Spaces:
Runtime error
Runtime error
File size: 7,999 Bytes
d53c0bb 7f891bb 2e306db 044186b 13ab5d1 7f891bb 2e306db 6af450a 2e306db d2cb214 7f891bb d53c0bb 6af450a 13ab5d1 d53c0bb 2e306db 69e75b1 044186b 6af450a 044186b cec333d 044186b 6af450a 13ab5d1 044186b 6af450a 044186b d2cb214 da39f41 d53c0bb da39f41 6af450a 69e75b1 cec333d 6af450a 5b33905 e6d3c53 5b33905 6af450a 13ab5d1 6af450a 5b33905 6af450a 29a504c 6af450a 7f891bb d53c0bb 2e306db 126a4f5 2e306db da39f41 2e306db aed3a85 5e46cf5 aed3a85 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db da39f41 2e306db 13ab5d1 da39f41 2e306db 7f891bb da39f41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
# Import spaces first to avoid CUDA initialization conflicts
import spaces
import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline, AutoencoderKL
# Define constants
flux_dtype = torch.bfloat16
vae_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048
# Move device selection after spaces import
device = "cuda" if torch.cuda.is_available() else "cpu"
def load_models():
# Load the initial VAE model for preprocessing in float32
vae_model_name = "runwayml/stable-diffusion-v1-5"
vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device).to(vae_dtype)
# Load the FLUX diffusion pipeline with bfloat16
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=flux_dtype)
pipe.enable_model_cpu_offload()
pipe.vae.enable_slicing()
pipe.vae.enable_tiling()
pipe.to(device)
return vae, pipe
# Defer model loading until it's needed
vae, pipe = None, None
def ensure_models_loaded():
global vae, pipe
if vae is None or pipe is None:
vae, pipe = load_models()
def preprocess_image(image, image_size):
preprocess = transforms.Compose([
transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5])
])
image = preprocess(image).unsqueeze(0).to(device, dtype=vae_dtype)
print("Image processed successfully.")
return image
def encode_image(image, vae):
try:
with torch.no_grad():
latents = vae.encode(image).latent_dist.sample() * 0.18215
print("Image encoded successfully.")
return latents
except RuntimeError as e:
print(f"Error during image encoding: {e}")
raise
@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
ensure_models_loaded()
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(seed)
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
try:
if init_image is None:
# text2img case
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
max_sequence_length=256
)
else:
# img2img case
print("Initial image provided, starting preprocessing...")
vae_image_size = 1024 # Using FLUX VAE sample size for preprocessing
init_image = init_image.convert("RGB")
init_image = preprocess_image(init_image, vae_image_size)
print("Starting encoding of the image...")
latents = encode_image(init_image, vae)
print(f"Latents shape after encoding: {latents.shape}")
# Ensure the latents size matches the expected input size for the FLUX model
print("Interpolating latents to match model's input size...")
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
latent_channels = latents.shape[1]
print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
if latent_channels != pipe.vae.config.latent_channels:
print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=flux_dtype)
latents = conv(latents.to(flux_dtype))
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
print(f"Latents shape after permutation: {latents.shape}")
result = pipe(
prompt=prompt,
height=height,
width=width,
num_inference_steps=num_inference_steps,
generator=generator,
guidance_scale=0.0,
latents=latents
)
image = result.images[0]
return image, seed
except Exception as e:
print(f"Error during inference: {e}")
return fallback_image, seed
# ... (rest of the Gradio interface code remains the same)
# Define example prompts
examples = [
"a tiny astronaut hatching from an egg on the moon",
"a cat holding a sign that says hello world",
"an anime illustration of a wiener schnitzel",
]
# CSS styling for the Japanese-inspired interface
css = """
body {
background-color: #fff;
font-family: 'Noto Sans JP', sans-serif;
color: #333;
}
#col-container {
margin: 0 auto;
max-width: 520px;
border: 2px solid #000;
padding: 20px;
background-color: #f7f7f7;
border-radius: 10px;
}
.gr-button {
background-color: #e60012;
color: #fff;
border: 2px solid #000;
}
.gr-button:hover {
background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
border: 2px solid #000;
}
.gr-accordion {
border: 2px solid #000;
background-color: #fff;
}
.gr-image {
border: 2px solid #000;
}
"""
# Create the Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("""
# FLUX.1 [schnell]
12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
[[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
""")
with gr.Row():
prompt = gr.Textbox(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
with gr.Row():
init_image = gr.Image(label="Initial Image (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=42,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=4,
)
gr.Examples(
examples=examples,
fn=infer,
inputs=[prompt],
outputs=[result, seed],
cache_examples="lazy"
)
run_button.click(
infer,
inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
outputs=[result, seed]
)
demo.launch()
|