File size: 15,369 Bytes
4d4dd90
8320ccc
 
 
 
0f3f5ca
8320ccc
9223079
7b977a8
8320ccc
4d4dd90
9223079
 
9705edb
 
 
 
 
 
 
 
7b977a8
 
 
 
9705edb
 
 
 
 
 
 
 
7b977a8
 
9705edb
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
7b977a8
9705edb
7b977a8
9705edb
 
 
 
 
 
 
 
7b977a8
9705edb
7b977a8
 
 
 
 
 
 
9705edb
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4a7fc02
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
7b977a8
 
 
9223079
 
 
 
 
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
9223079
9705edb
9223079
9705edb
9223079
 
5069bec
9705edb
 
 
 
 
 
b7f7f2c
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
41de4df
9223079
 
 
 
 
 
 
 
 
 
 
ed0584b
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
ed0584b
9223079
 
 
 
 
 
9705edb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acaad7
 
4d4dd90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7acaad7
b7f7f2c
 
 
 
4a7fc02
7acaad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4d4dd90
 
40c4807
4d4dd90
 
 
40c4807
 
4d4dd90
 
 
40c4807
 
4d4dd90
 
 
4a7fc02
7acaad7
4d4dd90
 
 
 
4a7fc02
4d4dd90
 
4a7fc02
40c4807
 
4a7fc02
 
 
 
 
40c4807
4a7fc02
 
 
 
 
 
7acaad7
 
 
 
 
4d4dd90
7acaad7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
40c4807
 
7acaad7
 
 
 
 
 
5069bec
 
 
7acaad7
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
import typing
from pathlib import Path
from typing import Dict, List, Optional, Tuple, Union

import cv2
import matplotlib
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

from hloc.utils.viz import add_text, plot_keypoints


def plot_images(
    imgs: List[np.ndarray],
    titles: Optional[List[str]] = None,
    cmaps: Union[str, List[str]] = "gray",
    dpi: int = 100,
    size: Optional[int] = 5,
    pad: float = 0.5,
) -> plt.Figure:
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images. If a single string is given,
            it is used for all images.
        dpi: DPI of the figure.
        size: figure size in inches (width). If not provided, the figure
            size is determined automatically.
        pad: padding between subplots, in inches.
    Returns:
        The created figure.
    """
    n = len(imgs)
    if not isinstance(cmaps, list):
        cmaps = [cmaps] * n
    figsize = (size * n, size * 6 / 5) if size is not None else None
    fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)

    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)
    return fig


def plot_color_line_matches(
    lines: List[np.ndarray],
    correct_matches: Optional[np.ndarray] = None,
    lw: float = 2.0,
    indices: Tuple[int, int] = (0, 1),
) -> matplotlib.figure.Figure:
    """Plot line matches for existing images with multiple colors.

    Args:
        lines: List of ndarrays of size (N, 2, 2) representing line segments.
        correct_matches: Optional bool array of size (N,) indicating correct
            matches. If not None, display wrong matches with a low alpha.
        lw: Line width as float pixels.
        indices: Indices of the images to draw the matches on.

    Returns:
        The modified matplotlib figure.
    """
    n_lines = lines[0].shape[0]
    colors = sns.color_palette("husl", n_colors=n_lines)
    np.random.shuffle(colors)
    alphas = np.ones(n_lines)
    if correct_matches is not None:
        alphas[~np.array(correct_matches)] = 0.2

    fig = plt.gcf()
    ax = typing.cast(List[matplotlib.axes.Axes], fig.axes)
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l in zip(axes, lines):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [
            matplotlib.lines.Line2D(
                (endpoint0[i, 0], endpoint1[i, 0]),
                (endpoint0[i, 1], endpoint1[i, 1]),
                zorder=1,
                transform=fig.transFigure,
                c=colors[i],
                alpha=alphas[i],
                linewidth=lw,
            )
            for i in range(n_lines)
        ]

    return fig


def make_matching_figure(
    img0: np.ndarray,
    img1: np.ndarray,
    mkpts0: np.ndarray,
    mkpts1: np.ndarray,
    color: np.ndarray,
    titles: Optional[List[str]] = None,
    kpts0: Optional[np.ndarray] = None,
    kpts1: Optional[np.ndarray] = None,
    text: List[str] = [],
    dpi: int = 75,
    path: Optional[Path] = None,
    pad: float = 0.0,
) -> Optional[plt.Figure]:
    """Draw image pair with matches.

    Args:
        img0: image0 as HxWx3 numpy array.
        img1: image1 as HxWx3 numpy array.
        mkpts0: matched points in image0 as Nx2 numpy array.
        mkpts1: matched points in image1 as Nx2 numpy array.
        color: colors for the matches as Nx4 numpy array.
        titles: titles for the two subplots.
        kpts0: keypoints in image0 as Kx2 numpy array.
        kpts1: keypoints in image1 as Kx2 numpy array.
        text: list of strings to display in the top-left corner of the image.
        dpi: dots per inch of the saved figure.
        path: if not None, save the figure to this path.
        pad: padding around the image as a fraction of the image size.

