Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -12,12 +12,11 @@ import edge_tts
|
|
12 |
import asyncio
|
13 |
import librosa
|
14 |
import traceback
|
15 |
-
import
|
16 |
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
|
17 |
from pedalboard.io import AudioFile
|
18 |
from pydub import AudioSegment
|
19 |
import noisereduce as nr
|
20 |
-
import numpy as np
|
21 |
|
22 |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
|
23 |
|
@@ -32,7 +31,7 @@ PITCH_ALGO_OPT = [
|
|
32 |
"harvest",
|
33 |
"crepe",
|
34 |
"rmvpe",
|
35 |
-
"rmvpe+"
|
36 |
]
|
37 |
|
38 |
|
@@ -137,43 +136,71 @@ def add_audio_effects(audio_list):
|
|
137 |
|
138 |
|
139 |
def apply_noisereduce(audio_list):
|
140 |
-
# https://github.com/
|
141 |
-
print("
|
142 |
|
143 |
result = []
|
144 |
for audio_path in audio_list:
|
145 |
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav'
|
146 |
-
|
147 |
try:
|
148 |
# Load audio file
|
149 |
audio = AudioSegment.from_file(audio_path)
|
150 |
-
|
151 |
# Convert audio to numpy array
|
152 |
samples = np.array(audio.get_array_of_samples())
|
153 |
-
|
154 |
# Reduce noise
|
155 |
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)
|
156 |
-
|
157 |
# Convert reduced noise signal back to audio
|
158 |
reduced_audio = AudioSegment(
|
159 |
-
reduced_noise.tobytes(),
|
160 |
-
frame_rate=audio.frame_rate,
|
161 |
sample_width=audio.sample_width,
|
162 |
channels=audio.channels
|
163 |
)
|
164 |
-
|
165 |
# Save reduced audio to file
|
166 |
reduced_audio.export(out_path, format="wav")
|
167 |
result.append(out_path)
|
168 |
-
|
169 |
except Exception as e:
|
170 |
traceback.print_exc()
|
171 |
-
print(f"Error
|
172 |
result.append(audio_path)
|
173 |
|
174 |
return result
|
175 |
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
@spaces.GPU()
|
178 |
def convert_now(audio_files, random_tag, converter):
|
179 |
return converter(
|
@@ -196,10 +223,11 @@ def run(
|
|
196 |
c_b_p,
|
197 |
active_noise_reduce,
|
198 |
audio_effects,
|
|
|
199 |
):
|
200 |
if not audio_files:
|
201 |
-
raise ValueError("
|
202 |
-
|
203 |
if isinstance(audio_files, str):
|
204 |
audio_files = [audio_files]
|
205 |
|
@@ -207,7 +235,7 @@ def run(
|
|
207 |
file_m, file_index = find_my_model(file_m, file_index)
|
208 |
print(file_m, file_index)
|
209 |
|
210 |
-
random_tag = "USER_"+str(random.randint(10000000, 99999999))
|
211 |
|
212 |
converter.apply_conf(
|
213 |
tag=random_tag,
|
@@ -219,18 +247,23 @@ def run(
|
|
219 |
respiration_median_filtering=r_m_f,
|
220 |
envelope_ratio=e_r,
|
221 |
consonant_breath_protection=c_b_p,
|
222 |
-
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
|
223 |
)
|
224 |
time.sleep(0.1)
|
225 |
|
226 |
-
|
|
|
|
|
|
|
|
|
|
|
227 |
|
228 |
if active_noise_reduce:
|
229 |
result = apply_noisereduce(result)
|
230 |
|
231 |
if audio_effects:
|
232 |
result = add_audio_effects(result)
|
233 |
-
|
234 |
return result
|
235 |
|
236 |
|
@@ -340,15 +373,19 @@ def active_tts_conf():
|
|
340 |
return gr.Checkbox(
