Spaces:
Running
Running
File size: 6,741 Bytes
528df8b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
"""
对源特征进行检索
"""
import os
import logging
logger = logging.getLogger(__name__)
import parselmouth
import torch
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
# import torchcrepe
from time import time as ttime
# import pyworld
import librosa
import numpy as np
import soundfile as sf
import torch.nn.functional as F
from fairseq import checkpoint_utils
# from models import SynthesizerTrn256#hifigan_nonsf
# from lib.infer_pack.models import SynthesizerTrn256NSF as SynthesizerTrn256#hifigan_nsf
from infer.lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid as SynthesizerTrn256,
) # hifigan_nsf
from scipy.io import wavfile
# from lib.infer_pack.models import SynthesizerTrnMs256NSFsid_sim as SynthesizerTrn256#hifigan_nsf
# from models import SynthesizerTrn256NSFsim as SynthesizerTrn256#hifigan_nsf
# from models import SynthesizerTrn256NSFsimFlow as SynthesizerTrn256#hifigan_nsf
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model_path = r"E:\codes\py39\vits_vc_gpu_train\assets\hubert\hubert_base.pt" #
logger.info("Load model(s) from {}".format(model_path))
models, saved_cfg, task = checkpoint_utils.load_model_ensemble_and_task(
[model_path],
suffix="",
)
model = models[0]
model = model.to(device)
model = model.half()
model.eval()
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],183,256,is_half=True)#hifigan#512#256
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],109,256,is_half=True)#hifigan#512#256
net_g = SynthesizerTrn256(
1025,
32,
192,
192,
768,
2,
6,
3,
0,
"1",
[3, 7, 11],
[[1, 3, 5], [1, 3, 5], [1, 3, 5]],
[10, 10, 2, 2],
512,
[16, 16, 4, 4],
183,
256,
is_half=True,
) # hifigan#512#256#no_dropout
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,3,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2,2],512,[16,16,4,4],0)#ts3
# net_g = SynthesizerTrn256(1025,32,192,192,768,2,6,3,0.1,"1", [3,7,11],[[1,3,5], [1,3,5], [1,3,5]],[10,10,2],512,[16,16,4],0)#hifigan-ps-sr
#
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [5,5], 512, [15,15], 0)#ms
# net_g = SynthesizerTrn(1025, 32, 192, 192, 768, 2, 6, 3, 0.1, "1", [3, 7, 11], [[1, 3, 5], [1, 3, 5], [1, 3, 5]], [10,10], 512, [16,16], 0)#idwt2
# weights=torch.load("infer/ft-mi_1k-noD.pt")
# weights=torch.load("infer/ft-mi-freeze-vocoder-flow-enc_q_1k.pt")
# weights=torch.load("infer/ft-mi-freeze-vocoder_true_1k.pt")
# weights=torch.load("infer/ft-mi-sim1k.pt")
weights = torch.load("infer/ft-mi-no_opt-no_dropout.pt")
logger.debug(net_g.load_state_dict(weights, strict=True))
net_g.eval().to(device)
net_g.half()
def get_f0(x, p_len, f0_up_key=0):
time_step = 160 / 16000 * 1000
f0_min = 50
f0_max = 1100
f0_mel_min = 1127 * np.log(1 + f0_min / 700)
f0_mel_max = 1127 * np.log(1 + f0_max / 700)
f0 = (
parselmouth.Sound(x, 16000)
.to_pitch_ac(
time_step=time_step / 1000,
voicing_threshold=0.6,
pitch_floor=f0_min,
pitch_ceiling=f0_max,
