File size: 18,296 Bytes
9223079
 
 
 
 
 
 
 
7b977a8
9223079
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
9223079
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
9223079
 
7b977a8
 
 
 
9223079
7b977a8
 
 
 
 
 
9223079
 
 
 
 
 
7b977a8
 
 
9223079
 
 
 
 
 
 
 
7b977a8
 
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7b977a8
 
9223079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
import bisect
import numpy as np
import matplotlib.pyplot as plt
import matplotlib, os, cv2
import matplotlib.cm as cm
from PIL import Image
import torch.nn.functional as F
import torch
import seaborn as sns


def _compute_conf_thresh(data):
    dataset_name = data["dataset_name"][0].lower()
    if dataset_name == "scannet":
        thr = 5e-4
    elif dataset_name == "megadepth":
        thr = 1e-4
    else:
        raise ValueError(f"Unknown dataset: {dataset_name}")
    return thr


def plot_images(imgs, titles=None, cmaps="gray", dpi=100, size=5, pad=0.5):
    """Plot a set of images horizontally.
    Args:
        imgs: a list of NumPy or PyTorch images, RGB (H, W, 3) or mono (H, W).
        titles: a list of strings, as titles for each image.
        cmaps: colormaps for monochrome images.
    """
    n = len(imgs)
    if not isinstance(cmaps, (list, tuple)):
        cmaps = [cmaps] * n
    # figsize = (size*n, size*3/4) if size is not None else None
    figsize = (size * n, size * 6 / 5) if size is not None else None
    fig, ax = plt.subplots(1, n, figsize=figsize, dpi=dpi)

    if n == 1:
        ax = [ax]
    for i in range(n):
        ax[i].imshow(imgs[i], cmap=plt.get_cmap(cmaps[i]))
        ax[i].get_yaxis().set_ticks([])
        ax[i].get_xaxis().set_ticks([])
        ax[i].set_axis_off()
        for spine in ax[i].spines.values():  # remove frame
            spine.set_visible(False)
        if titles:
            ax[i].set_title(titles[i])
    fig.tight_layout(pad=pad)
    return fig


def plot_color_line_matches(lines, correct_matches=None, lw=2, indices=(0, 1)):
    """Plot line matches for existing images with multiple colors.
    Args:
        lines: list of ndarrays of size (N, 2, 2).
        correct_matches: bool array of size (N,) indicating correct matches.
        lw: line width as float pixels.
        indices: indices of the images to draw the matches on.
    """
    n_lines = len(lines[0])
    colors = sns.color_palette("husl", n_colors=n_lines)
    np.random.shuffle(colors)
    alphas = np.ones(n_lines)
    # If correct_matches is not None, display wrong matches with a low alpha
    if correct_matches is not None:
        alphas[~np.array(correct_matches)] = 0.2

    fig = plt.gcf()
    ax = fig.axes
    assert len(ax) > max(indices)
    axes = [ax[i] for i in indices]
    fig.canvas.draw()

    # Plot the lines
    for a, l in zip(axes, lines):
        # Transform the points into the figure coordinate system
        transFigure = fig.transFigure.inverted()
        endpoint0 = transFigure.transform(a.transData.transform(l[:, 0]))
        endpoint1 = transFigure.transform(a.transData.transform(l[:, 1]))
        fig.lines += [
            matplotlib.lines.Line2D(
                (endpoint0[i, 0], endpoint1[i, 0]),
                (endpoint0[i, 1], endpoint1[i, 1]),
                zorder=1,
                transform=fig.transFigure,
                c=colors[i],
                alpha=alphas[i],
                linewidth=lw,
            )
            for i in range(n_lines)
        ]

    return fig


def make_matching_figure(
    img0,
    img1,
    mkpts0,
    mkpts1,
    color,
    titles=None,
    kpts0=None,
    kpts1=None,
    text=[],
    dpi=75,
    path=None,
    pad=0,
):
    # draw image pair
    # assert mkpts0.shape[0] == mkpts1.shape[0], f'mkpts0: {mkpts0.shape[0]} v.s. mkpts1: {mkpts1.shape[0]}'
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):  # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
        if titles is not None:
            axes[i].set_title(titles[i])

    plt.tight_layout(pad=pad)

    if kpts0 is not None:
        assert kpts1 is not None
        axes[0].scatter(kpts0[:, 0], kpts0[:, 1], c="w", s=5)
        axes[1].scatter(kpts1[:, 0], kpts1[:, 1], c="w", s=5)

