Spaces:
Runtime error
Runtime error
Jordan Legg
commited on
Commit
β’
cec333d
1
Parent(s):
d027eec
handling
Browse files
app.py
CHANGED
@@ -13,43 +13,37 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
-
# Load the diffusion pipeline
|
17 |
-
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
|
|
|
|
|
|
|
|
18 |
|
19 |
def preprocess_image(image, image_size):
|
20 |
-
print(f"Preprocessing image to size: {image_size}x{image_size}")
|
21 |
preprocess = transforms.Compose([
|
22 |
-
transforms.Resize((image_size, image_size)),
|
23 |
transforms.ToTensor(),
|
24 |
-
transforms.Normalize([0.5], [0.5])
|
25 |
])
|
26 |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
27 |
-
print(f"Image shape after preprocessing: {image.shape}")
|
28 |
return image
|
29 |
|
30 |
def encode_image(image, vae):
|
31 |
-
print("Encoding image using the VAE")
|
32 |
with torch.no_grad():
|
33 |
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
34 |
-
print(f"Latents shape after encoding: {latents.shape}")
|
35 |
return latents
|
36 |
|
37 |
-
# A utility function to log shapes and other relevant information
|
38 |
-
def log_tensor_info(tensor, name):
|
39 |
-
print(f"{name} shape: {tensor.shape} dtype: {tensor.dtype} device: {tensor.device}")
|
40 |
-
|
41 |
@spaces.GPU()
|
42 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
43 |
-
print(f"Inference started with prompt: {prompt}")
|
44 |
if randomize_seed:
|
45 |
seed = random.randint(0, MAX_SEED)
|
46 |
-
print(f"Using seed: {seed}")
|
47 |
generator = torch.Generator().manual_seed(seed)
|
48 |
|
|
|
|
|
49 |
if init_image is None:
|
50 |
-
print("No initial image provided, processing text2img")
|
51 |
try:
|
52 |
-
print("Calling the diffusion pipeline for text2img")
|
53 |
result = pipe(
|
54 |
prompt=prompt,
|
55 |
height=height,
|
@@ -60,50 +54,35 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
60 |
max_sequence_length=256
|
61 |
)
|
62 |
image = result.images[0]
|
63 |
-
|
64 |
-
|
65 |
-
print("Logging complete.")
|
66 |
except Exception as e:
|
67 |
print(f"Pipeline call failed with error: {e}")
|
68 |
-
|
69 |
else:
|
70 |
-
|
71 |
-
vae_image_size = pipe.vae.config.sample_size
|
72 |
-
print(f"Expected VAE image size: {vae_image_size}")
|
73 |
init_image = init_image.convert("RGB")
|
74 |
init_image = preprocess_image(init_image, vae_image_size)
|
75 |
latents = encode_image(init_image, pipe.vae)
|
76 |
|
77 |
-
print("Interpolating latents to match model's input size...")
|
78 |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
|
79 |
-
|
80 |
-
|
81 |
-
latent_channels = pipe.vae.config.latent_channels
|
82 |
-
print(f"Expected latent channels: 64, current latent channels: {latent_channels}")
|
83 |
if latent_channels != 64:
|
84 |
-
print(f"Converting latent channels from {latent_channels} to 64")
|
85 |
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
|
86 |
latents = conv(latents)
|
87 |
-
log_tensor_info(latents, "Latents after channel conversion")
|
88 |
|
89 |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
|
90 |
-
log_tensor_info(latents, "Latents after reshaping for transformer")
|
91 |
|
92 |
try:
|
93 |
-
print("Calling the transformer with latents")
|
94 |
-
# Check if timestep is required and initialize it if necessary
|
95 |
if 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
|
96 |
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
|
97 |
_ = pipe.transformer(latents, timesteps=timestep)
|
98 |
else:
|
99 |
_ = pipe.transformer(latents)
|
100 |
-
print("Transformer call succeeded")
|
101 |
except Exception as e:
|
102 |
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
|
103 |
-
return
|
104 |
|
105 |
try:
|
106 |
-
print("Calling the diffusion pipeline with latents")
|
