Spaces:
Running
Running
File size: 4,403 Bytes
9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 e15a186 9223079 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 |
from pathlib import Path
import argparse
from ... import extract_features, match_features, triangulation, logger
from ... import pairs_from_covisibility, pairs_from_retrieval, localize_sfm
TEST_SLICES = [2, 3, 4, 5, 6, 13, 14, 15, 16, 17, 18, 19, 20, 21]
def generate_query_list(dataset, path, slice_):
cameras = {}
with open(dataset / "intrinsics.txt", "r") as f:
for line in f.readlines():
if line[0] == "#" or line == "\n":
continue
data = line.split()
cameras[data[0]] = data[1:]
assert len(cameras) == 2
queries = dataset / f"{slice_}/test-images-{slice_}.txt"
with open(queries, "r") as f:
queries = [q.rstrip("\n") for q in f.readlines()]
out = [[q] + cameras[q.split("_")[2]] for q in queries]
with open(path, "w") as f:
f.write("\n".join(map(" ".join, out)))
def run_slice(slice_, root, outputs, num_covis, num_loc):
dataset = root / slice_
ref_images = dataset / "database"
query_images = dataset / "query"
sift_sfm = dataset / "sparse"
outputs = outputs / slice_
outputs.mkdir(exist_ok=True, parents=True)
query_list = dataset / "queries_with_intrinsics.txt"
sfm_pairs = outputs / f"pairs-db-covis{num_covis}.txt"
loc_pairs = outputs / f"pairs-query-netvlad{num_loc}.txt"
ref_sfm = outputs / "sfm_superpoint+superglue"
results = outputs / f"CMU_hloc_superpoint+superglue_netvlad{num_loc}.txt"
# pick one of the configurations for extraction and matching
retrieval_conf = extract_features.confs["netvlad"]
feature_conf = extract_features.confs["superpoint_aachen"]
matcher_conf = match_features.confs["superglue"]
pairs_from_covisibility.main(sift_sfm, sfm_pairs, num_matched=num_covis)
features = extract_features.main(
feature_conf, ref_images, outputs, as_half=True
)
sfm_matches = match_features.main(
matcher_conf, sfm_pairs, feature_conf["output"], outputs
)
triangulation.main(
ref_sfm, sift_sfm, ref_images, sfm_pairs, features, sfm_matches
)
generate_query_list(root, query_list, slice_)
global_descriptors = extract_features.main(
retrieval_conf, ref_images, outputs
)
global_descriptors = extract_features.main(
retrieval_conf, query_images, outputs
)
pairs_from_retrieval.main(
global_descriptors,
loc_pairs,
num_loc,
query_list=query_list,
db_model=ref_sfm,
)
features = extract_features.main(
feature_conf, query_images, outputs, as_half=True
)
loc_matches = match_features.main(
matcher_conf, loc_pairs, feature_conf["output"], outputs
)
localize_sfm.main(
ref_sfm,
dataset / "queries/*_time_queries_with_intrinsics.txt",
loc_pairs,
features,
loc_matches,
results,
)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--slices",
type=str,
default="*",
help="a single number, an interval (e.g. 2-6), "
"or a Python-style list or int (e.g. [2, 3, 4]",
)
parser.add_argument(
"--dataset",
type=Path,
default="datasets/cmu_extended",
help="Path to the dataset, default: %(default)s",
)
parser.add_argument(
"--outputs",
type=Path,
default="outputs/aachen_extended",
help="Path to the output directory, default: %(default)s",
)
parser.add_argument(
"--num_covis",
type=int,
default=20,
help="Number of image pairs for SfM, default: %(default)s",
)
parser.add_argument(
"--num_loc",
type=int,
default=10,
help="Number of image pairs for loc, default: %(default)s",
)
args = parser.parse_args()
if args.slice == "*":
slices = TEST_SLICES
if "-" in args.slices:
min_, max_ = args.slices.split("-")
slices = list(range(int(min_), int(max_) + 1))
else:
slices = eval(args.slices)
if isinstance(slices, int):
slices = [slices]
for slice_ in slices:
logger.info("Working on slice %s.", slice_)
run_slice(
f"slice{slice_}",
args.dataset,
args.outputs,
args.num_covis,
args.num_loc,
)
|