
114 |
-
data=
|
115 |
file_name=f"{stock_code}_recent_30days.csv",
|
116 |
mime="text/csv"
|
117 |
)
|
|
|
1 |
import streamlit as st
|
2 |
+
import yfinance as yf
|
3 |
import twstock
|
4 |
+
import plotly.graph_objects as go
|
5 |
+
from plotly.subplots import make_subplots
|
6 |
import pandas as pd
|
7 |
+
from datetime import datetime, timedelta
|
8 |
+
|
9 |
+
def plot_stock_data(stock_symbols, period='1y'):
|
10 |
+
"""
|
11 |
+
繪製股票價格圖表
|
12 |
+
:param stock_symbols: 股票代號列表
|
13 |
+
:param period: 時間區間
|
14 |
+
:return: Plotly figure
|
15 |
+
"""
|
16 |
+
# 創建子圖
|
17 |
+
fig = make_subplots(
|
18 |
+
rows=len(stock_symbols),
|
19 |
+
cols=1,
|
20 |
+
subplot_titles=[f"股價走勢: {symbol}" for symbol in stock_symbols],
|
21 |
+
vertical_spacing=0.05,
|
22 |
+
specs=[[{"secondary_y": True}] for _ in stock_symbols]
|
23 |
+
)
|
24 |
+
|
25 |
+
# 為每個股票繪製圖形
|
26 |
+
for idx, symbol in enumerate(stock_symbols, 1):
|
27 |
+
try:
|
28 |
+
# 獲取股票數據
|
29 |
+
stock = yf.Ticker(symbol)
|
30 |
+
df = stock.history(period=period)
|
31 |
+
|
32 |
+
if df.empty:
|
33 |
+
st.warning(f"無法獲取 {symbol} 的股票數據")
|
34 |
+
continue
|
35 |
+
|
36 |
+
# 添加蠟燭圖
|
37 |
+
fig.add_trace(
|
38 |
+
go.Candlestick(
|
39 |
+
x=df.index,
|
40 |
+
open=df['Open'],
|
41 |
+
high=df['High'],
|
42 |
+
low=df['Low'],
|
43 |
+
close=df['Close'],
|
44 |
+
name=f'{symbol} 價格'
|
45 |
+
),
|
46 |
+
row=idx, col=1
|
47 |
+
)
|
48 |
+
|
49 |
+
# 添加成交量柱狀圖
|
50 |
+
fig.add_trace(
|
51 |
+
go.Bar(
|
52 |
+
x=df.index,
|
53 |
+
y=df['Volume'],
|
54 |
+
name=f'{symbol} 成交量',
|
55 |
+
opacity=0.3
|
56 |
+
),
|
57 |
+
row=idx, col=1,
|
58 |
+
secondary_y=True
|
59 |
+
)
|
60 |
+
|
61 |
+
# 添加移動平均線
|
62 |
+
for ma_days in [5, 20, 60]:
|
63 |
+
ma = df['Close'].rolling(window=ma_days).mean()
|
64 |
+
fig.add_trace(
|
65 |
+
go.Scatter(
|
66 |
+
x=df.index,
|
67 |
+
y=ma,
|
68 |
+
name=f'{symbol} MA{ma_days}',
|
69 |
+
line=dict(width=1)
|
70 |
+
),
|
71 |
+
row=idx, col=1
|
72 |
+
)
|
73 |
+
|
74 |
+
except Exception as e:
|
75 |
+
st.error(f"處理 {symbol} 時發生錯誤: {str(e)}")
|
76 |
+
|
77 |
+
# 更新布局
|
78 |
+
fig.update_layout(
|
79 |
+
height=400 * len(stock_symbols),
|
80 |
+
title_text="台股分析圖",
|
81 |
+
showlegend=True,
|
82 |
+
xaxis_rangeslider_visible=False,
|
83 |
+
template="plotly_white"
|
84 |
+
)
|
85 |
+
|
86 |
+
# 更新軸標籤
|
87 |
+
for i in range(1, len(stock_symbols) + 1):
|
88 |
+
fig.update_xaxes(title_text="日期", row=i, col=1)
|
89 |
+
fig.update_yaxes(title_text="價格 (TWD)", row=i, col=1)
|
90 |
+
fig.update_yaxes(title_text="成交量", row=i, col=1, secondary_y=True)
|
91 |
+
|
92 |
+
return fig
|
93 |
|
94 |
def fetch_recent_stock_data(stock_code):
|
95 |
"""
|
96 |
+
使用 twstock 獲取近 30 天的交易數據
|
97 |
"""
|
98 |
try:
|
99 |
+
