File size: 1,089 Bytes
dd8b1bf
 
 
 
 
2e28476
dd8b1bf
1030c11
357994a
1237c34
938a35d
 
1237c34
 
938a35d
2e28476
 
 
938a35d
 
2e28476
 
 
 
 
 
 
357994a
938a35d
 
357994a
f6be049
357994a
 
 
 
f6be049
357994a
 
 
82057dc
 
 
357994a
938a35d
2e28476
4595ac8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import streamlit as st
import pandas as pd
import numpy as np
import datetime
import hopsworks
from functions import figure, retrieve
import os
import pickle
import plotly.express as px
import json
from datetime import datetime
import os


# Real data
today = datetime.today().strftime('%Y-%m-%d')
df = retrieve.get_merged_dataframe()
n = len(df[df['pm25'].isna()]) - 1

# Dummmy data
# size = 400
# data = {
#     'date': pd.date_range(start='2023-01-01', periods=size, freq='D'),
#     'pm25': np.random.randint(50, 150, size=size),
#     'predicted_pm25': np.random.randint(50, 150, size=size)
# }
# df = pd.DataFrame(data)

# Page configuration

st.set_page_config(
    page_title="Air Quality Prediction",
    page_icon="🧊",
    layout="wide",
    initial_sidebar_state="expanded",
    menu_items={
        'About': "# Air Quality Prediction"
    }
)

st.title('Lahore Air Quality')
st.subheader('Forecast and hindcast')
st.subheader('Unit: PM25 - particle matter of diameter < 2.5 micrometers')

# Plotting
fig = figure.plot(df, n=n)
st.plotly_chart(fig, use_container_width=True)