    # draw matches
    if mkpts0.shape[0] != 0 and mkpts1.shape[0] != 0:
        fig.canvas.draw()
        transFigure = fig.transFigure.inverted()
        fkpts0 = transFigure.transform(axes[0].transData.transform(mkpts0))
        fkpts1 = transFigure.transform(axes[1].transData.transform(mkpts1))
        fig.lines = [
            matplotlib.lines.Line2D(
                (fkpts0[i, 0], fkpts1[i, 0]),
                (fkpts0[i, 1], fkpts1[i, 1]),
                transform=fig.transFigure,
                c=color[i],
                linewidth=2,
            )
            for i in range(len(mkpts0))
        ]

        # freeze the axes to prevent the transform to change
        axes[0].autoscale(enable=False)
        axes[1].autoscale(enable=False)

        axes[0].scatter(mkpts0[:, 0], mkpts0[:, 1], c=color[..., :3], s=4)
        axes[1].scatter(mkpts1[:, 0], mkpts1[:, 1], c=color[..., :3], s=4)

    # put txts
    txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
    fig.text(
        0.01,
        0.99,
        "\n".join(text),
        transform=fig.axes[0].transAxes,
        fontsize=15,
        va="top",
        ha="left",
        color=txt_color,
    )

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
        plt.close()
    else:
        return fig


def _make_evaluation_figure(data, b_id, alpha="dynamic"):
    b_mask = data["m_bids"] == b_id
    conf_thr = _compute_conf_thresh(data)

    img0 = (
        (data["image0"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    )
    img1 = (
        (data["image1"][b_id][0].cpu().numpy() * 255).round().astype(np.int32)
    )
    kpts0 = data["mkpts0_f"][b_mask].cpu().numpy()
    kpts1 = data["mkpts1_f"][b_mask].cpu().numpy()

    # for megadepth, we visualize matches on the resized image
    if "scale0" in data:
        kpts0 = kpts0 / data["scale0"][b_id].cpu().numpy()[[1, 0]]
        kpts1 = kpts1 / data["scale1"][b_id].cpu().numpy()[[1, 0]]

    epi_errs = data["epi_errs"][b_mask].cpu().numpy()
    correct_mask = epi_errs < conf_thr
    precision = np.mean(correct_mask) if len(correct_mask) > 0 else 0
    n_correct = np.sum(correct_mask)
    n_gt_matches = int(data["conf_matrix_gt"][b_id].sum().cpu())
    recall = 0 if n_gt_matches == 0 else n_correct / (n_gt_matches)
    # recall might be larger than 1, since the calculation of conf_matrix_gt
    # uses groundtruth depths and camera poses, but epipolar distance is used here.

    # matching info
    if alpha == "dynamic":
        alpha = dynamic_alpha(len(correct_mask))
    color = error_colormap(epi_errs, conf_thr, alpha=alpha)

    text = [
        f"#Matches {len(kpts0)}",
        f"Precision({conf_thr:.2e}) ({100 * precision:.1f}%):"
        f" {n_correct}/{len(kpts0)}",
        f"Recall({conf_thr:.2e}) ({100 * recall:.1f}%):"
        f" {n_correct}/{n_gt_matches}",
    ]

    # make the figure
    figure = make_matching_figure(img0, img1, kpts0, kpts1, color, text=text)
    return figure


def _make_confidence_figure(data, b_id):
    # TODO: Implement confidence figure
    raise NotImplementedError()


def make_matching_figures(data, config, mode="evaluation"):
    """Make matching figures for a batch.

