File size: 7,999 Bytes
d53c0bb
 
 
7f891bb
2e306db
 
 
044186b
 
13ab5d1
7f891bb
2e306db
6af450a
 
2e306db
d2cb214
7f891bb
d53c0bb
 
 
6af450a
 
 
 
 
 
 
 
 
 
 
 
 
13ab5d1
d53c0bb
 
 
 
 
 
 
2e306db
69e75b1
044186b
6af450a
044186b
cec333d
044186b
6af450a
13ab5d1
044186b
 
 
6af450a
 
 
 
 
 
 
 
044186b
d2cb214
da39f41
d53c0bb
 
da39f41
 
6af450a
69e75b1
cec333d
 
6af450a
 
 
5b33905
 
 
 
 
 
e6d3c53
 
5b33905
6af450a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ab5d1
6af450a
 
5b33905
6af450a
29a504c
 
 
 
 
 
 
6af450a
 
 
 
 
 
 
7f891bb
d53c0bb
 
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
126a4f5
2e306db
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
 
 
 
aed3a85
5e46cf5
aed3a85
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
da39f41
2e306db
da39f41
 
2e306db
 
 
da39f41
2e306db
da39f41
 
2e306db
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13ab5d1
 
da39f41
2e306db
 
7f891bb
da39f41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
# Import spaces first to avoid CUDA initialization conflicts
import spaces

import gradio as gr
import numpy as np
import random
import torch
from PIL import Image
from torchvision import transforms
from diffusers import DiffusionPipeline, AutoencoderKL

# Define constants
flux_dtype = torch.bfloat16
vae_dtype = torch.float32
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 2048

# Move device selection after spaces import
device = "cuda" if torch.cuda.is_available() else "cpu"

def load_models():
    # Load the initial VAE model for preprocessing in float32
    vae_model_name = "runwayml/stable-diffusion-v1-5"
    vae = AutoencoderKL.from_pretrained(vae_model_name, subfolder="vae").to(device).to(vae_dtype)
    
    # Load the FLUX diffusion pipeline with bfloat16
    pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=flux_dtype)
    pipe.enable_model_cpu_offload()
    pipe.vae.enable_slicing()
    pipe.vae.enable_tiling()
    pipe.to(device)
    
    return vae, pipe

# Defer model loading until it's needed
vae, pipe = None, None

def ensure_models_loaded():
    global vae, pipe
    if vae is None or pipe is None:
        vae, pipe = load_models()

def preprocess_image(image, image_size):
    preprocess = transforms.Compose([
        transforms.Resize((image_size, image_size), interpolation=transforms.InterpolationMode.LANCZOS),
        transforms.ToTensor(),
        transforms.Normalize([0.5], [0.5])
    ])
    image = preprocess(image).unsqueeze(0).to(device, dtype=vae_dtype)
    print("Image processed successfully.")
    return image

def encode_image(image, vae):
    try:
        with torch.no_grad():
            latents = vae.encode(image).latent_dist.sample() * 0.18215
        print("Image encoded successfully.")
        return latents
    except RuntimeError as e:
        print(f"Error during image encoding: {e}")
        raise

@spaces.GPU()
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
    ensure_models_loaded()
    
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    generator = torch.Generator(device=device).manual_seed(seed)

    fallback_image = Image.new("RGB", (width, height), (255, 0, 0))  # Red image as a fallback

    try:
        if init_image is None:
            # text2img case
            result = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=0.0,
                max_sequence_length=256
            )
        else:
            # img2img case
            print("Initial image provided, starting preprocessing...")
            vae_image_size = 1024  # Using FLUX VAE sample size for preprocessing
            init_image = init_image.convert("RGB")
            init_image = preprocess_image(init_image, vae_image_size)
            
            print("Starting encoding of the image...")
            latents = encode_image(init_image, vae)
            
            print(f"Latents shape after encoding: {latents.shape}")
            
            # Ensure the latents size matches the expected input size for the FLUX model
            print("Interpolating latents to match model's input size...")
            latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8), mode='bilinear')
            
            latent_channels = latents.shape[1]
            print(f"Latent channels from VAE: {latent_channels}, expected by FLUX model: {pipe.vae.config.latent_channels}")
            
            if latent_channels != pipe.vae.config.latent_channels:
                print(f"Adjusting latent channels from {latent_channels} to {pipe.vae.config.latent_channels}")
                conv = torch.nn.Conv2d(latent_channels, pipe.vae.config.latent_channels, kernel_size=1).to(device, dtype=flux_dtype)
                latents = conv(latents.to(flux_dtype))

            latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, pipe.vae.config.latent_channels)
            print(f"Latents shape after permutation: {latents.shape}")

            result = pipe(
                prompt=prompt,
                height=height,
                width=width,
                num_inference_steps=num_inference_steps,
                generator=generator,
                guidance_scale=0.0,
                latents=latents
            )
        
        image = result.images[0]
        return image, seed
    except Exception as e:
        print(f"Error during inference: {e}")
        return fallback_image, seed

# ... (rest of the Gradio interface code remains the same)

# Define example prompts
examples = [
    "a tiny astronaut hatching from an egg on the moon",
    "a cat holding a sign that says hello world",
    "an anime illustration of a wiener schnitzel",
]

# CSS styling for the Japanese-inspired interface
css = """
body {
    background-color: #fff;
    font-family: 'Noto Sans JP', sans-serif;
    color: #333;
}
#col-container {
    margin: 0 auto;
    max-width: 520px;
    border: 2px solid #000;
    padding: 20px;
    background-color: #f7f7f7;
    border-radius: 10px;
}
.gr-button {
    background-color: #e60012;
    color: #fff;
    border: 2px solid #000;
}
.gr-button:hover {
    background-color: #c20010;
}
.gr-slider, .gr-checkbox, .gr-textbox {
    border: 2px solid #000;
}
.gr-accordion {
    border: 2px solid #000;
    background-color: #fff;
}
.gr-image {
    border: 2px solid #000;
}
"""

# Create the Gradio interface
with gr.Blocks(css=css) as demo:
    
    with gr.Column(elem_id="col-container"):
        gr.Markdown("""
        # FLUX.1 [schnell]
        12B param rectified flow transformer distilled from [FLUX.1 [pro]](https://blackforestlabs.ai/) for 4 step generation
        [[blog](https://blackforestlabs.ai/announcing-black-forest-labs/)] [[model](https://huggingface.co/black-forest-labs/FLUX.1-schnell)]
        """)

        with gr.Row():
            prompt = gr.Textbox(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0)

        with gr.Row():
            init_image = gr.Image(label="Initial Image (optional)", type="pil")
            result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=42,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=4,
                )

        gr.Examples(
            examples=examples,
            fn=infer,
            inputs=[prompt],
            outputs=[result, seed],
            cache_examples="lazy"
        )

    run_button.click(
        infer,
        inputs=[prompt, init_image, seed, randomize_seed, width, height, num_inference_steps],
        outputs=[result, seed]
    )

demo.launch()