Spaces:
Running
Running
File size: 5,140 Bytes
4d9207d 9223079 4d9207d 9223079 4d9207d 9223079 4d9207d 94cb1cc 4d9207d 9223079 2b78237 9223079 2b78237 9223079 aa49562 9223079 aa49562 9223079 5c75947 9223079 5c75947 9223079 2b78237 9223079 4d9207d 9223079 e1eedac 9223079 d46c0a9 9223079 73c0e79 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
import subprocess
import sys
from collections import OrderedDict, namedtuple
from pathlib import Path
import torch
from .. import logger
from ..utils.base_model import BaseModel
sgmnet_path = Path(__file__).parent / "../../third_party/SGMNet"
sys.path.append(str(sgmnet_path))
from sgmnet import matcher as SGM_Model
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SGMNet(BaseModel):
default_conf = {
"name": "SGM",
"model_name": "model_best.pth",
"seed_top_k": [256, 256],
"seed_radius_coe": 0.01,
"net_channels": 128,
"layer_num": 9,
"head": 4,
"seedlayer": [0, 6],
"use_mc_seeding": True,
"use_score_encoding": False,
"conf_bar": [1.11, 0.1],
"sink_iter": [10, 100],
"detach_iter": 1000000,
"match_threshold": 0.2,
}
required_inputs = [
"image0",
"image1",
]
weight_urls = {
"model_best.pth": "https://drive.google.com/uc?id=1Ca0WmKSSt2G6P7m8YAOlSAHEFar_TAWb&confirm=t",
}
proxy = "http://localhost:1080"
# Initialize the line matcher
def _init(self, conf):
sgmnet_weights = sgmnet_path / "weights/sgm/root" / conf["model_name"]
link = self.weight_urls[conf["model_name"]]
tar_path = sgmnet_path / "weights.tar.gz"
# Download the model.
if not sgmnet_weights.exists():
if not tar_path.exists():
cmd = [
"gdown",
link,
"-O",
str(tar_path),
"--proxy",
self.proxy,
]
cmd_wo_proxy = ["gdown", link, "-O", str(tar_path)]
logger.info(
f"Downloading the SGMNet model with `{cmd_wo_proxy}`."
)
try:
subprocess.run(cmd_wo_proxy, check=True)
except subprocess.CalledProcessError as e:
logger.info(f"Downloading failed {e}.")
logger.info(f"Downloading the SGMNet model with `{cmd}`.")
try:
subprocess.run(cmd, check=True)
except subprocess.CalledProcessError as e:
logger.error("Failed to download the SGMNet model.")
raise e
cmd = ["tar", "-xvf", str(tar_path), "-C", str(sgmnet_path)]
logger.info(f"Unzip model file `{cmd}`.")
subprocess.run(cmd, check=True)
# config
config = namedtuple("config", conf.keys())(*conf.values())
self.net = SGM_Model(config)
checkpoint = torch.load(sgmnet_weights, map_location="cpu")
# for ddp model
if (
list(checkpoint["state_dict"].items())[0][0].split(".")[0]
== "module"
):
new_stat_dict = OrderedDict()
for key, value in checkpoint["state_dict"].items():
new_stat_dict[key[7:]] = value
checkpoint["state_dict"] = new_stat_dict
self.net.load_state_dict(checkpoint["state_dict"])
logger.info("Load SGMNet model done.")
def _forward(self, data):
x1 = data["keypoints0"].squeeze() # N x 2
x2 = data["keypoints1"].squeeze()
score1 = data["scores0"].reshape(-1, 1) # N x 1
score2 = data["scores1"].reshape(-1, 1)
desc1 = data["descriptors0"].permute(0, 2, 1) # 1 x N x 128
desc2 = data["descriptors1"].permute(0, 2, 1)
size1 = (
torch.tensor(data["image0"].shape[2:]).flip(0).to(x1.device)
) # W x H -> x & y
size2 = (
torch.tensor(data["image1"].shape[2:]).flip(0).to(x2.device)
) # W x H
norm_x1 = self.normalize_size(x1, size1)
norm_x2 = self.normalize_size(x2, size2)
x1 = torch.cat((norm_x1, score1), dim=-1) # N x 3
x2 = torch.cat((norm_x2, score2), dim=-1)
input = {"x1": x1[None], "x2": x2[None], "desc1": desc1, "desc2": desc2}
input = {
k: v.to(device).float() if isinstance(v, torch.Tensor) else v
for k, v in input.items()
}
pred = self.net(input, test_mode=True)
p = pred["p"] # shape: N * M
indices0 = self.match_p(p[0, :-1, :-1])
pred = {
"matches0": indices0.unsqueeze(0),
"matching_scores0": torch.zeros(indices0.size(0)).unsqueeze(0),
}
return pred
def match_p(self, p):
score, index = torch.topk(p, k=1, dim=-1)
_, index2 = torch.topk(p, k=1, dim=-2)
mask_th, index, index2 = (
score[:, 0] > self.conf["match_threshold"],
index[:, 0],
index2.squeeze(0),
)
mask_mc = index2[index] == torch.arange(len(p)).to(device)
mask = mask_th & mask_mc
indices0 = torch.where(mask, index, index.new_tensor(-1))
return indices0
def normalize_size(self, x, size, scale=1):
norm_fac = size.max()
return (x - size / 2 + 0.5) / (norm_fac * scale)
|