Spaces:
Sleeping
Sleeping
File size: 13,905 Bytes
aa58e61 d4e34b5 e5bb6b4 ffed168 e5bb6b4 d4e34b5 6109aa9 d4e34b5 aa58e61 ffed168 aa58e61 d4e34b5 aa58e61 d4e34b5 aa58e61 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 aa58e61 01126dd aa58e61 e5bb6b4 ffed168 aa58e61 ffed168 aa58e61 d4e34b5 ffed168 aa58e61 ffed168 aa58e61 e5bb6b4 aa58e61 ffed168 e5bb6b4 ffed168 e5bb6b4 aa58e61 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 e5bb6b4 ffed168 aa58e61 e5bb6b4 aa58e61 e5bb6b4 aa58e61 ffed168 aa58e61 ffed168 aa58e61 ffed168 aa58e61 ffed168 aa58e61 6109aa9 aa58e61 ffed168 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 |
import os
import gradio as gr
import spaces
from infer_rvc_python import BaseLoader
import random
import logging
import time
import soundfile as sf
from infer_rvc_python.main import download_manager
import zipfile
import edge_tts
import asyncio
import librosa
import traceback
import numpy as np
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
from pedalboard.io import AudioFile
from pydub import AudioSegment
import noisereduce as nr
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
converter = BaseLoader(only_cpu=False, hubert_path=None, rmvpe_path=None)
title = "<center><strong><font size='7'>WELCOME TO RVC⚡RTECHS</font></strong></center>"
description = "This RVC is provided for RTECHS MEDIA PRODUCTIONS AND SOFTWARE DEV'S LOCAL purposes only. The authors (@Robel Adugna) and contributors of this project do not endorse or encourage any misuse or unethical use of this software. Any use of this software for purposes other than those intended is solely at the user's own risk. The authors and contributors shall not be held responsible for any damages or liabilities arising from the use of this demo inappropriately."
theme = "aliabid94/new-theme"
PITCH_ALGO_OPT = [
"pm",
"harvest",
"crepe",
"rmvpe",
"rmvpe+"
]
def find_files(directory):
file_paths = []
for filename in os.listdir(directory):
# Check if the file has the desired extension
if filename.endswith('.pth') or filename.endswith('.zip') or filename.endswith('.index'):
# If yes, add the file path to the list
file_paths.append(os.path.join(directory, filename))
return file_paths
def unzip_in_folder(my_zip, my_dir):
with zipfile.ZipFile(my_zip) as zip:
for zip_info in zip.infolist():
if zip_info.is_dir():
continue
zip_info.filename = os.path.basename(zip_info.filename)
zip.extract(zip_info, my_dir)
def find_my_model(a_, b_):
if a_ is None or a_.endswith(".pth"):
return a_, b_
txt_files = []
for base_file in [a_, b_]:
if base_file is not None and base_file.endswith(".txt"):
txt_files.append(base_file)
directory = os.path.dirname(a_)
for txt in txt_files:
with open(txt, 'r') as file:
first_line = file.readline()
download_manager(
url=first_line.strip(),
path=directory,
extension="",
)
for f in find_files(directory):
if f.endswith(".zip"):
unzip_in_folder(f, directory)
model = None
index = None
end_files = find_files(directory)
for ff in end_files:
if ff.endswith(".pth"):
model = os.path.join(directory, ff)
gr.Info(f"Model found: {ff}")
if ff.endswith(".index"):
index = os.path.join(directory, ff)
gr.Info(f"Index found: {ff}")
if not model:
gr.Error(f"Model not found in: {end_files}")
if not index:
gr.Warning("Index not found")
return model, index
def add_audio_effects(audio_list):
print("Audio effects")
result = []
for audio_path in audio_list:
try:
output_path = f'{os.path.splitext(audio_path)[0]}_effects.wav'
# Initialize audio effects plugins
board = Pedalboard(
[
HighpassFilter(),
Compressor(ratio=4, threshold_db=-15),
Reverb(room_size=0.10, dry_level=0.8, wet_level=0.2, damping=0.7)
]
)
with AudioFile(audio_path) as f:
