Karin0616
commited on
Commit
ยท
6e15106
1
Parent(s):
e3cea39
block test
Browse files
app.py
CHANGED
@@ -1,10 +1,11 @@
|
|
1 |
import gradio as gr
|
2 |
import random
|
|
|
|
|
|
|
3 |
import numpy as np
|
4 |
from PIL import Image
|
5 |
import tensorflow as tf
|
6 |
-
from matplotlib import gridspec
|
7 |
-
import matplotlib.pyplot as plt
|
8 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
|
10 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
@@ -39,11 +40,11 @@ def ade_palette():
|
|
39 |
]
|
40 |
|
41 |
|
42 |
-
labels_list = [
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
]
|
47 |
|
48 |
colormap = np.asarray(ade_palette())
|
49 |
|
@@ -103,75 +104,16 @@ def sepia(input_img):
|
|
103 |
return fig
|
104 |
|
105 |
|
|
|
106 |
with gr.Blocks() as demo:
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
"wall": "#6A87F2",
|
119 |
-
"fence": "#5BC0DE",
|
120 |
-
"pole": "#FFC0CB",
|
121 |
-
"traffic light": "#B0E0E6",
|
122 |
-
"traffic sign": "#DE3163",
|
123 |
-
"vegetation": "#8B4513",
|
124 |
-
"terrain": "#FF0000",
|
125 |
-
"sky": "#0000FF",
|
126 |
-
"person": "#FFE4B5",
|
127 |
-
"rider": "#800000",
|
128 |
-
"car": "#008000",
|
129 |
-
"truck": "#FF6347",
|
130 |
-
"bus": "#00FF00",
|
131 |
-
"train": "#800080",
|
132 |
-
"motorcycle": "#FFFF00",
|
133 |
-
"bicycle": "#800080"
|
134 |
-
}
|
135 |
-
)
|
136 |
-
|
137 |
-
section_btn = gr.Button("Identify Sections")
|
138 |
-
selected_section = gr.Textbox(label="Selected Section")
|
139 |
-
|
140 |
-
|
141 |
-
def section(img, num_boxes, num_segments):
|
142 |
-
sections = []
|
143 |
-
|
144 |
-
for a in range(num_boxes):
|
145 |
-
x = random.randint(0, img.shape[1])
|
146 |
-
y = random.randint(0, img.shape[0])
|
147 |
-
w = random.randint(0, img.shape[1] - x)
|
148 |
-
h = random.randint(0, img.shape[0] - y)
|
149 |
-
sections.append(((x, y, x + w, y + h), labels_list[a]))
|
150 |
-
|
151 |
-
for b in range(num_segments):
|
152 |
-
x = random.randint(0, img.shape[1])
|
153 |
-
y = random.randint(0, img.shape[0])
|
154 |
-
r = random.randint(0, min(x, y, img.shape[1] - x, img.shape[0] - y))
|
155 |
-
mask = np.zeros(img.shape[:2])
|
156 |
-
|
157 |
-
for i in range(img.shape[0]):
|
158 |
-
for j in range(img.shape[1]):
|
159 |
-
dist_square = (i - y) ** 2 + (j - x) ** 2
|
160 |
-
if dist_square < r ** 2:
|
161 |
-
mask[i, j] = round((r ** 2 - dist_square) / r ** 2 * 4) / 4
|
162 |
-
|
163 |
-
sections.append((mask, labels_list[b + num_boxes]))
|
164 |
-
|
165 |
-
return (img, sections)
|
166 |
-
|
167 |
-
|
168 |
-
section_btn.click(section, [img_input, num_boxes, num_segments], img_output)
|
169 |
-
|
170 |
-
|
171 |
-
def select_section(evt: gr.SelectData):
|
172 |
-
return labels_list[evt.index]
|
173 |
-
|
174 |
-
|
175 |
-
img_output.select(select_section, None, selected_section)
|
176 |
-
|
177 |
-
demo.launch()
|
|
|
1 |
import gradio as gr
|
2 |
import random
|
3 |
+
|
4 |
+
from matplotlib import gridspec
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
import numpy as np
|
7 |
from PIL import Image
|
8 |
import tensorflow as tf
|
|
|
|
|
9 |
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
10 |
|
11 |
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
|
|
40 |
]
|
41 |
|
42 |
|
43 |
+
labels_list = []
|
44 |
+
|
45 |
+
with open(r'labels.txt', 'r') as fp:
|
46 |
+
for line in fp:
|
47 |
+
labels_list.append(line[:-1])
|
48 |
|
49 |
colormap = np.asarray(ade_palette())
|
50 |
|
|
|
104 |
return fig
|
105 |
|
106 |
|
107 |
+
# Gradio Blocks๋ก ๋ณํ
|
108 |
with gr.Blocks() as demo:
|
109 |
+
img_input = gr.Image(shape=(564, 846))
|
110 |
+
img_output = gr.Image()
|
111 |
+
|
112 |
+
# ์ฌ์ฉ์ ์
๋ ฅ์ ๋ฐ๋ ๋ถ๋ถ ์ถ๊ฐ
|
113 |
+
input_img = gr.Image(shape=(564, 846), source=img_input)
|
114 |
+
input_img.click(sepia, img_input, img_output)
|
115 |
+
|
116 |
+
# ์ฌ์ฉ์ ์
๋ ฅ์ ๋ํ ๊ฒฐ๊ณผ๋ฅผ ์ถ๋ ฅ
|
117 |
+
img_output.source(sepia, img_input)
|
118 |
+
|
119 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|