Spaces:
Running
Running
File size: 15,370 Bytes
0f3f5ca 4d4dd90 0f3f5ca 9223079 7b977a8 9705edb 4d4dd90 9223079 9705edb 7b977a8 9705edb 7b977a8 9705edb 7b977a8 9705edb 7b977a8 9705edb 7b977a8 9705edb 7b977a8 9705edb 7b977a8 9705edb 7b977a8 9223079 9705edb 9223079 4a7fc02 9223079 9705edb 9223079 7b977a8 9223079 9705edb 9223079 9705edb 9223079 9705edb 9223079 5069bec 9705edb b7f7f2c 9705edb 9223079 9705edb 9223079 ed0584b 9223079 ed0584b 9223079 9705edb 9223079 7acaad7 4d4dd90 7acaad7 b7f7f2c 4a7fc02 7acaad7 4d4dd90 40c4807 4d4dd90 40c4807 4d4dd90 40c4807 4d4dd90 4a7fc02 7acaad7 4d4dd90 4a7fc02 4d4dd90 4a7fc02 40c4807 4a7fc02 40c4807 4a7fc02 7acaad7 4d4dd90 7acaad7 40c4807 7acaad7 5069bec 7acaad7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
import cv2
import typing
import matplotlib
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, List, Union
from hloc.utils.viz import add_text, plot_keypoints
def plot_images(
imgs: List[np.ndarray],
titles: Optional[List[str]] = None,
cmaps: Union[str, List[str]] = "gray",
dpi: int = 100,
size: Optional[int] = 5,
pad: float = 0.5,
) -> plt.Figure:
"""Plot a set of images horizontally.
Args:
imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
titles: a list of strings, as titles for each image.
cmaps: colormaps for monochrome images. If a single string is given,
it is used for all images.
dpi: DPI of the figure.
size: figure size in inches (width). If not provided, the figure
size is determined automatically.
pad: padding between subplots, in inches.
Returns:
The created figure.
"""
n = len(imgs)
if not isinstance(cmaps, list):
cmaps = [cmaps] * n
figsize = (size * n, size * 6 / 5) if size is not None else None
fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)
if n == 1:
ax = [ax]
for i in range(n):
ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
ax[i].get_yaxis().set_ticks([])
ax[i].get_xaxis().set_ticks([])
ax[i].set_axis_off()
for spine in ax[i].spines.values(): # remove frame
spine.set_visible(False)
if titles:
ax[i].set_title(titles[i])
fig.tight_layout(pad=pad)
return fig
def plot_color_line_matches(
lines: List[np.ndarray],
correct_matches: Optional[np.ndarray] = None,
lw: float = 2.0,
indices: Tuple[int, int] = (0, 1),
) -> matplotlib.figure.Figure:
"""Plot line matches for existing images with multiple colors.
Args:
lines: List of ndarrays of size (N, 2, 2) representing line segments.
correct_matches: Optional bool array of size (N,) indicating correct
matches. If not None, display wrong matches with a low alpha.
lw: Line width as float pixels.
indices: Indices of the images to draw the matches on.
Returns:
The modified matplotlib figure.
"""
n_lines = lines[0].shape[0]
colors = sns.color_palette("husl", n_colors=n_lines)
np.random.shuffle(colors)
alphas = np.ones(n_lines)
if correct_matches is not None:
alphas[~np.array(correct_matches)] = 0.2
fig = plt.gcf()
ax = typing.cast(List[matplotlib.axes.Axes], fig.axes)
assert len(ax) > max(indices)
axes = [ax[i] for i in indices]
fig.canvas.draw()
# Plot the lines
for a, l in zip(axes, lines):
# Transform the points into the figure coordinate system
transFigure = fig.transFigure.inverted()
endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
fig.lines += [
matplotlib.lines.Line2D(
(endpoint0[i, 0], endpoint1[i, 0]),
(endpoint0[i, 1], endpoint1[i, 1]),
zorder=1,
transform=fig.transFigure,
c=colors[i],
alpha=alphas[i],
linewidth=lw,
)
for i in range(n_lines)
]
return fig
def make_matching_figure(
img0: np.ndarray,
img1: np.ndarray,
mkpts0: np.ndarray,
mkpts1: np.ndarray,
color: np.ndarray,
titles: Optional[List[str]] = None,
kpts0: Optional[np.ndarray] = None,
kpts1: Optional[np.ndarray] = None,
text: List[str] = [],
dpi: int = 75,
path: Optional[Path] = None,
pad: float = 0.0,
) -> Optional[plt.Figure]:
"""Draw image pair with matches.