with AudioFile(output_path, 'w', f.samplerate, f.num_channels) as o:
# Read one second of audio at a time, until the file is empty:
while f.tell() < f.frames:
chunk = f.read(int(f.samplerate))
effected = board(chunk, f.samplerate, reset=False)
o.write(effected)
result.append(output_path)
except Exception as e:
traceback.print_exc()
print(f"Error noisereduce: {str(e)}")
result.append(audio_path)
return result
def apply_noisereduce(audio_list):
# https://github.com/saif/Audio-Denoiser
print("Noise reduction")
result = []
for audio_path in audio_list:
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav'
try:
# Load audio file
audio = AudioSegment.from_file(audio_path)
# Convert audio to numpy array
samples = np.array(audio.get_array_of_samples())
# Reduce noise
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)
# Convert reduced noise signal back to audio
reduced_audio = AudioSegment(
reduced_noise.tobytes(),
frame_rate=audio.frame_rate,
sample_width=audio.sample_width,
channels=audio.channels
)
# Save reduced audio to file
reduced_audio.export(out_path, format="wav")
result.append(out_path)
except Exception as e:
traceback.print_exc()
print(f"Error in noise reduction: {str(e)}")
result.append(audio_path)
return result
def split_audio_into_chunks(audio_file, chunk_length_ms=30000):
"""
Splits an audio file into smaller chunks.
:param audio_file: Path to the input audio file.
:param chunk_length_ms: Length of each chunk in milliseconds (default is 30 seconds).
:return: List of chunk file paths.
"""
try:
audio = AudioSegment.from_file(audio_file)
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
chunk_paths = []
base_name = os.path.splitext(os.path.basename(audio_file))[0]
output_dir = os.path.join(os.path.dirname(audio_file), f"{base_name}_chunks")
os.makedirs(output_dir, exist_ok=True)
for index, chunk in enumerate(chunks):
chunk_path = os.path.join(output_dir, f"{base_name}_chunk_{index + 1}.wav")
chunk.export(chunk_path, format="wav")
chunk_paths.append(chunk_path)
return chunk_paths
except Exception as e:
traceback.print_exc()
print(f"Error splitting audio into chunks: {str(e)}")
return [audio_file]
@spaces.GPU()
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
def run(
audio_files,
file_m,
pitch_alg,
pitch_lvl,
file_index,
index_inf,
r_m_f,
e_r,
c_b_p,
active_noise_reduce,
audio_effects,
chunk_length_ms=30000
):
if not audio_files:
raise ValueError("Please provide audio files")
if isinstance(audio_files, str):
audio_files = [audio_files]
if file_m is not None and file_m.endswith(".txt"):
file_m, file_index = find_my_model(file_m, file_index)
print(file_m, file_index)
random_tag = "USER_" + str(random.randint(10000000, 99999999))
converter.apply_conf(
tag=random_tag,
file_model=file_m,
pitch_algo=pitch_alg,
pitch_lvl=pitch_lvl,
file_index=file_index,
index_influence=index_inf,
respiration_median_filtering=r_m_f,
envelope_ratio=e_r,
consonant_breath_protection=c_b_p,
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
)
time.sleep(0.1)
# Split each audio file into chunks
chunked_audio_files = []
for audio_file in audio_files:
chunked_audio_files.extend(split_audio_into_chunks(audio_file, chunk_length_ms))
result = convert_now(chunked_audio_files, random_tag, converter)
if active_noise_reduce:
result = apply_noisereduce(result)
if audio_effects:
result = add_audio_effects(result)
return result
def audio_conf():
return gr.File(
label="Audio files",
file_count="multiple",
type="filepath",
container=True,
)
def model_conf():
return gr.File(
label="Model file",
type="filepath",
height=130,
)
def pitch_algo_conf():
return gr.Dropdown(
PITCH_ALGO_OPT,
value=PITCH_ALGO_OPT[4],
label="Pitch algorithm",
visible=True,