107 |
image = pipe(
|
108 |
prompt=prompt,
|
109 |
height=height,
|
@@ -115,12 +94,12 @@ def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, he
|
|
115 |
).images[0]
|
116 |
except Exception as e:
|
117 |
print(f"Pipeline call with latents failed with error: {e}")
|
118 |
-
return
|
119 |
|
120 |
-
print("Inference complete")
|
121 |
return image, seed
|
122 |
|
123 |
|
|
|
124 |
# Define example prompts
|
125 |
examples = [
|
126 |
"a tiny astronaut hatching from an egg on the moon",
|
|
|
13 |
MAX_SEED = np.iinfo(np.int32).max
|
14 |
MAX_IMAGE_SIZE = 2048
|
15 |
|
16 |
+
# Load the diffusion pipeline with optimizations
|
17 |
+
pipe = DiffusionPipeline.from_pretrained("black-forest-labs/FLUX.1-schnell", torch_dtype=dtype)
|
18 |
+
pipe.enable_model_cpu_offload()
|
19 |
+
pipe.vae.enable_slicing()
|
20 |
+
pipe.vae.enable_tiling()
|
21 |
+
pipe.to(device)
|
22 |
|
23 |
def preprocess_image(image, image_size):
|
|
|
24 |
preprocess = transforms.Compose([
|
25 |
+
transforms.Resize((image_size, image_size)),
|
26 |
transforms.ToTensor(),
|
27 |
+
transforms.Normalize([0.5], [0.5])
|
28 |
])
|
29 |
image = preprocess(image).unsqueeze(0).to(device, dtype=dtype)
|
|
|
30 |
return image
|
31 |
|
32 |
def encode_image(image, vae):
|
|
|
33 |
with torch.no_grad():
|
34 |
latents = vae.encode(image).latent_dist.sample() * 0.18215
|
|
|
35 |
return latents
|
36 |
|
|
|
|
|
|
|
|
|
37 |
@spaces.GPU()
|
38 |
def infer(prompt, init_image=None, seed=42, randomize_seed=False, width=1024, height=1024, num_inference_steps=4, progress=gr.Progress(track_tqdm=True)):
|
|
|
39 |
if randomize_seed:
|
40 |
seed = random.randint(0, MAX_SEED)
|
|
|
41 |
generator = torch.Generator().manual_seed(seed)
|
42 |
|
43 |
+
fallback_image = Image.new("RGB", (width, height), (255, 0, 0)) # Red image as a fallback
|
44 |
+
|
45 |
if init_image is None:
|
|
|
46 |
try:
|
|
|
47 |
result = pipe(
|
48 |
prompt=prompt,
|
49 |
height=height,
|
|
|
54 |
max_sequence_length=256
|
55 |
)
|
56 |
image = result.images[0]
|
57 |
+
return image, seed
|
|
|
|
|
58 |
except Exception as e:
|
59 |
print(f"Pipeline call failed with error: {e}")
|
60 |
+
return fallback_image, seed
|
61 |
else:
|
62 |
+
vae_image_size = pipe.vae.config.sample_size # Ensure this is correct
|
|
|
|
|
63 |
init_image = init_image.convert("RGB")
|
64 |
init_image = preprocess_image(init_image, vae_image_size)
|
65 |
latents = encode_image(init_image, pipe.vae)
|
66 |
|
|
|
67 |
latents = torch.nn.functional.interpolate(latents, size=(height // 8, width // 8))
|
68 |
+
latent_channels = pipe.vae.config.latent_channels # Ensure this is correct
|
|
|
|
|
|
|
69 |
if latent_channels != 64:
|
|
|
70 |
conv = torch.nn.Conv2d(latent_channels, 64, kernel_size=1).to(device, dtype=dtype)
|
71 |
latents = conv(latents)
|
|
|
72 |
|
73 |
latents = latents.permute(0, 2, 3, 1).contiguous().view(-1, 64)
|
|
|
74 |
|
75 |
try:
|
|
|
|
|
76 |
if 'timesteps' in pipe.transformer.forward.__code__.co_varnames:
|
77 |
timestep = torch.tensor([num_inference_steps], device=device, dtype=dtype)
|
78 |
_ = pipe.transformer(latents, timesteps=timestep)
|
79 |
else:
|
80 |
_ = pipe.transformer(latents)
|
|
|
81 |
except Exception as e:
|
82 |
print(f"Transformer call failed with error: {e}. Skipping transformer step.")
|
83 |
+
return fallback_image, seed
|
84 |
|
85 |
try:
|
|
|
86 |
image = pipe(
|
87 |
prompt=prompt,
|
88 |
height=height,
|
|
|
94 |
).images[0]
|
95 |
except Exception as e:
|
96 |
print(f"Pipeline call with latents failed with error: {e}")
|
97 |
+
return fallback_image, seed
|
98 |
|
|
|
99 |
return image, seed
|
100 |
|
101 |
|
102 |
+
|
103 |
# Define example prompts
|
104 |
examples = [
|
105 |
"a tiny astronaut hatching from an egg on the moon",
|