    Args:
        data (Dict): a batch updated by PL_LoFTR.
        config (Dict): matcher config
    Returns:
        figures (Dict[str, List[plt.figure]]
    """
    assert mode in ["evaluation", "confidence"]  # 'confidence'
    figures = {mode: []}
    for b_id in range(data["image0"].size(0)):
        if mode == "evaluation":
            fig = _make_evaluation_figure(
                data, b_id, alpha=config.TRAINER.PLOT_MATCHES_ALPHA
            )
        elif mode == "confidence":
            fig = _make_confidence_figure(data, b_id)
        else:
            raise ValueError(f"Unknown plot mode: {mode}")
    figures[mode].append(fig)
    return figures


def dynamic_alpha(
    n_matches, milestones=[0, 300, 1000, 2000], alphas=[1.0, 0.8, 0.4, 0.2]
):
    if n_matches == 0:
        return 1.0
    ranges = list(zip(alphas, alphas[1:] + [None]))
    loc = bisect.bisect_right(milestones, n_matches) - 1
    _range = ranges[loc]
    if _range[1] is None:
        return _range[0]
    return _range[1] + (milestones[loc + 1] - n_matches) / (
        milestones[loc + 1] - milestones[loc]
    ) * (_range[0] - _range[1])


def error_colormap(err, thr, alpha=1.0):
    assert alpha <= 1.0 and alpha > 0, f"Invaid alpha value: {alpha}"
    x = 1 - np.clip(err / (thr * 2), 0, 1)
    return np.clip(
        np.stack(
            [2 - x * 2, x * 2, np.zeros_like(x), np.ones_like(x) * alpha], -1
        ),
        0,
        1,
    )


np.random.seed(1995)
color_map = np.arange(100)
np.random.shuffle(color_map)


def draw_topics(
    data,
    img0,
    img1,
    saved_folder="viz_topics",
    show_n_topics=8,
    saved_name=None,
):
    topic0, topic1 = data["topic_matrix"]["img0"], data["topic_matrix"]["img1"]
    hw0_c, hw1_c = data["hw0_c"], data["hw1_c"]
    hw0_i, hw1_i = data["hw0_i"], data["hw1_i"]
    # print(hw0_i, hw1_i)
    scale0, scale1 = hw0_i[0] // hw0_c[0], hw1_i[0] // hw1_c[0]
    if "scale0" in data:
        scale0 *= data["scale0"][0]
    else:
        scale0 = (scale0, scale0)
    if "scale1" in data:
        scale1 *= data["scale1"][0]
    else:
        scale1 = (scale1, scale1)

    n_topics = topic0.shape[-1]
    # mask0_nonzero = topic0[0].sum(dim=-1, keepdim=True) > 0
    # mask1_nonzero = topic1[0].sum(dim=-1, keepdim=True) > 0
    theta0 = topic0[0].sum(dim=0)
    theta0 /= theta0.sum().float()
    theta1 = topic1[0].sum(dim=0)
    theta1 /= theta1.sum().float()
    # top_topic0 = torch.argsort(theta0, descending=True)[:show_n_topics]
    # top_topic1 = torch.argsort(theta1, descending=True)[:show_n_topics]
    top_topics = torch.argsort(theta0 * theta1, descending=True)[:show_n_topics]
    # print(sum_topic0, sum_topic1)

    topic0 = topic0[0].argmax(
        dim=-1, keepdim=True
    )  # .float() / (n_topics - 1) #* 255 + 1 #
    # topic0[~mask0_nonzero] = -1
    topic1 = topic1[0].argmax(
        dim=-1, keepdim=True
    )  # .float() / (n_topics - 1) #* 255 + 1
    # topic1[~mask1_nonzero] = -1
    label_img0, label_img1 = (
        torch.zeros_like(topic0) - 1,
        torch.zeros_like(topic1) - 1,
    )
    for i, k in enumerate(top_topics):
        label_img0[topic0 == k] = color_map[k]
        label_img1[topic1 == k] = color_map[k]

    #     print(hw0_c, scale0)
    #     print(hw1_c, scale1)
    # map_topic0 = F.fold(label_img0.unsqueeze(0), hw0_i, kernel_size=scale0, stride=scale0)
    map_topic0 = (
        label_img0.float().view(hw0_c).cpu().numpy()
    )  # map_topic0.squeeze(0).squeeze(0).cpu().numpy()
    map_topic0 = cv2.resize(
        map_topic0, (int(hw0_c[1] * scale0[0]), int(hw0_c[0] * scale0[1]))
    )
    # map_topic1 = F.fold(label_img1.unsqueeze(0), hw1_i, kernel_size=scale1, stride=scale1)
    map_topic1 = (
        label_img1.float().view(hw1_c).cpu().numpy()
    )  # map_topic1.squeeze(0).squeeze(0).cpu().numpy()
    map_topic1 = cv2.resize(
        map_topic1, (int(hw1_c[1] * scale1[0]), int(hw1_c[0] * scale1[1]))
    )