)
.selected_array["frequency"]
)
pad_size = (p_len - len(f0) + 1) // 2
if pad_size > 0 or p_len - len(f0) - pad_size > 0:
f0 = np.pad(f0, [[pad_size, p_len - len(f0) - pad_size]], mode="constant")
f0 *= pow(2, f0_up_key / 12)
f0bak = f0.copy()
f0_mel = 1127 * np.log(1 + f0 / 700)
f0_mel[f0_mel > 0] = (f0_mel[f0_mel > 0] - f0_mel_min) * 254 / (
f0_mel_max - f0_mel_min
) + 1
f0_mel[f0_mel <= 1] = 1
f0_mel[f0_mel > 255] = 255
# f0_mel[f0_mel > 188] = 188
f0_coarse = np.rint(f0_mel).astype(np.int32)
return f0_coarse, f0bak
import faiss
index = faiss.read_index("infer/added_IVF512_Flat_mi_baseline_src_feat.index")
big_npy = np.load("infer/big_src_feature_mi.npy")
ta0 = ta1 = ta2 = 0
for idx, name in enumerate(
[
"冬之花clip1.wav",
]
): ##
wav_path = "todo-songs/%s" % name #
f0_up_key = -2 #
audio, sampling_rate = sf.read(wav_path)
if len(audio.shape) > 1:
audio = librosa.to_mono(audio.transpose(1, 0))
if sampling_rate != 16000:
audio = librosa.resample(audio, orig_sr=sampling_rate, target_sr=16000)
feats = torch.from_numpy(audio).float()
if feats.dim() == 2: # double channels
feats = feats.mean(-1)
assert feats.dim() == 1, feats.dim()
feats = feats.view(1, -1)
padding_mask = torch.BoolTensor(feats.shape).fill_(False)
inputs = {
"source": feats.half().to(device),
"padding_mask": padding_mask.to(device),
"output_layer": 9, # layer 9
}
if torch.cuda.is_available():
torch.cuda.synchronize()
t0 = ttime()
with torch.no_grad():
logits = model.extract_features(**inputs)
feats = model.final_proj(logits[0])
####索引优化
npy = feats[0].cpu().numpy().astype("float32")
D, I = index.search(npy, 1)
feats = (
torch.from_numpy(big_npy[I.squeeze()].astype("float16")).unsqueeze(0).to(device)
)
feats = F.interpolate(feats.permute(0, 2, 1), scale_factor=2).permute(0, 2, 1)
if torch.cuda.is_available():
torch.cuda.synchronize()
t1 = ttime()
# p_len = min(feats.shape[1],10000,pitch.shape[0])#太大了爆显存
p_len = min(feats.shape[1], 10000) #
pitch, pitchf = get_f0(audio, p_len, f0_up_key)
p_len = min(feats.shape[1], 10000, pitch.shape[0]) # 太大了爆显存
if torch.cuda.is_available():
torch.cuda.synchronize()
t2 = ttime()
feats = feats[:, :p_len, :]
pitch = pitch[:p_len]
pitchf = pitchf[:p_len]
p_len = torch.LongTensor([p_len]).to(device)
pitch = torch.LongTensor(pitch).unsqueeze(0).to(device)
sid = torch.LongTensor([0]).to(device)
pitchf = torch.FloatTensor(pitchf).unsqueeze(0).to(device)
with torch.no_grad():
audio = (
net_g.infer(feats, p_len, pitch, pitchf, sid)[0][0, 0]
.data.cpu()
.float()
.numpy()
) # nsf
if torch.cuda.is_available():
torch.cuda.synchronize()
t3 = ttime()
ta0 += t1 - t0
ta1 += t2 - t1
ta2 += t3 - t2
# wavfile.write("ft-mi_1k-index256-noD-%s.wav"%name, 40000, audio)##
# wavfile.write("ft-mi-freeze-vocoder-flow-enc_q_1k-%s.wav"%name, 40000, audio)##
# wavfile.write("ft-mi-sim1k-%s.wav"%name, 40000, audio)##
wavfile.write("ft-mi-no_opt-no_dropout-%s.wav" % name, 40000, audio) ##
logger.debug("%.2fs %.2fs %.2fs", ta0, ta1, ta2) #
|