File size: 6,242 Bytes
306d4b2 d7b5c0f 306d4b2 622eda7 306d4b2 d7b5c0f 622eda7 d7b5c0f 306d4b2 d7b5c0f 306d4b2 d7b5c0f 306d4b2 622eda7 d7b5c0f 622eda7 d7b5c0f 622eda7 306d4b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
import torch
import time
import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
BATCH_SIZE = 8
FILE_LIMIT_MB = 10
YT_LENGTH_LIMIT_S = 300 # limit to 5min YouTube files
device = 0 if torch.cuda.is_available() else "cpu"
def transcribe(model, audio, task):
if audio is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
chunk_length_s=30,
device=device,
)
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"]
return text
def _return_yt_html_embed(yt_url):
video_id = yt_url.split("?v=")[-1]
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info["duration_string"]
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
try:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
raise gr.Error(str(err))
def yt_transcribe(model, yt_url, task):
html_embed_str = _return_yt_html_embed(yt_url)
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
pipe = pipeline(
task="automatic-speech-recognition",
model=model,
chunk_length_s=30,
device=device,
)
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"]
return html_embed_str, text
demo = gr.Blocks()
transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Dropdown([
("tiny", "RaivisDejus/whisper-tiny-lv"),
("small", "RaivisDejus/whisper-small-lv"),
("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17")
], label="Model", value="RaivisDejus/whisper-small-lv"),
gr.Audio(sources=["upload", "microphone"],type="filepath", label="Audio"),
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe"),
],
outputs=gr.Textbox(label="Transcription", lines=15),
title="Latvian speech recognition: Transcribe Audio",
description=("""
Test Latvian speech recognition (STT) models. Three models are available:
* [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also least accurate
* [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM
* [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU
To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/)
"""
),
allow_flagging="never",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Dropdown([
("tiny", "RaivisDejus/whisper-tiny-lv"),
("small", "RaivisDejus/whisper-small-lv"),
("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17")
], label="Model", value="RaivisDejus/whisper-small-lv"),
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL (max 5min long)"),
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe")
],
# outputs=["html", "text"],
outputs=[gr.HTML(), gr.Textbox(label="Transcription", lines=10)],
title="Latvian speech recognition: Transcribe YouTube",
description=("""
Test Latvian speech recognition (STT) models. Three models are available:
* [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also least accurate
* [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM
* [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU
To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/)
"""
),
allow_flagging="never",
)
with demo:
gr.TabbedInterface([transcribe, yt_transcribe], ["Microphone / Audio file", "YouTube"])
demo.queue(max_size=10)
demo.launch()
|