Args:
img0: image0 as HxWx3 numpy array.
img1: image1 as HxWx3 numpy array.
mkpts0: matched points in image0 as Nx2 numpy array.
mkpts1: matched points in image1 as Nx2 numpy array.
color: colors for the matches as Nx4 numpy array.
titles: titles for the two subplots.
kpts0: keypoints in image0 as Kx2 numpy array.
kpts1: keypoints in image1 as Kx2 numpy array.
text: list of strings to display in the top-left corner of the image.
dpi: dots per inch of the saved figure.
path: if not None, save the figure to this path.
pad: padding around the image as a fraction of the image size.
Returns:
The matplotlib Figure object if path is None.
"""
# draw image pair
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
if titles is not None:
axes[i].set_title(titles[i])
plt.tight_layout(pad=pad)
if kpts0 is not None:
assert kpts1 is not None
axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)
# draw matches
if (
mkpts0.shape[0] != 0
and mkpts1.shape[0] != 0
and mkpts0.shape == mkpts1.shape
):
fig.canvas.draw()
transFigure = fig.transFigure.inverted()
fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
fig.lines = [
matplotlib.lines.Line2D(
(fkpts0[i, 0], fkpts1[i, 0]),
(fkpts0[i, 1], fkpts1[i, 1]),
transform=fig.transFigure,
c=color[i],
linewidth=2,
)
for i in range(len(mkpts0))
]
# freeze the axes to prevent the transform to change
axes[0].autoscale(enable=False)
axes[1].autoscale(enable=False)
axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig
def error_colormap(
err: np.ndarray, thr: float, alpha: float = 1.0
) -> np.ndarray:
"""
Create a colormap based on the error values.
Args:
err: Error values as a numpy array of shape (N,).
thr: Threshold value for the error.
alpha: Alpha value for the colormap, between 0 and 1.
Returns:
Colormap as a numpy array of shape (N, 4) with values in [0, 1].
"""
assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
x = 1 - np.clip(err / (thr * 2), 0, 1)
return np.clip(
np.stack(
[2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1
),
0,
1,
)
np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)
def fig2im(fig: matplotlib.figure.Figure) -> np.ndarray:
"""
Convert a matplotlib figure to a numpy array with RGB values.
Args:
fig: A matplotlib figure.
Returns:
A numpy array with shape (height, width, 3) and dtype uint8 containing
the RGB values of the figure.
"""
fig.canvas.draw()
(width, height) = fig.canvas.get_width_height()
buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
return buf_ndarray.reshape(height, width, 3)
def draw_matches_core(
mkpts0: List[np.ndarray],
mkpts1: List[np.ndarray],
img0: np.ndarray,
img1: np.ndarray,
conf: np.ndarray,
titles: Optional[List[str]] = None,
texts: Optional[List[str]] = None,
dpi: int = 150,
path: Optional[str] = None,
pad: float = 0.5,
) -> np.ndarray:
"""
Draw matches between two images.
Args:
mkpts0: List of matches from the first image, with shape (N, 2)
mkpts1: List of matches from the second image, with shape (N, 2)
img0: First image, with shape (H, W, 3)
img1: Second image, with shape (H, W, 3)
conf: Confidence values for the matches, with shape (N,)
titles: Optional list of title strings for the plot
dpi: DPI for the saved image
path: Optional path to save the image to. If None, the image is not saved.
pad: Padding between subplots
Returns:
The figure as a numpy array with shape (height, width, 3) and dtype uint8
containing the RGB values of the figure.
"""
thr = 5e-4
thr = 0.5
color = error_colormap(conf, thr, alpha=0.1)
text = [
"image name",
f"#Matches: {len(mkpts0)}",
]
if path:
fig2im(
make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=titles,
text=text,
path=path,
dpi=dpi,
pad=pad,
)
)
else:
return fig2im(
make_matching_figure(
img0,
img1,
mkpts0,
mkpts1,
color,
titles=titles,
text=text,
pad=pad,
dpi=dpi,
)
)
def draw_image_pairs(
img0: np.ndarray,
img1: np.ndarray,
text: List[str] = [],
dpi: int = 75,
path: Optional[str] = None,
pad: float = 0.5,
) -> np.ndarray:
"""Draw image pair horizontally.
