File size: 4,217 Bytes
e4c0d76 e5862fe a45a6f9 e5862fe b89aec9 e5862fe b89aec9 e5862fe a45a6f9 b89aec9 bff3de6 b89aec9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 |
import gradio as gr
import random
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
def ade_palette():
return [
[204, 87, 92], # road (Reddish)
[112, 185, 212], # sidewalk (Blue)
[196, 160, 122], # building (Brown)
[106, 135, 242], # wall (Light Blue)
[91, 192, 222], # fence (Turquoise)
[255, 192, 203], # pole (Pink)
[176, 224, 230], # traffic light (Light Blue)
[222, 49, 99], # traffic sign (Red)
[139, 69, 19], # vegetation (Brown)
[255, 0, 0], # terrain (Red)
[0, 0, 255], # sky (Blue)
[255, 228, 181], # person (Peach)
[128, 0, 0], # rider (Maroon)
[0, 128, 0], # car (Green)
[255, 99, 71], # truck (Tomato)
[0, 255, 0], # bus (Lime)
[128, 0, 128], # train (Purple)
[255, 255, 0], # motorcycle (Yellow)
[128, 0, 128] # bicycle (Purple)
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_left()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=27)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(564,846)),
outputs=['plot'],
live=True,
examples=["city1.jpg","city2.jpg","city3.jpg"],
allow_flagging='never',
title="City Image Segmentation Model",
theme="huggingfacedark",
description="This model is a high-performance city image segmentation model based on the Segformer architecture provided by NVIDIA. Specifically, the 'segformer-b5' model, trained on the Cityscapes dataset, excels at performing intricate segmentation on high-resolution images of 1024x1024 pixels. It accurately identifies various urban elements such as roads, buildings, pedestrians, providing visually rich segmentation results.This is a machine learning activity project at Kyunggi University.",
)
demo.launch()
|