File size: 4,056 Bytes
e4c0d76
82e8ec6
6e15106
 
 
e4c0d76
 
 
 
 
 
 
 
 
 
 
 
e3cea39
7492e4d
e4c0d76
82e8ec6
e4c0d76
 
 
82e8ec6
e4c0d76
 
82e8ec6
 
 
 
e4c0d76
82e8ec6
 
 
 
 
 
 
e4c0d76
7492e4d
82e8ec6
6e15106
 
 
 
 
e4c0d76
 
 
 
 
 
 
 
 
 
 
82e8ec6
 
7492e4d
82e8ec6
 
 
 
 
 
 
 
 
 
59255df
82e8ec6
 
59255df
a59bb66
 
 
 
82e8ec6
 
 
e4c0d76
 
 
 
 
 
 
7492e4d
 
 
e4c0d76
 
 
 
1f6afca
 
82e8ec6
2bee93c
7492e4d
e4c0d76
 
 
82e8ec6
e4c0d76
1937e4b
6e15106
dc50072
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7492e4d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import gradio as gr
import random

from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation

feature_extractor = SegformerFeatureExtractor.from_pretrained(
    "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
    "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)

def ade_palette():

    return [
        [204, 87, 92],  # road (Reddish)
        [112, 185, 212],  # sidewalk (Blue)
        [196, 160, 122],  # building (Brown)
        [106, 135, 242],  # wall (Light Blue)
        [91, 192, 222],  # fence (Turquoise)
        [255, 192, 203],  # pole (Pink)
        [176, 224, 230],  # traffic light (Light Blue)
        [222, 49, 99],  # traffic sign (Red)
        [139, 69, 19],  # vegetation (Brown)
        [255, 0, 0],  # terrain (Red)
        [0, 0, 255],  # sky (Blue)
        [255, 228, 181],  # person (Peach)
        [128, 0, 0],  # rider (Maroon)
        [0, 128, 0],  # car (Green)
        [255, 99, 71],  # truck (Tomato)
        [0, 255, 0],  # bus (Lime)
        [128, 0, 128],  # train (Purple)
        [255, 255, 0],  # motorcycle (Yellow)
        [128, 0, 128]  # bicycle (Purple)

    ]

labels_list = []

with open(r'labels.txt', 'r') as fp:
    for line in fp:
        labels_list.append(line[:-1])

colormap = np.asarray(ade_palette())

def label_to_color_image(label):
    if label.ndim != 2:
        raise ValueError("Expect 2-D input label")

    if np.max(label) >= len(colormap):
        raise ValueError("label value too large.")
    return colormap[label]

def draw_plot(pred_img, seg):
    fig = plt.figure(figsize=(20, 15))

    grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])

    plt.subplot(grid_spec[0])
    plt.imshow(pred_img)
    plt.axis('off')
    LABEL_NAMES = np.asarray(labels_list)
    FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
    FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)

    unique_labels = np.unique(seg.numpy().astype("uint8"))

    ax = plt.subplot(grid_spec[1])
    plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")

    ax.yaxis.tick_left()
    plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
    plt.xticks([], [])
    ax.tick_params(width=0.0, labelsize=27)
    return fig

def sepia(input_img):
    input_img = Image.fromarray(input_img)

    inputs = feature_extractor(images=input_img, return_tensors="tf")
    outputs = model(**inputs)
    logits = outputs.logits

    logits = tf.transpose(logits, [0, 2, 3, 1])
    logits = tf.image.resize(
        logits, input_img.size[::-1]
    )  # We reverse the shape of `image` because `image.size` returns width and height.
    seg = tf.math.argmax(logits, axis=-1)[0]

    color_seg = np.zeros(
        (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
    )  # height, width, 3
    for label, color in enumerate(colormap):
        color_seg[seg.numpy() == label, :] = color

    # Show image + mask
    pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
    pred_img = pred_img.astype(np.uint8)

    fig = draw_plot(pred_img, seg)
    return fig


demo = gr.Interface(fn=sepia,
                    inputs=gr.Image(shape=(564,846)),
                    outputs=['plot'],
                    live=True,
                    examples=["city1.jpg","city2.jpg","city3.jpg"],
                    allow_flagging='never',
                    title="This is a machine learning activity project at Kyunggi University.",
                    theme="darkpeach",
                    css="""
                        body {
                            background-color: dark;
                            color: white;  /* ํฐํŠธ ์ƒ‰์ƒ ์ˆ˜์ • */
                            font-family: Arial, sans-serif;  /* ํฐํŠธ ํŒจ๋ฐ€๋ฆฌ ์ˆ˜์ • */
                        }
                        """

                    )


demo.launch()