File size: 4,056 Bytes
e4c0d76 82e8ec6 6e15106 e4c0d76 e3cea39 7492e4d e4c0d76 82e8ec6 e4c0d76 82e8ec6 e4c0d76 82e8ec6 e4c0d76 82e8ec6 e4c0d76 7492e4d 82e8ec6 6e15106 e4c0d76 82e8ec6 7492e4d 82e8ec6 59255df 82e8ec6 59255df a59bb66 82e8ec6 e4c0d76 7492e4d e4c0d76 1f6afca 82e8ec6 2bee93c 7492e4d e4c0d76 82e8ec6 e4c0d76 1937e4b 6e15106 dc50072 7492e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
import gradio as gr
import random
from matplotlib import gridspec
import matplotlib.pyplot as plt
import numpy as np
from PIL import Image
import tensorflow as tf
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
feature_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
model = TFSegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
)
def ade_palette():
return [
[204, 87, 92], # road (Reddish)
[112, 185, 212], # sidewalk (Blue)
[196, 160, 122], # building (Brown)
[106, 135, 242], # wall (Light Blue)
[91, 192, 222], # fence (Turquoise)
[255, 192, 203], # pole (Pink)
[176, 224, 230], # traffic light (Light Blue)
[222, 49, 99], # traffic sign (Red)
[139, 69, 19], # vegetation (Brown)
[255, 0, 0], # terrain (Red)
[0, 0, 255], # sky (Blue)
[255, 228, 181], # person (Peach)
[128, 0, 0], # rider (Maroon)
[0, 128, 0], # car (Green)
[255, 99, 71], # truck (Tomato)
[0, 255, 0], # bus (Lime)
[128, 0, 128], # train (Purple)
[255, 255, 0], # motorcycle (Yellow)
[128, 0, 128] # bicycle (Purple)
]
labels_list = []
with open(r'labels.txt', 'r') as fp:
for line in fp:
labels_list.append(line[:-1])
colormap = np.asarray(ade_palette())
def label_to_color_image(label):
if label.ndim != 2:
raise ValueError("Expect 2-D input label")
if np.max(label) >= len(colormap):
raise ValueError("label value too large.")
return colormap[label]
def draw_plot(pred_img, seg):
fig = plt.figure(figsize=(20, 15))
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
plt.subplot(grid_spec[0])
plt.imshow(pred_img)
plt.axis('off')
LABEL_NAMES = np.asarray(labels_list)
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
unique_labels = np.unique(seg.numpy().astype("uint8"))
ax = plt.subplot(grid_spec[1])
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
ax.yaxis.tick_left()
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
plt.xticks([], [])
ax.tick_params(width=0.0, labelsize=27)
return fig
def sepia(input_img):
input_img = Image.fromarray(input_img)
inputs = feature_extractor(images=input_img, return_tensors="tf")
outputs = model(**inputs)
logits = outputs.logits
logits = tf.transpose(logits, [0, 2, 3, 1])
logits = tf.image.resize(
logits, input_img.size[::-1]
) # We reverse the shape of `image` because `image.size` returns width and height.
seg = tf.math.argmax(logits, axis=-1)[0]
color_seg = np.zeros(
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
) # height, width, 3
for label, color in enumerate(colormap):
color_seg[seg.numpy() == label, :] = color
# Show image + mask
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
pred_img = pred_img.astype(np.uint8)
fig = draw_plot(pred_img, seg)
return fig
demo = gr.Interface(fn=sepia,
inputs=gr.Image(shape=(564,846)),
outputs=['plot'],
live=True,
examples=["city1.jpg","city2.jpg","city3.jpg"],
allow_flagging='never',
title="This is a machine learning activity project at Kyunggi University.",
theme="darkpeach",
css="""
body {
background-color: dark;
color: white; /* ํฐํธ ์์ ์์ */
font-family: Arial, sans-serif; /* ํฐํธ ํจ๋ฐ๋ฆฌ ์์ */
}
"""
)
demo.launch()
|