Karin0616
commited on
Commit
โข
a45a6f9
1
Parent(s):
7cb998a
example radio
Browse files
app.py
CHANGED
@@ -1,129 +1,61 @@
|
|
1 |
import gradio as gr
|
2 |
-
import random
|
3 |
-
|
4 |
-
from matplotlib import gridspec
|
5 |
-
import matplotlib.pyplot as plt
|
6 |
-
import numpy as np
|
7 |
-
from PIL import Image
|
8 |
import tensorflow as tf
|
9 |
-
from
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
)
|
14 |
-
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
)
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
]
|
42 |
-
|
43 |
-
labels_list = []
|
44 |
-
|
45 |
-
with open(r'labels.txt', 'r') as fp:
|
46 |
-
for line in fp:
|
47 |
-
labels_list.append(line[:-1])
|
48 |
-
|
49 |
-
colormap = np.asarray(ade_palette())
|
50 |
-
|
51 |
-
def label_to_color_image(label):
|
52 |
-
if label.ndim != 2:
|
53 |
-
raise ValueError("Expect 2-D input label")
|
54 |
-
|
55 |
-
if np.max(label) >= len(colormap):
|
56 |
-
raise ValueError("label value too large.")
|
57 |
-
return colormap[label]
|
58 |
-
|
59 |
-
def draw_plot(pred_img, seg):
|
60 |
-
fig = plt.figure(figsize=(20, 15))
|
61 |
-
|
62 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
63 |
-
|
64 |
-
plt.subplot(grid_spec[0])
|
65 |
-
plt.imshow(pred_img)
|
66 |
-
plt.axis('off')
|
67 |
-
LABEL_NAMES = np.asarray(labels_list)
|
68 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
69 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
70 |
-
|
71 |
-
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
72 |
-
|
73 |
-
ax = plt.subplot(grid_spec[1])
|
74 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
75 |
-
|
76 |
-
ax.yaxis.tick_left()
|
77 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
78 |
-
plt.xticks([], [])
|
79 |
-
ax.tick_params(width=0.0, labelsize=27)
|
80 |
-
return fig
|
81 |
-
|
82 |
-
def sepia(input_img):
|
83 |
-
input_img = Image.fromarray(input_img)
|
84 |
-
|
85 |
-
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
86 |
-
outputs = model(**inputs)
|
87 |
-
logits = outputs.logits
|
88 |
-
|
89 |
-
logits = tf.transpose(logits, [0, 2, 3, 1])
|
90 |
-
logits = tf.image.resize(
|
91 |
-
logits, input_img.size[::-1]
|
92 |
-
) # We reverse the shape of `image` because `image.size` returns width and height.
|
93 |
-
seg = tf.math.argmax(logits, axis=-1)[0]
|
94 |
-
|
95 |
-
color_seg = np.zeros(
|
96 |
-
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
97 |
-
) # height, width, 3
|
98 |
-
for label, color in enumerate(colormap):
|
99 |
-
color_seg[seg.numpy() == label, :] = color
|
100 |
-
|
101 |
-
# Show image + mask
|
102 |
-
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
103 |
-
pred_img = pred_img.astype(np.uint8)
|
104 |
-
|
105 |
-
fig = draw_plot(pred_img, seg)
|
106 |
-
return fig
|
107 |
-
|
108 |
-
|
109 |
-
demo = gr.Interface(fn=sepia,
|
110 |
-
