Raivis Dejus
commited on
Commit
·
306d4b2
1
Parent(s):
d57698b
Adding app files
Browse files- README.md +8 -1
- app.py +156 -0
- packages.txt +1 -0
- requirements.txt +3 -0
README.md
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
emoji: 🦀
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
@@ -7,6 +7,13 @@ sdk: gradio
|
|
7 |
sdk_version: 4.28.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
---
|
11 |
|
12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Latvian Speech Recognition
|
3 |
emoji: 🦀
|
4 |
colorFrom: green
|
5 |
colorTo: indigo
|
|
|
7 |
sdk_version: 4.28.3
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
preload_from_hub:
|
11 |
+
- RaivisDejus/whisper-tiny-lv
|
12 |
+
- RaivisDejus/whisper-small-lv
|
13 |
+
- AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17
|
14 |
+
tags:
|
15 |
+
- latvian
|
16 |
+
- whisper
|
17 |
---
|
18 |
|
19 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import time
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import yt_dlp as youtube_dl
|
6 |
+
from transformers import pipeline
|
7 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
8 |
+
|
9 |
+
import tempfile
|
10 |
+
import os
|
11 |
+
|
12 |
+
BATCH_SIZE = 8
|
13 |
+
FILE_LIMIT_MB = 1000
|
14 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
15 |
+
|
16 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
17 |
+
|
18 |
+
|
19 |
+
def transcribe(model, audio, task):
|
20 |
+
if audio is None:
|
21 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
22 |
+
|
23 |
+
pipe = pipeline(
|
24 |
+
task="automatic-speech-recognition",
|
25 |
+
model=model,
|
26 |
+
chunk_length_s=30,
|
27 |
+
device=device,
|
28 |
+
)
|
29 |
+
text = pipe(audio, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"]
|
30 |
+
return text
|
31 |
+
|
32 |
+
|
33 |
+
def _return_yt_html_embed(yt_url):
|
34 |
+
video_id = yt_url.split("?v=")[-1]
|
35 |
+
HTML_str = (
|
36 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
37 |
+
" </center>"
|
38 |
+
)
|
39 |
+
return HTML_str
|
40 |
+
|
41 |
+
def download_yt_audio(yt_url, filename):
|
42 |
+
info_loader = youtube_dl.YoutubeDL()
|
43 |
+
|
44 |
+
try:
|
45 |
+
info = info_loader.extract_info(yt_url, download=False)
|
46 |
+
except youtube_dl.utils.DownloadError as err:
|
47 |
+
raise gr.Error(str(err))
|
48 |
+
|
49 |
+
file_length = info["duration_string"]
|
50 |
+
file_h_m_s = file_length.split(":")
|
51 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
52 |
+
|
53 |
+
if len(file_h_m_s) == 1:
|
54 |
+
file_h_m_s.insert(0, 0)
|
55 |
+
if len(file_h_m_s) == 2:
|
56 |
+
file_h_m_s.insert(0, 0)
|
57 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
58 |
+
|
59 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
60 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
61 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
62 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
63 |
+
|
64 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
65 |
+
|
66 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
67 |
+
try:
|
68 |
+
ydl.download([yt_url])
|
69 |
+
except youtube_dl.utils.ExtractorError as err:
|
70 |
+
raise gr.Error(str(err))
|
71 |
+
|
72 |
+
|
73 |
+
def yt_transcribe(model, yt_url, task):
|
74 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
75 |
+
|
76 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
77 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
78 |
+
download_yt_audio(yt_url, filepath)
|
79 |
+
with open(filepath, "rb") as f:
|
80 |
+
inputs = f.read()
|
81 |
+
|
82 |
+
pipe = pipeline(
|
83 |
+
task="automatic-speech-recognition",
|
84 |
+
model=model,
|
85 |
+
chunk_length_s=30,
|
86 |
+
device=device,
|
87 |
+
)
|
88 |
+
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
|
89 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
90 |
+
|
91 |
+
text = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"language": "latvian", "task": task}, return_timestamps=True)["text"]
|
92 |
+
|
93 |
+
return html_embed_str, text
|
94 |
+
|
95 |
+
|
96 |
+
demo = gr.Blocks()
|
97 |
+
|
98 |
+
transcribe = gr.Interface(
|
99 |
+
fn=transcribe,
|
100 |
+
inputs=[
|
101 |
+
# gr.Markdown(
|
102 |
+
# """
|
103 |
+
# Test Latvian speech recognition (STT) models. Three models are available:
|
104 |
+
# * [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also least accurate
|
105 |
+
# * [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM
|
106 |
+
# * [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU.
|
107 |
+
# """
|
108 |
+
# ),
|
109 |
+
gr.Dropdown([
|
110 |
+
("tiny", "RaivisDejus/whisper-tiny-lv"),
|
111 |
+
("small", "RaivisDejus/whisper-small-lv"),
|
112 |
+
("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17")
|
113 |
+
], label="Model", value="RaivisDejus/whisper-small-lv"),
|
114 |
+
gr.Audio(sources=["upload", "microphone"],type="filepath", label="Audio"),
|
115 |
+
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe"),
|
116 |
+
],
|
117 |
+
outputs=gr.Textbox(label="Transcription", lines=10),
|
118 |
+
title="Latvian speech recognition: Transcribe Audio",
|
119 |
+
description=("""
|
120 |
+
Test Latvian speech recognition (STT) models. Three models are available:
|
121 |
+
|
122 |
+
* [tiny](https://huggingface.co/RaivisDejus/whisper-tiny-lv) - Fastest, requiring least RAM, but also least accurate
|
123 |
+
|
124 |
+
* [small](https://huggingface.co/RaivisDejus/whisper-small-lv) - Reasonably fast, reasonably accurate, requiring reasonable amounts of RAM
|
125 |
+
|
126 |
+
* [large](https://huggingface.co/AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17) - Most accurate, developed by scientists from [ailab.lv](https://ailab.lv/). Requires most RAM and for best performance should be run on a GPU.
|
127 |
+
"""
|
128 |
+
),
|
129 |
+
allow_flagging="never",
|
130 |
+
)
|
131 |
+
|
132 |
+
yt_transcribe = gr.Interface(
|
133 |
+
fn=yt_transcribe,
|
134 |
+
inputs=[
|
135 |
+
gr.Dropdown([
|
136 |
+
("tiny", "RaivisDejus/whisper-tiny-lv"),
|
137 |
+
("small", "RaivisDejus/whisper-small-lv"),
|
138 |
+
("large", "AiLab-IMCS-UL/whisper-large-v3-lv-late-cv17")
|
139 |
+
], label="Model", value="RaivisDejus/whisper-small-lv"),
|
140 |
+
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
|
141 |
+
gr.Radio([("Transcribe", "transcribe"), ("Translate to English", "translate",)], label="Task", value="transcribe")
|
142 |
+
],
|
143 |
+
outputs=["html", "text"],
|
144 |
+
title="Latvian speech recognition: Transcribe YouTube",
|
145 |
+
description=(
|
146 |
+
"Transcribe long-form YouTube videos with the click of a button! Demo uses the checkpoint"
|
147 |
+
),
|
148 |
+
allow_flagging="never",
|
149 |
+
)
|
150 |
+
|
151 |
+
with demo:
|
152 |
+
gr.TabbedInterface([transcribe, yt_transcribe], ["Microphone / Audio file", "YouTube"])
|
153 |
+
|
154 |
+
demo.queue(max_size=10)
|
155 |
+
demo.launch()
|
156 |
+
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
git+https://github.com/huggingface/transformers
|
2 |
+
torch
|
3 |
+
yt-dlp
|