    # show image0
    if saved_name is None:
        return map_topic0, map_topic1

    if not os.path.exists(saved_folder):
        os.makedirs(saved_folder)
    path_saved_img0 = os.path.join(saved_folder, "{}_0.png".format(saved_name))
    plt.imshow(img0)
    masked_map_topic0 = np.ma.masked_where(map_topic0 < 0, map_topic0)
    plt.imshow(
        masked_map_topic0,
        cmap=plt.cm.jet,
        vmin=0,
        vmax=n_topics - 1,
        alpha=0.3,
        interpolation="bilinear",
    )
    # plt.show()
    plt.axis("off")
    plt.savefig(path_saved_img0, bbox_inches="tight", pad_inches=0, dpi=250)
    plt.close()

    path_saved_img1 = os.path.join(saved_folder, "{}_1.png".format(saved_name))
    plt.imshow(img1)
    masked_map_topic1 = np.ma.masked_where(map_topic1 < 0, map_topic1)
    plt.imshow(
        masked_map_topic1,
        cmap=plt.cm.jet,
        vmin=0,
        vmax=n_topics - 1,
        alpha=0.3,
        interpolation="bilinear",
    )
    plt.axis("off")
    plt.savefig(path_saved_img1, bbox_inches="tight", pad_inches=0, dpi=250)
    plt.close()


def draw_topicfm_demo(
    data,
    img0,
    img1,
    mkpts0,
    mkpts1,
    mcolor,
    text,
    show_n_topics=8,
    topic_alpha=0.3,
    margin=5,
    path=None,
    opencv_display=False,
    opencv_title="",
):
    topic_map0, topic_map1 = draw_topics(
        data, img0, img1, show_n_topics=show_n_topics
    )

    mask_tm0, mask_tm1 = np.expand_dims(
        topic_map0 >= 0, axis=-1
    ), np.expand_dims(topic_map1 >= 0, axis=-1)

    topic_cm0, topic_cm1 = cm.jet(topic_map0 / 99.0), cm.jet(topic_map1 / 99.0)
    topic_cm0 = cv2.cvtColor(
        topic_cm0[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
    )
    topic_cm1 = cv2.cvtColor(
        topic_cm1[..., :3].astype(np.float32), cv2.COLOR_RGB2BGR
    )
    overlay0 = (mask_tm0 * topic_cm0 + (1 - mask_tm0) * img0).astype(np.float32)
    overlay1 = (mask_tm1 * topic_cm1 + (1 - mask_tm1) * img1).astype(np.float32)

    cv2.addWeighted(overlay0, topic_alpha, img0, 1 - topic_alpha, 0, overlay0)
    cv2.addWeighted(overlay1, topic_alpha, img1, 1 - topic_alpha, 0, overlay1)

    overlay0, overlay1 = (overlay0 * 255).astype(np.uint8), (
        overlay1 * 255
    ).astype(np.uint8)

    h0, w0 = img0.shape[:2]
    h1, w1 = img1.shape[:2]
    h, w = h0 * 2 + margin * 2, w0 * 2 + margin
    out_fig = 255 * np.ones((h, w, 3), dtype=np.uint8)
    out_fig[:h0, :w0] = overlay0
    if h0 >= h1:
        start = (h0 - h1) // 2
        out_fig[
            start : (start + h1), (w0 + margin) : (w0 + margin + w1)
        ] = overlay1
    else:
        start = (h1 - h0) // 2
        out_fig[:h0, (w0 + margin) : (w0 + margin + w1)] = overlay1[
            start : (start + h0)
        ]

    step_h = h0 + margin * 2
    out_fig[step_h : step_h + h0, :w0] = (img0 * 255).astype(np.uint8)
    if h0 >= h1:
        start = step_h + (h0 - h1) // 2
        out_fig[start : start + h1, (w0 + margin) : (w0 + margin + w1)] = (
            img1 * 255
        ).astype(np.uint8)
    else:
        start = (h1 - h0) // 2
        out_fig[step_h : step_h + h0, (w0 + margin) : (w0 + margin + w1)] = (
            img1[start : start + h0] * 255
        ).astype(np.uint8)

