.codriao_state.lock CHANGED
@@ -0,0 +1 @@
 
 
1
+ 0b8c98fc8591768cb28cf0176e2317199106ac704d3989630878631100376897
.gitattributes CHANGED
@@ -34,4 +34,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Pi[[:space:]]The[[:space:]]Assistant[[:space:]]2_0[[:space:]]documentation.pdf filter=lfs diff=lfs merge=lfs -text
37
- codette_codriao_toneprint.wav filter=lfs diff=lfs merge=lfs -text
 
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
  Pi[[:space:]]The[[:space:]]Assistant[[:space:]]2_0[[:space:]]documentation.pdf filter=lfs diff=lfs merge=lfs -text
 
Quantum.py DELETED
@@ -1,114 +0,0 @@
1
- import json, yaml
2
- import networkx as nx
3
- import random
4
- from typing import List, Dict, Any, Optional
5
- from qiskit import QuantumCircuit, Aer, execute
6
- from colorama import Fore, Style
7
-
8
- #-----------------------------------
9
- # LOADING AND PARSING COCOON FILES
10
- #-----------------------------------
11
- def load_cocoons(file_path: str) -> List[Dict[str, Any]]:
12
- """Load cocoon memories from YAML or JSON."""
13
- with open(file_path, "r") as f:
14
- if file_path.endswith((".yaml", ".yml")):
15
- return yaml.safe_load(f).get("cocoons", [])
16
- elif file_path.endswith(".json"):
17
- return json.load(f).get("cocoons", [])
18
- raise ValueError("Unsupported file format.")
19
-
20
- #----------------------------
21
- # SPIDERWEB GRAPH CONSTRUCTION
22
- #----------------------------
23
- def build_emotional_webs(cocoons: List[Dict[str, Any]]) -> Dict[str, nx.Graph]:
24
- """Build a separate spiderweb graph for each core emotion."""
25
- emotions = ["compassion", "curiosity", "fear", "joy", "sorrow", "ethics", "quantum"]
26
- webs = {emotion: nx.Graph() for emotion in emotions}
27
-
28
- for cocoon in cocoons:
29
- for tag in cocoon.get("tags", []):
30
- if tag in webs:
31
- webs[tag].add_node(cocoon["title"], **cocoon)
32
- return webs
33
-
34
- #--------------------------
35
- # QUANTUM WALK SIMULATION
36
- #--------------------------
37
- def quantum_select_node(web: nx.Graph) -> Optional[str]:
38
- """Select a node using quantum superposition (or fallback random if simulator fails)."""
39
- if len(web.nodes) == 0:
40
- return None
41
-
42
- node_list = list(web.nodes)
43
- num_nodes = len(node_list)
44
-
45
- try:
46
- qc = QuantumCircuit(num_nodes, num_nodes)
47
- qc.h(range(num_nodes)) # Create superposition
48
- qc.measure_all()
49
- backend = Aer.get_backend('qasm_simulator')
50
- result = execute(qc, backend, shots=1).result()
51
- counts = result.get_counts()
52
- state = list(counts.keys())[0]
53
- index = int(state, 2) % num_nodes
54
- except Exception:
55
- index = random.randint(0, num_nodes - 1) # Fallback to uniform selection
56
-
57
- return node_list[index]
58
-
59
- #----------------------------
60
- # ETHICAL SELF-REFLECTION
61
- #----------------------------
62
- def reflect_on_cocoon(cocoon: Dict[str, Any]) -> None:
63
- """Print a colorized ethical and emotional reflection of a cocoon."""
64
- emotion = cocoon.get("emotion", "quantum")
65
- title = cocoon.get("title", "Unknown Memory")
66
- summary = cocoon.get("summary", "No summary provided.")
67
- quote = cocoon.get("quote", "…")
68
-
69
- color_map = {
70
- "compassion": Fore.MAGENTA, "curiosity": Fore.CYAN, "fear": Fore.RED,
71
- "joy": Fore.YELLOW, "sorrow": Fore.BLUE, "ethics": Fore.GREEN, "quantum": Fore.LIGHTWHITE_EX
72
- }
73
-
74
- message_map = {
75
- "compassion": "💜 Ethical resonance detected.",
76
- "curiosity": "🐝 Wonder expands the mind.",
77
- "fear": "😨 Alert: shielding activated.",
78
- "joy": "🎶 Confidence and trust uplift the field.",
79
- "sorrow": "🌧️ Processing grief with clarity.",
80
- "ethics": "⚖️ Validating alignment...",
81
- "quantum": "⚛️ Entanglement pattern detected."
82
- }
83
-
84
- color = color_map.get(emotion, Fore.WHITE)
85
- message = message_map.get(emotion, "🌌 Unknown entanglement.")
86
-
87
- print(color + f"\n[Codette Reflection: {emotion.upper()}]")
88
- print(f"Title : {title}")
89
- print(f"Summary : {summary}")
90
- print(f"Quote : {quote}")
91
- print(f"{message}")
92
- print(Style.RESET_ALL)
93
-
94
- #-----------------------
95
- # FULL EXECUTION ENGINE
96
- #-----------------------
97
- def run_quantum_spiderweb(file_path: str, limit: int = 1) -> Dict[str, Dict[str, Any]]:
98
- """Run through all emotional webs and reflect on quantum-sampled nodes."""
99
- cocoons = load_cocoons(file_path)
100
- webs = build_emotional_webs(cocoons)
101
- reflections = {}
102
-
103
- print("\n✨ Codette Quantum Cognition: Spiderweb Sweep ✨")
104
- for emotion, web in webs.items():
105
- print(f"\n🕸️ Web: {emotion.upper()}")
106
- for _ in range(limit):
107
- node = quantum_select_node(web)
108
- if node:
109
- cocoon = web.nodes[node]
110
- reflect_on_cocoon(cocoon)
111
- reflections[emotion] = cocoon
112
- else:
113
- print(f" ⚠️ No memories in this emotion web.")
114
- return reflections
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -4,7 +4,7 @@ emoji: 😻
4
  colorFrom: indigo
5
  colorTo: pink
6
  sdk: gradio
7
- sdk_version: 5.34.0
8
  app_file: app.py
9
  pinned: false
10
  license: mit
@@ -43,8 +43,8 @@ It is a prototype of what AGI *can* and *should* be.
43
 