    Returns:
        The matplotlib Figure object if path is None.
    """
    # draw image pair
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):  # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
        if titles is not None:
            axes[i].set_title(titles[i])

    plt.tight_layout(pad=pad)

    if kpts0 is not None:
        assert kpts1 is not None
        axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
        axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)

    # draw matches
    if (
        mkpts0.shape[0] != 0
        and mkpts1.shape[0] != 0
        and mkpts0.shape == mkpts1.shape
    ):
        fig.canvas.draw()
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
        fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
        fig.lines = [
            matplotlib.lines.Line2D(
                (fkpts0[i, 0], fkpts1[i, 0]),
                (fkpts0[i, 1], fkpts1[i, 1]),
                transform=fig.transFigure,
                c=color[i],
                linewidth=2,
            )
            for i in range(len(mkpts0))
        ]

        # freeze the axes to prevent the transform to change
        axes[0].autoscale(enable=False)
        axes[1].autoscale(enable=False)

        axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
        axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)

    # put txts
    txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
    fig.text(
        0.01,
        0.99,
        "\n".join(text),
        transform=fig.axes[0].transAxes,
        fontsize=15,
        va="top",
        ha="left",
        color=txt_color,
    )

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
        plt.close()
    else:
        return fig


def error_colormap(
    err: np.ndarray, thr: float, alpha: float = 1.0
) -> np.ndarray:
    """
    Create a colormap based on the error values.

    Args:
        err: Error values as a numpy array of shape (N,).
        thr: Threshold value for the error.
        alpha: Alpha value for the colormap, between 0 and 1.

    Returns:
        Colormap as a numpy array of shape (N, 4) with values in [0, 1].
    """
    assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
    x = 1 - np.clip(err / (thr * 2), 0, 1)
    return np.clip(
        np.stack(
            [2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1
        ),
        0,
        1,
    )


np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)


def fig2im(fig: matplotlib.figure.Figure) -> np.ndarray:
    """
    Convert a matplotlib figure to a numpy array with RGB values.

    Args:
        fig: A matplotlib figure.

    Returns:
        A numpy array with shape (height, width, 3) and dtype uint8 containing
        the RGB values of the figure.
    """
    fig.canvas.draw()
    (width, height) = fig.canvas.get_width_height()
    buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
    return buf_ndarray.reshape(height, width, 3)


def draw_matches_core(
    mkpts0: List[np.ndarray],
    mkpts1: List[np.ndarray],
    img0: np.ndarray,
    img1: np.ndarray,
    conf: np.ndarray,
    titles: Optional[List[str]] = None,
    texts: Optional[List[str]] = None,
    dpi: int = 150,
    path: Optional[str] = None,
    pad: float = 0.5,
) -> np.ndarray:
    """
    Draw matches between two images.

    Args:
        mkpts0: List of matches from the first image, with shape (N, 2)
        mkpts1: List of matches from the second image, with shape (N, 2)
        img0: First image, with shape (H, W, 3)
        img1: Second image, with shape (H, W, 3)
        conf: Confidence values for the matches, with shape (N,)
        titles: Optional list of title strings for the plot
        dpi: DPI for the saved image
        path: Optional path to save the image to. If None, the image is not saved.
        pad: Padding between subplots

    Returns:
        The figure as a numpy array with shape (height, width, 3) and dtype uint8
        containing the RGB values of the figure.
    """
    thr = 5e-4
    thr = 0.5
    color = error_colormap(conf, thr, alpha=0.1)
    text = [
        # "image name",
        f"#Matches: {len(mkpts0)}",
    ]
    if path:
        fig2im(
            make_matching_figure(
                img0,
                img1,
                mkpts0,
                mkpts1,
                color,
                titles=titles,
                text=text,
                path=path,
                dpi=dpi,
                pad=pad,
            )
        )
    else:
        return fig2im(
            make_matching_figure(
                img0,
                img1,
                mkpts0,
                mkpts1,
                color,
                titles=titles,
                text=text,
                pad=pad,
                dpi=dpi,
            )
        )


def draw_image_pairs(
    img0: np.ndarray,
    img1: np.ndarray,
    text: List[str] = [],
    dpi: int = 75,
    path: Optional[str] = None,
    pad: float = 0.5,
) -> np.ndarray:
    """Draw image pair horizontally.

