File size: 6,242 Bytes
306d4b2
 
 
 
 
 
 
 
 
 
 
 
d7b5c0f
 
306d4b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622eda7
306d4b2
 
 
 
 
 
 
 
d7b5c0f
622eda7
d7b5c0f
306d4b2
 
 
 
 
 
 
 
 
 
 
 
 
d7b5c0f
306d4b2
 
d7b5c0f
 
306d4b2
622eda7
 
 
 
 
 
 
d7b5c0f
622eda7
d7b5c0f
622eda7
306d4b2
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import torch
import time

import gradio as gr
import yt_dlp as youtube_dl
from transformers import pipeline
from transformers.pipelines.audio_utils import ffmpeg_read

import tempfile
import os

BATCH_SIZE = 8
FILE_LIMIT_MB = 10
YT_LENGTH_LIMIT_S = 300  # limit to 5min YouTube files

device = 0 if torch.cuda.is_available() else "cpu"


def transcribe(model, audio, task):
    if audio is None:
        raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")

    pipe = pipeline(
        task="automatic-speech-recognition",
        model=model,
        chunk_length_s=30,
        device=device,
    )
    text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"]
    return text


def _return_yt_html_embed(yt_url):
    video_id = yt_url.split("?v=")[-1]
    HTML_str = (
        f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
        " </center>"
    )
    return HTML_str

def download_yt_audio(yt_url, filename):
    info_loader = youtube_dl.YoutubeDL()
    
    try:
        info = info_loader.extract_info(yt_url, download=False)
    except youtube_dl.utils.DownloadError as err:
        raise gr.Error(str(err))
    
    file_length = info["duration_string"]
    file_h_m_s = file_length.split(":")
    file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
    
    if len(file_h_m_s) == 1:
        file_h_m_s.insert(0, 0)
    if len(file_h_m_s) == 2:
        file_h_m_s.insert(0, 0)
    file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
    
    if file_length_s > YT_LENGTH_LIMIT_S:
        yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
        file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
        raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
    
    ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
    
    with youtube_dl.YoutubeDL(ydl_opts) as ydl:
        try:
            ydl.download([yt_url])
        except youtube_dl.utils.ExtractorError as err:
            raise gr.Error(str(err))


def yt_transcribe(model, yt_url, task):
    html_embed_str = _return_yt_html_embed(yt_url)

    with tempfile.TemporaryDirectory() as tmpdirname:
        filepath = os.path.join(tmpdirname, "video.mp4")
        download_yt_audio(yt_url, filepath)
        with open(filepath, "rb") as f:
            inputs = f.read()

    pipe = pipeline(
        task="automatic-speech-recognition",
        model=model,
        chunk_length_s=30,
        device=device,
    )
    inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
    inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}

    text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"]

    return html_embed_str, text


demo = gr.Blocks()

transcribe = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Dropdown([
            ("tiny", "RaivisDejus/whisper-tiny-lv"),
            ("small", "RaivisDejus/whisper-small-lv"),
            ("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17")
        ], label="Model", value="RaivisDejus/whisper-small-lv"),
        gr.Audio(sources=["upload", "microphone"],type="filepath", label="Audio"),
        gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe"),
    ],
    outputs=gr.Textbox(label="Transcription", lines=15),
    title="Latvian speech recognition: Transcribe Audio",
    description=("""
        Test Latvian speech recognition (STT) models. Three models are available:
        
        * [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also least accurate
        
        * [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM
        
        * [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU
        
        To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/)
        """
    ),
    allow_flagging="never",
)

yt_transcribe = gr.Interface(
    fn=yt_transcribe,
    inputs=[
        gr.Dropdown([
            ("tiny", "RaivisDejus/whisper-tiny-lv"),
            ("small", "RaivisDejus/whisper-small-lv"),
            ("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17")
        ], label="Model", value="RaivisDejus/whisper-small-lv"),
        gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL (max 5min long)"),
        gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe")
    ],
    # outputs=["html", "text"],
    outputs=[gr.HTML(), gr.Textbox(label="Transcription", lines=10)],
    title="Latvian speech recognition: Transcribe YouTube",
    description=("""
        Test Latvian speech recognition (STT) models. Three models are available:

        * [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also least accurate

        * [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM

        * [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU

        To improve speech recognition quality, more data is needed, add your voice on [Balsu talka](https://balsutalka.lv/)
        """
    ),
    allow_flagging="never",
)

with demo:
    gr.TabbedInterface([transcribe, yt_transcribe], ["Microphone / Audio file", "YouTube"])

demo.queue(max_size=10)
demo.launch()