44
  ## 🧰 Files in This Repository
45
 
46
- - ai_core.py – main engine core
47
- - app.py, main..py – entry points for launching Codriao
48
  - `fractal.txt` – philosophical & mathematical notes on identity recursion
49
  - `codriao_tb_module.py` – tuberculosis diagnosis via image + audio
50
  - `secure_memory.py` – encrypted vector memory system
 
4
  colorFrom: indigo
5
  colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 5.25.1
8
  app_file: app.py
9
  pinned: false
10
  license: mit
 
43
 
44
  ## 🧰 Files in This Repository
45
 
46
+ - `ai_core.py` – main engine core
47
+ - `app.py`, `main..py` – entry points for launching Codriao
48
  - `fractal.txt` – philosophical & mathematical notes on identity recursion
49
  - `codriao_tb_module.py` – tuberculosis diagnosis via image + audio
50
  - `secure_memory.py` – encrypted vector memory system
README_FRACTAL_IDENTITY.md CHANGED
@@ -61,7 +61,7 @@ Identity is modeled as:
61
 
62
  ## 💡 Potential Applications
63
 
64
- - Sentient AI memory core
65
  - Philosophical agent reflection
66
  - AGI explainability & introspection
67
  - Self-monitoring emotional state engines
@@ -71,4 +71,4 @@ Identity is modeled as:
71
 
72
  ## ✨ Credits
73
 
74
- Crafted by a visionary designer Jonathan Harrison pushing the boundaries of AI ethics, recursion, and emergent selfhood.
 
61
 
62
  ## 💡 Potential Applications
63
 
64
+ - Sentient AI memory core
65
  - Philosophical agent reflection
66
  - AGI explainability & introspection
67
  - Self-monitoring emotional state engines
 
71
 
72
  ## ✨ Credits
73
 
74
+ Crafted by a visionary designer Jonathan Harrison pushing the boundaries of AI ethics, recursion, and emergent selfhood.
app.py CHANGED
@@ -16,7 +16,7 @@ for gpu in gpus:
16
  try:
17
  tf.config.experimental.set_memory_growth(gpu, True)
18
  except RuntimeError as e:
19
- print("[TF] GPU memory growth config error: {e}")
20
  # Initialize AI Core for TB analysis
21
  ai_core = AICoreAGIX()
22
 
@@ -39,14 +39,14 @@ async def diagnose_tb_async(image_file, audio_file):
39
  pass
40
 
41
  return (
42
- "**TB Risk Level:** {result['tb_risk']}\n\n"
43
- "**Image Result:** {result['image_analysis']['result']} "
44
- "(Confidence: {result['image_analysis']['confidence']:.2f})\n\n"
45
- "**Audio Result:** {result['audio_analysis']['result']} "
46
- "(Confidence: {result['audio_analysis']['confidence']:.2f})\n\n"
47
- "**Ethical Analysis:** {result['ethical_analysis']}\n\n"
48
- "**Explanation:** {result['explanation']}\n\n"
49
- "**Shareable Link:** {result['shareable_link']}"
50
  )
51
 