    Args:
        img0: First image, with shape (H, W, 3)
        img1: Second image, with shape (H, W, 3)
        text: List of strings to print. Each string is a new line.
        dpi: DPI of the figure.
        path: Path to save the image to. If None, the image is not saved and
            the function returns the figure as a numpy array with shape
            (height, width, 3) and dtype uint8 containing the RGB values of the
            figure.
        pad: Padding between subplots

    Returns:
        The figure as a numpy array with shape (height, width, 3) and dtype uint8
        containing the RGB values of the figure, or None if path is not None.
    """
    # draw image pair
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):  # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
    plt.tight_layout(pad=pad)

    # put txts
    txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
    fig.text(
        0.01,
        0.99,
        "\n".join(text),
        transform=fig.axes[0].transAxes,
        fontsize=15,
        va="top",
        ha="left",
        color=txt_color,
    )

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
        plt.close()
    else:
        return fig2im(fig)


def display_keypoints(pred: dict, titles: List[str] = []):
    img0 = pred["image0_orig"]
    img1 = pred["image1_orig"]
    output_keypoints = plot_images([img0, img1], titles=titles, dpi=300)
    if "keypoints0_orig" in pred.keys() and "keypoints1_orig" in pred.keys():
        plot_keypoints([pred["keypoints0_orig"], pred["keypoints1_orig"]])
        text = (
            f"# keypoints0: {len(pred['keypoints0_orig'])} \n"
            + f"# keypoints1: {len(pred['keypoints1_orig'])}"
        )
        add_text(0, text, fs=15)
    output_keypoints = fig2im(output_keypoints)
    return output_keypoints


def display_matches(
    pred: Dict[str, np.ndarray],
    titles: List[str] = [],
    texts: List[str] = [],
    dpi: int = 300,
    tag: str = "KPTS_RAW",  # KPTS_RAW, KPTS_RANSAC, LINES_RAW, LINES_RANSAC,
) -> Tuple[np.ndarray, int]:
    """
    Displays the matches between two images.

    Args:
        pred: Dictionary containing the original images and the matches.
        titles: Optional titles for the plot.
        dpi: Resolution of the plot.

    Returns:
        The resulting concatenated plot and the number of inliers.
    """
    img0 = pred["image0_orig"]
    img1 = pred["image1_orig"]
    num_inliers = 0
    KPTS0_KEY = None
    KPTS1_KEY = None
    confid = None
    if tag == "KPTS_RAW":
        KPTS0_KEY = "mkeypoints0_orig"
        KPTS1_KEY = "mkeypoints1_orig"
        if "mconf" in pred:
            confid = pred["mconf"]
    elif tag == "KPTS_RANSAC":
        KPTS0_KEY = "mmkeypoints0_orig"
        KPTS1_KEY = "mmkeypoints1_orig"
        if "mmconf" in pred:
            confid = pred["mmconf"]
    else:
        # TODO: LINES_RAW, LINES_RANSAC
        raise ValueError(f"Unknown tag: {tag}")
    # draw raw matches
    if (
        KPTS0_KEY in pred
        and KPTS1_KEY in pred
        and pred[KPTS0_KEY] is not None
        and pred[KPTS1_KEY] is not None
    ):  # draw ransac matches
        mkpts0 = pred[KPTS0_KEY]
        mkpts1 = pred[KPTS1_KEY]
        num_inliers = len(mkpts0)
        if confid is None:
            confid = np.ones(len(mkpts0))
        fig_mkpts = draw_matches_core(
            mkpts0,
            mkpts1,
            img0,
            img1,
            confid,
            dpi=dpi,
            titles=titles,
            texts=texts,
        )
        fig = fig_mkpts
    # TODO: draw lines
    if (
        "line0_orig" in pred
        and "line1_orig" in pred
        and pred["line0_orig"] is not None
        and pred["line1_orig"] is not None
        and (tag == "LINES_RAW" or tag == "LINES_RANSAC")
    ):
        # lines
        mtlines0 = pred["line0_orig"]
        mtlines1 = pred["line1_orig"]
        num_inliers = len(mtlines0)
        fig_lines = plot_images(
            [img0.squeeze(), img1.squeeze()],
            ["Image 0 - matched lines", "Image 1 - matched lines"],
            dpi=300,
        )
        fig_lines = plot_color_line_matches([mtlines0, mtlines1], lw=2)
        fig_lines = fig2im(fig_lines)

        # keypoints
        mkpts0 = pred.get("line_keypoints0_orig")
        mkpts1 = pred.get("line_keypoints1_orig")
        fig = None
        breakpoint()
        if mkpts0 is not None and mkpts1 is not None:
            num_inliers = len(mkpts0)
            if "mconf" in pred:
                mconf = pred["mconf"]
            else:
                mconf = np.ones(len(mkpts0))
            fig_mkpts = draw_matches_core(
                mkpts0, mkpts1, img0, img1, mconf, dpi=300
            )
            fig_lines = cv2.resize(
                fig_lines, (fig_mkpts.shape[1], fig_mkpts.shape[0])
            )
            fig = np.concatenate([fig_mkpts, fig_lines], axis=0)
        else:
            fig = fig_lines
    return fig, num_inliers