# 使用 twstock 獲取近 30 天的交易數據
|
100 |
stock = twstock.Stock(stock_code)
|
101 |
recent_data = stock.fetch_31() # 抓取最近 31 天的交易數據
|
102 |
|
|
|
107 |
# 將數據整理為 DataFrame 格式
|
108 |
data_list = [
|
109 |
{
|
110 |
+
"Date": data.date.strftime('%Y-%m-%d'), # 日期
|
111 |
+
"Open": data.open, # 開盤價
|
112 |
+
"High": data.high, # 最高價
|
113 |
+
"Low": data.low, # 最低價
|
114 |
+
"Close": data.close, # 收盤價
|
115 |
+
"Transaction": data.transaction, # 成交筆數
|
116 |
+
"Capacity": data.capacity, # 成交股數
|
117 |
+
"Turnover": data.turnover # 成交金額
|
118 |
}
|
119 |
for data in recent_data
|
120 |
]
|
121 |
df = pd.DataFrame(data_list)
|
122 |
+
|
123 |
return df
|
124 |
|
125 |
except Exception as e:
|
126 |
st.error(f"發生錯誤: {e}")
|
127 |
+
st.error("請確認股票代碼是否正確,或是否為台股上市/上櫃股票。")
|
128 |
return None
|
129 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
def main():
|
131 |
+
st.set_page_config(page_title="台股分析工具", layout="wide")
|
132 |
+
st.title("台股分析工具")
|
|
|
133 |
|
134 |
+
# 選擇分析模式
|
135 |
+
mode = st.sidebar.radio("選擇分析模式", ["歷史股價圖", "近期交易資料"])
|
136 |
+
|
137 |
+
if mode == "歷史股價圖":
|
138 |
+
# 股票代號輸入
|
139 |
+
stock_input = st.text_input(
|
140 |
+
"股票代號 (用逗號分隔)",
|
141 |
+
value="2330.TW,2454.TW",
|
142 |
+
placeholder="例如: 2330,2454"
|
143 |
)
|
144 |
|
145 |
+
# 時間區間選擇
|
146 |
+
period_select = st.selectbox(
|
147 |
+
"時間區間",
|
148 |
+
["1mo", "3mo", "6mo", "1y", "2y", "5y", "max"],
|
149 |
+
index=3 # 預設為 1y
|
150 |
+
)
|
151 |
|
152 |
+
# 處理股票代號
|
153 |
+
stocks = [s.strip() for s in stock_input.split(',')]
|
154 |
+
stocks = [f"{s}.TW" if not s.endswith('.TW') and s.isdigit() else s for s in stocks]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
155 |
|
156 |
+
# 繪製圖表按鈕
|
157 |
+
if st.button("繪製圖表"):
|
158 |
+
fig = plot_stock_data(stocks, period_select)
|
159 |
+
st.plotly_chart(fig, use_container_width=True)
|
160 |
+
|
161 |
+
else: # 近期交易資料模式
|
162 |
+
stock_code = st.text_input("請輸入股票代碼", value="2330")
|
163 |
+
|
164 |
+
if st.button("查詢資料"):
|
165 |
df = fetch_recent_stock_data(stock_code)
|
166 |
|
167 |
if df is not None:
|
168 |
+
# 顯示 DataFrame
|
169 |
+
st.subheader(f"股票代碼: {stock_code} - 最近30天交易數據")
|
170 |
st.dataframe(df)
|
171 |
+
|
172 |
+
# 基本統計
|
173 |
st.subheader("基本統計")
|
174 |
col1, col2, col3 = st.columns(3)
|
175 |
+
col1.metric("平均收盤價", f"{df['Close'].mean():.2f}")
|
176 |
+
col2.metric("最高價", f"{df['High'].max():.2f}")
|
177 |
+
col3.metric("最低價", f"{df['Low'].min():.2f}")
|
178 |
+
|
179 |
+
# 下載 CSV
|
180 |
+
csv = df.to_csv(index=False, encoding="utf-8-sig")
|
|
|
|
|
|
|
|
|
|
|
|
|
181 |
st.download_button(
|
182 |
+
label="下載 CSV 檔案",
|
183 |
+
data=csv,
|
184 |
file_name=f"{stock_code}_recent_30days.csv",
|
185 |
mime="text/csv"
|
186 |
)
|