Spaces:
Running
Running
File size: 2,862 Bytes
d93a410 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 |
# Copyright (c) 2022 Horizon Robotics. (authors: Binbin Zhang)
# 2022 Chengdong Liang (liangchengdong@mail.nwpu.edu.cn)
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gradio as gr
import torch
from wenet.cli.model import load_model
def process_cat_embs(cat_embs):
device = "cpu"
cat_embs = torch.tensor(
[float(c) for c in cat_embs.split(',')]).to(device)
return cat_embs
def download_rev_models():
# from huggingface_hub import hf_hub_download
# import joblib
# REPO_ID = "Revai/reginald"
# FILENAME = "sklearn_model.joblib"
# model = joblib.load(
# hf_hub_download(repo_id=REPO_ID, filename=FILENAME)
# )
model_path = "/Users/natalie/NERD-2941/reginald/10.jit.zip"
units_path = "/Users/natalie/NERD-2941/reginald/tk.units.txt"
audio_path = "/Users/natalie/NERD-2941/rev-wenet/runtime/web/fdhc0_si1559.wav"
cat_embs = "1,0"
device = "cpu"
cat_embs = process_cat_embs
model = load_model(model_path, units_path)
return model
model = download_rev_models()
def recognition(audio, style=0):
if audio is None:
return "Input Error! Please enter one audio!"
# NOTE: model supports 16k sample_rate
cat_embs = ','.join([str(s) for s in (1-style, style)])
cat_embs = process_cat_embs(cat_embs)
ans = model.transcribe(audio, cat_embs = cat_embs)
if ans is None:
return "ERROR! No text output! Please try again!"
txt = ans['text']
return txt
# input
inputs = [
gr.inputs.Audio(source="microphone", type="filepath", label='Input audio'),
gr.Slider(0, 1, value=0, label="Style", info="Choose between verbatim and NV"),
]
output = gr.outputs.Textbox(label="Output Text")
text = "Reginald Demo"
# description
description = (
"This is a speech recognition demo that supports verbatim and non-verbatim transcription. Try recording an audio with disfluencies (ex: \'uh\', \'um\') and testing both transcription styles." # noqa
)
article = (
"<p style='text-align: center'>"
"<a href='https://rev.com' target='_blank'>Github: Learn more about Rev</a>" # noqa
"</p>")
interface = gr.Interface(
fn=recognition,
inputs=inputs,
outputs=output,
title=text,
description=description,
article=article,
theme='huggingface',
)
interface.launch(enable_queue=True)
|