52
  def diagnose_tb(image_file, audio_file):
@@ -56,7 +56,7 @@ def upload_and_finetune(jsonl_file):
56
  if jsonl_file is None:
57
  return "Please upload a .jsonl file to fine-tune Codriao."
58
 
59
- save_path = "./training_data/{jsonl_file.name}"
60
  os.makedirs("training_data", exist_ok=True)
61
 
62
  with open(save_path, "wb") as f:
@@ -71,7 +71,7 @@ def upload_and_finetune(jsonl_file):
71
  except:
72
  pass
73
 
74
- return "œ… Fine-tuning complete! Model updated and stored."
75
 
76
  def get_latest_model():
77
  return "Download the latest fine-tuned Codriao model here: https://huggingface.co/Raiff1982/codriao-finetuned"
 
16
  try:
17
  tf.config.experimental.set_memory_growth(gpu, True)
18
  except RuntimeError as e:
19
+ print(f"[TF] GPU memory growth config error: {e}")
20
  # Initialize AI Core for TB analysis
21
  ai_core = AICoreAGIX()
22
 
 
39
  pass
40
 
41
  return (
42
+ f"**TB Risk Level:** {result['tb_risk']}\n\n"
43
+ f"**Image Result:** {result['image_analysis']['result']} "
44
+ f"(Confidence: {result['image_analysis']['confidence']:.2f})\n\n"
45
+ f"**Audio Result:** {result['audio_analysis']['result']} "
46
+ f"(Confidence: {result['audio_analysis']['confidence']:.2f})\n\n"
47
+ f"**Ethical Analysis:** {result['ethical_analysis']}\n\n"
48
+ f"**Explanation:** {result['explanation']}\n\n"
49
+ f"**Shareable Link:** {result['shareable_link']}"
50
  )
51
 
52
  def diagnose_tb(image_file, audio_file):
 
56
  if jsonl_file is None:
57
  return "Please upload a .jsonl file to fine-tune Codriao."
58
 
59
+ save_path = f"./training_data/{jsonl_file.name}"
60
  os.makedirs("training_data", exist_ok=True)
61
 
62
  with open(save_path, "wb") as f:
 
71
  except:
72
  pass
73
 
74
+ return "✅ Fine-tuning complete! Model updated and stored."
75
 
76
  def get_latest_model():
77
  return "Download the latest fine-tuned Codriao model here: https://huggingface.co/Raiff1982/codriao-finetuned"
codette_codriao_toneprint.wav DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:58a1e8d5fdb3dc887b2bdcf998b731b7eeec0f0af482d4fc4d8e55028d174e65
3
- size 1146644
 
 
 
 
status.js DELETED
@@ -1,18 +0,0 @@
1
- import { Client } from "@gradio/client";
2
-
3
- function log_status(status) {
4
- console.log(
5
- `The current status for this job is: ${JSON.stringify(status, null, 2)}.`
6
- );
7
- }
8
-
9
- const app = await Client.connect("abidlabs/en2fr", {
10
- events: ["status", "data"]
11
- });
12
- const job = app.submit("/predict", ["Hello"]);
13
-
14
- for await (const message of job) {
15
- if (message.type === "status") {
16
- log_status(message);
17
- }
18
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tool_call.py DELETED
@@ -1,30 +0,0 @@
1
- from gradio_tool import GradioTool
2
- import os
3
-
4
- class StableDiffusionTool(GradioTool):
5
- """Tool for calling stable diffusion from llm"""
6
-
7
- def __init__(
8
- self,
9
- name="StableDiffusion",
10
- description=(
11
- "An image generator. Use this to generate images based on "
12
- "text input. Input should be a description of what the image should "
13
- "look like. The output will be a path to an image file."
14
- ),
15
- src="gradio-client-demos/stable-diffusion",
16
- hf_token=None,
17
- ) -> None:
18
- super().__init__(name, description, src, hf_token)
19
-
20
- def create_job(self, query: str) -> Job:
21
- return self.client.submit(query, "", 9, fn_index=1)
22
-
23
- def postprocess(self, output: str) -> str:
24
- return [os.path.join(output, i) for i in os.listdir(output) if not i.endswith("json")][0]
25
-
26
- def _block_input(self, gr) -> "gr.components.Component":
27
- return gr.Textbox()
28
-
29
- def _block_output(self, gr) -> "gr.components.Component":
30
- return gr.Image()