inputs=gr.Image(shape=(564,846)),
|
111 |
-
outputs=['plot'],
|
112 |
-
live=True,
|
113 |
-
examples=["city1.jpg","city2.jpg","city3.jpg"],
|
114 |
-
allow_flagging='never',
|
115 |
-
title="This is a machine learning activity project at Kyunggi University.",
|
116 |
-
theme="darkpeach",
|
117 |
-
css="""
|
118 |
-
body {
|
119 |
-
background-color: dark;
|
120 |
-
color: white; /* ํฐํธ ์์ ์์ */
|
121 |
-
font-family: Arial, sans-serif; /* ํฐํธ ํจ๋ฐ๋ฆฌ ์์ */
|
122 |
-
}
|
123 |
-
"""
|
124 |
-
|
125 |
-
)
|
126 |
-
|
127 |
-
|
128 |
-
demo.launch()
|
129 |
-
|
|
|
1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import tensorflow as tf
|
3 |
+
from PIL import Image
|
4 |
+
import requests
|
5 |
+
|
6 |
+
# ๋ชจ๋ธ ๋ก๋
|
7 |
+
model = tf.saved_model.load("nvidia_segformer_b5_finetuned_cityscapes_1024")
|
8 |
+
|
9 |
+
# ๋ ์ด๋ธ ๋ฐ ์์ ์ ์
|
10 |
+
label_colors = {
|
11 |
+
"road": [204, 87, 92],
|
12 |
+
"sidewalk": [112, 185, 212],
|
13 |
+
"building": [196, 160, 122],
|
14 |
+
"wall": [106, 135, 242],
|
15 |
+
"fence": [91, 192, 222],
|
16 |
+
"pole": [255, 192, 203],
|
17 |
+
"traffic_light": [176, 224, 230],
|
18 |
+
"traffic_sign": [222, 49, 99],
|
19 |
+
"vegetation": [139, 69, 19],
|
20 |
+
"terrain": [255, 0, 0],
|
21 |
+
"sky": [0, 0, 255],
|
22 |
+
"person": [255, 228, 181],
|
23 |
+
"rider": [128, 0, 0],
|
24 |
+
"car": [0, 128, 0],
|
25 |
+
"truck": [255, 99, 71],
|
26 |
+
"bus": [0, 255, 0],
|
27 |
+
"train": [128, 0, 128],
|
28 |
+
"motorcycle": [255, 255, 0],
|
29 |
+
"bicycle": [128, 0, 128]
|
30 |
+
}
|
31 |
+
|
32 |
+
# Gradio ์ธํฐํ์ด์ค ์ ์
|
33 |
+
iface = gr.Interface(
|
34 |
+
fn=lambda image: predict_segmentation(image, model),
|
35 |
+
inputs="image",
|
36 |
+
outputs="image"
|
37 |
)
|
38 |
+
iface.launch()
|
39 |
+
|
40 |
+
# ์ด๋ฏธ์ง ์ธ๊ทธ๋ฉํ
์ด์
ํจ์ ์ ์
|
41 |
+
def predict_segmentation(image, model):
|
42 |
+
# ์ด๋ฏธ์ง ๋ณํ
|
43 |
+
image = Image.fromarray(image.astype('uint8'), 'RGB')
|
44 |
+
image = image.resize((1024, 1024)) # ๋ชจ๋ธ์ ์
๋ ฅ ํฌ๊ธฐ์ ๋ง๊ฒ ์กฐ์
|
45 |
+
image_array = tf.keras.preprocessing.image.img_to_array(image)
|
46 |
+
image_array = tf.expand_dims(image_array, 0)
|
47 |
+
|
48 |
+
# ๋ชจ๋ธ ์ถ๋ก
|
49 |
+
predictions = model(image_array)["output_0"]
|
50 |
+
|
51 |
+
# ๋ ์ด๋ธ๋ณ ์์ ๋งคํ
|
52 |
+
segmented_image = tf.zeros_like(predictions)
|
53 |
+
for label, color in label_colors.items():
|
54 |
+
mask = tf.reduce_all(tf.equal(predictions, color), axis=-1, keepdims=True)
|
55 |
+
for i in range(3):
|
56 |
+
segmented_image += tf.cast(mask, tf.float32) * tf.constant(color[i], dtype=tf.float32)
|
57 |
+
|
58 |
+
# ์ด๋ฏธ์ง ๋ฆฌํด
|
59 |
+
segmented_image = tf.cast(segmented_image, tf.uint8)
|
60 |
+
segmented_image = tf.image.resize(segmented_image, [image.height, image.width])
|
61 |
+
return segmented_image.numpy()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|