interactive=True,
)
def pitch_lvl_conf():
return gr.Slider(
label="Pitch level",
minimum=-24,
maximum=24,
step=1,
value=0,
visible=True,
interactive=True,
)
def index_conf():
return gr.File(
label="Index file",
type="filepath",
height=130,
)
def index_inf_conf():
return gr.Slider(
minimum=0,
maximum=1,
label="Index influence",
value=0.75,
)
def respiration_filter_conf():
return gr.Slider(
minimum=0,
maximum=7,
label="Respiration median filtering",
value=3,
step=1,
interactive=True,
)
def envelope_ratio_conf():
return gr.Slider(
minimum=0,
maximum=1,
label="Envelope ratio",
value=0.25,
interactive=True,
)
def consonant_protec_conf():
return gr.Slider(
minimum=0,
maximum=0.5,
label="Consonant breath protection",
value=0.5,
interactive=True,
)
def button_conf():
return gr.Button(
"Inference",
variant="primary",
)
def output_conf():
return gr.File(
label="Result",
file_count="multiple",
interactive=False,
)
def active_tts_conf():
return gr.Checkbox(
False,
label="TTS",
container=False,
)
def tts_voice_conf():
return gr.Dropdown(
label="TTS Voice",
choices=[
"en-US-EmmaMultilingualNeural-Female",
"en-US-GuyMultilingualNeural-Male",
"en-GB-SoniaNeural-Female",
"fr-FR-DeniseNeural-Female"
],
visible=False,
value="en-US-EmmaMultilingualNeural-Female",
)
def tts_text_conf():
return gr.Textbox(
value="",
placeholder="Write the text here...",
label="Text",
visible=False,
lines=3,
)
def tts_button_conf():
return gr.Button(
"Process TTS",
variant="secondary",
visible=False,
)
def tts_play_conf():
return gr.Checkbox(
False,
label="Play",
container=False,
visible=False,
)
def sound_gui():
return gr.Audio(
value=None,
type="filepath",
autoplay=True,
visible=False,
)
def denoise_conf():
return gr.Checkbox(
False,
label="Denoise",
container=False,
visible=True,
)
def effects_conf():
return gr.Checkbox(
False,
label="Effects",
container=False,
visible=True,
)
def infer_tts_audio(tts_voice, tts_text, play_tts):
out_dir = "output"
folder_tts = "USER_" + str(random.randint(10000, 99999))
os.makedirs(out_dir, exist_ok=True)
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
out_path = os.path.join(out_dir, folder_tts, "tts.mp3")
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path))
if play_tts:
return [out_path], out_path
return [out_path], None
def show_components_tts(value_active):
return gr.update(
visible=value_active
), gr.update(
visible=value_active
), gr.update(
visible=value_active
), gr.update(
visible=value_active
)
def get_gui(theme):
with gr.Blocks(theme=theme) as app:
gr.Markdown(title)
gr.Markdown(description)
active_tts = active_tts_conf()
with gr.Row():
with gr.Column(scale=1):
tts_text = tts_text_conf()
with gr.Column(scale=2):
with gr.Row():
with gr.Column():
with gr.Row():
tts_voice = tts_voice_conf()
tts_active_play = tts_play_conf()
tts_button = tts_button_conf()
tts_play = sound_gui()
active_tts.change(
fn=show_components_tts,
inputs=[active_tts],
outputs=[tts_voice, tts_text, tts_button, tts_active_play],
)
aud = audio_conf()
gr.HTML("<hr></h2>")
tts_button.click(
fn=infer_tts_audio,
inputs=[tts_voice, tts_text, tts_active_play],
outputs=[aud, tts_play],
)
with gr.Column():
with gr.Row():
model = model_conf()
indx = index_conf()
algo = pitch_algo_conf()
algo_lvl = pitch_lvl_conf()
indx_inf = index_inf_conf()
res_fc = respiration_filter_conf()
envel_r = envelope_ratio_conf()
const = consonant_protec_conf()
denoise = denoise_conf()
effects = effects_conf()
inference_button = button_conf()
output = output_conf()
inference_button.click(
fn=run,
inputs=[
aud,
model,
algo,
algo_lvl,
indx,
indx_inf,
res_fc,
envel_r,
const,
denoise,
effects,
],
outputs=[output],
)
app.launch(share=True)
get_gui(theme=theme) |