    # draw matching lines, this is inspried from
    # https://raw.githubusercontent.com/magicleap/SuperGluePretrainedNetwork/master/models/utils.py
    mkpts0, mkpts1 = np.round(mkpts0).astype(int), np.round(mkpts1).astype(int)
    mcolor = (np.array(mcolor[:, [2, 1, 0]]) * 255).astype(int)

    for (x0, y0), (x1, y1), c in zip(mkpts0, mkpts1, mcolor):
        c = c.tolist()
        cv2.line(
            out_fig,
            (x0, y0 + step_h),
            (x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
            color=c,
            thickness=1,
            lineType=cv2.LINE_AA,
        )
        # display line end-points as circles
        cv2.circle(out_fig, (x0, y0 + step_h), 2, c, -1, lineType=cv2.LINE_AA)
        cv2.circle(
            out_fig,
            (x1 + margin + w0, y1 + step_h + (h0 - h1) // 2),
            2,
            c,
            -1,
            lineType=cv2.LINE_AA,
        )

        # Scale factor for consistent visualization across scales.
    sc = min(h / 960.0, 2.0)

    # Big text.
    Ht = int(30 * sc)  # text height
    txt_color_fg = (255, 255, 255)
    txt_color_bg = (0, 0, 0)
    for i, t in enumerate(text):
        cv2.putText(
            out_fig,
            t,
            (int(8 * sc), Ht + step_h * i),
            cv2.FONT_HERSHEY_DUPLEX,
            1.0 * sc,
            txt_color_bg,
            2,
            cv2.LINE_AA,
        )
        cv2.putText(
            out_fig,
            t,
            (int(8 * sc), Ht + step_h * i),
            cv2.FONT_HERSHEY_DUPLEX,
            1.0 * sc,
            txt_color_fg,
            1,
            cv2.LINE_AA,
        )

    if path is not None:
        cv2.imwrite(str(path), out_fig)

    if opencv_display:
        cv2.imshow(opencv_title, out_fig)
        cv2.waitKey(1)

    return out_fig


def fig2im(fig):
    fig.canvas.draw()
    w, h = fig.canvas.get_width_height()
    buf_ndarray = np.frombuffer(fig.canvas.tostring_rgb(), dtype="u1")
    im = buf_ndarray.reshape(h, w, 3)
    return im


def draw_matches(
    mkpts0, mkpts1, img0, img1, conf, titles=None, dpi=150, path=None, pad=0.5
):
    thr = 5e-4
    thr = 0.5
    color = error_colormap(conf, thr, alpha=0.1)
    text = [
        f"image name",
        f"#Matches: {len(mkpts0)}",
    ]
    if path:
        fig2im(
            make_matching_figure(
                img0,
                img1,
                mkpts0,
                mkpts1,
                color,
                titles=titles,
                text=text,
                path=path,
                dpi=dpi,
                pad=pad,
            )
        )
    else:
        return fig2im(
            make_matching_figure(
                img0,
                img1,
                mkpts0,
                mkpts1,
                color,
                titles=titles,
                text=text,
                pad=pad,
                dpi=dpi,
            )
        )


def draw_image_pairs(img0, img1, text=[], dpi=75, path=None, pad=0.5):
    # draw image pair
    fig, axes = plt.subplots(1, 2, figsize=(10, 6), dpi=dpi)
    axes[0].imshow(img0)  # , cmap='gray')
    axes[1].imshow(img1)  # , cmap='gray')
    for i in range(2):  # clear all frames
        axes[i].get_yaxis().set_ticks([])
        axes[i].get_xaxis().set_ticks([])
        for spine in axes[i].spines.values():
            spine.set_visible(False)
    plt.tight_layout(pad=pad)

    # put txts
    txt_color = "k" if img0[:100, :200].mean() > 200 else "w"
    fig.text(
        0.01,
        0.99,
        "\n".join(text),
        transform=fig.axes[0].transAxes,
        fontsize=15,
        va="top",
        ha="left",
        color=txt_color,
    )

    # save or return figure
    if path:
        plt.savefig(str(path), bbox_inches="tight", pad_inches=0)
        plt.close()
    else:
        return fig2im(fig)