Args:
img0: First image, with shape (H, W, 3)
img1: Second image, with shape (H, W, 3)
text: List of strings to print. Each string is a new line.
dpi: DPI of the figure.
path: Path to save the image to. If None, the image is not saved and
the function returns the figure as a numpy array with shape
(height, width, 3) and dtype uint8 containing the RGB values of the
figure.
pad: Padding between subplots
Returns:
The figure as a numpy array with shape (height, width, 3) and dtype uint8
containing the RGB values of the figure, or None if path is not None.
"""
# draw image pair
fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
axes[0].imshow(img0) # , cmap='gray')
axes[1].imshow(img1) # , cmap='gray')
for i in range(2): # clear all frames
axes[i].get_yaxis().set_ticks([])
axes[i].get_xaxis().set_ticks([])
for spine in axes[i].spines.values():
spine.set_visible(False)
plt.tight_layout(pad=pad)
# put txts
txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
fig.text(
0.01,
0.99,
"\n".join(text),
transform=fig.axes[0].transAxes,
fontsize=15,
va="top",
ha="left",
color=txt_color,
)
# save or return figure
if path:
plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
plt.close()
else:
return fig2im(fig)
def display_keypoints(pred: dict, titles: List[str] = []):
img0 = pred["image0_orig"]
img1 = pred["image1_orig"]
output_keypoints = plot_images([img0, img1], titles=titles, dpi=300)
if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
text = (
f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
+ f"# keypoints1: {len(pred['keypoints1_orig'])}"
)
add_text(0, text, fs=15)
output_keypoints = fig2im(output_keypoints)
return output_keypoints
def display_matches(
pred: Dict[str, np.ndarray],
titles: List[str] = [],
texts: List[str] = [],
dpi: int = 300,
tag: str = "KPTS_RAW", # KPTS_RAW, KPTS_RANSAC, LINES_RAW, LINES_RANSAC,
) -> Tuple[np.ndarray, int]:
"""
Displays the matches between two images.
Args:
pred: Dictionary containing the original images and the matches.
titles: Optional titles for the plot.
dpi: Resolution of the plot.
Returns:
The resulting concatenated plot and the number of inliers.
"""
img0 = pred["image0_orig"]
img1 = pred["image1_orig"]
num_inliers = 0
KPTS0_KEY = None
KPTS1_KEY = None
confid = None
if tag == "KPTS_RAW":
KPTS0_KEY = "mkeypoints0_orig"
KPTS1_KEY = "mkeypoints1_orig"
if "mconf" in pred:
confid = pred["mconf"]
elif tag == "KPTS_RANSAC":
KPTS0_KEY = "mmkeypoints0_orig"
KPTS1_KEY = "mmkeypoints1_orig"
if "mmconf" in pred:
confid = pred["mmconf"]
else:
# TODO: LINES_RAW, LINES_RANSAC
raise ValueError(f"Unknown tag: {tag}")
# draw raw matches
if (
KPTS0_KEY in pred
and KPTS1_KEY in pred
and pred[KPTS0_KEY] is not None
and pred[KPTS1_KEY] is not None
): # draw ransac matches
mkpts0 = pred[KPTS0_KEY]
mkpts1 = pred[KPTS1_KEY]
num_inliers = len(mkpts0)
if confid is None:
confid = np.ones(len(mkpts0))
fig_mkpts = draw_matches_core(
mkpts0,
mkpts1,
img0,
img1,
confid,
dpi=dpi,
titles=titles,
texts=texts,
)
fig = fig_mkpts
# TODO: draw lines
if (
"line0_orig" in pred
and "line1_orig" in pred
and pred["line0_orig"] is not None
and pred["line1_orig"] is not None
and (tag == "LINES_RAW" or tag == "LINES_RANSAC")
):
# lines
mtlines0 = pred["line0_orig"]
mtlines1 = pred["line1_orig"]
num_inliers = len(mtlines0)
fig_lines = plot_images(
[img0.squeeze(), img1.squeeze()],
["Image 0 - matched lines", "Image 1 - matched lines"],
dpi=300,
)
fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
fig_lines = fig2im(fig_lines)
# keypoints
mkpts0 = pred.get("line_keypoints0_orig")
mkpts1 = pred.get("line_keypoints1_orig")
fig = None
breakpoint()
if mkpts0 is not None and mkpts1 is not None:
num_inliers = len(mkpts0)
if "mconf" in pred:
mconf = pred["mconf"]
else:
mconf = np.ones(len(mkpts0))
fig_mkpts = draw_matches_core(
mkpts0, mkpts1, img0, img1, mconf, dpi=300
)
fig_lines = cv2.resize(
fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0])
)
fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
else:
fig = fig_lines
return fig, num_inliers
|