|
341 |
False,
|
342 |
label="TTS",
|
343 |
-
# info="",
|
344 |
container=False,
|
345 |
)
|
346 |
|
347 |
|
348 |
def tts_voice_conf():
|
349 |
return gr.Dropdown(
|
350 |
-
label="
|
351 |
-
choices=
|
|
|
|
|
|
|
|
|
|
|
352 |
visible=False,
|
353 |
value="en-US-EmmaMultilingualNeural-Female",
|
354 |
)
|
@@ -371,12 +408,11 @@ def tts_button_conf():
|
|
371 |
visible=False,
|
372 |
)
|
373 |
|
374 |
-
|
375 |
def tts_play_conf():
|
376 |
return gr.Checkbox(
|
377 |
False,
|
378 |
label="Play",
|
379 |
-
# info="",
|
380 |
container=False,
|
381 |
visible=False,
|
382 |
)
|
@@ -386,7 +422,6 @@ def sound_gui():
|
|
386 |
return gr.Audio(
|
387 |
value=None,
|
388 |
type="filepath",
|
389 |
-
# format="mp3",
|
390 |
autoplay=True,
|
391 |
visible=False,
|
392 |
)
|
@@ -396,7 +431,6 @@ def denoise_conf():
|
|
396 |
return gr.Checkbox(
|
397 |
False,
|
398 |
label="Denoise",
|
399 |
-
# info="",
|
400 |
container=False,
|
401 |
visible=True,
|
402 |
)
|
@@ -406,7 +440,6 @@ def effects_conf():
|
|
406 |
return gr.Checkbox(
|
407 |
False,
|
408 |
label="Effects",
|
409 |
-
# info="",
|
410 |
container=False,
|
411 |
visible=True,
|
412 |
)
|
@@ -414,12 +447,12 @@ def effects_conf():
|
|
414 |
|
415 |
def infer_tts_audio(tts_voice, tts_text, play_tts):
|
416 |
out_dir = "output"
|
417 |
-
folder_tts = "USER_"+str(random.randint(10000, 99999))
|
418 |
-
|
419 |
os.makedirs(out_dir, exist_ok=True)
|
420 |
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
|
421 |
out_path = os.path.join(out_dir, folder_tts, "tts.mp3")
|
422 |
-
|
423 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path))
|
424 |
if play_tts:
|
425 |
return [out_path], out_path
|
@@ -437,7 +470,7 @@ def show_components_tts(value_active):
|
|
437 |
visible=value_active
|
438 |
)
|
439 |
|
440 |
-
|
441 |
def get_gui(theme):
|
442 |
with gr.Blocks(theme=theme) as app:
|
443 |
gr.Markdown(title)
|
@@ -482,70 +515,12 @@ def get_gui(theme):
|
|
482 |
res_fc = respiration_filter_conf()
|
483 |
envel_r = envelope_ratio_conf()
|
484 |
const = consonant_protec_conf()
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
effects_gui = effects_conf()
|
490 |
-
button_base = button_conf()
|
491 |
-
output_base = output_conf()
|
492 |
-
|
493 |
-
button_base.click(
|
494 |
-
run,
|
495 |
-
inputs=[
|
496 |
-
aud,
|
497 |
-
model,
|
498 |
-
algo,
|
499 |
-
algo_lvl,
|
500 |
-
indx,
|
501 |
-
indx_inf,
|
502 |
-
res_fc,
|
503 |
-
envel_r,
|
504 |
-
const,
|
505 |
-
denoise_gui,
|
506 |
-
effects_gui,
|
507 |
-
],
|
508 |
-
outputs=[output_base],
|
509 |
-
)
|
510 |
|
511 |
-
|
512 |
-
gr.Examples(
|
513 |
-
examples=[
|
514 |
-
[
|
515 |
-
["./test.ogg"],
|
516 |
-
"./model.pth",
|
517 |
-
"rmvpe+",
|
518 |
-
0,
|
519 |
-
"./model.index",
|
520 |
-
0.75,
|
521 |
-
3,
|
522 |
-
0.25,
|
523 |
-
0.50,
|
524 |
-
],
|
525 |
-
[
|
526 |
-
["./example2/test2.ogg"],
|
527 |
-
"./example2/model_link.txt",
|
528 |
-
"rmvpe+",
|
529 |
-
0,
|
530 |
-
"./example2/index_link.txt",
|
531 |
-
0.75,
|
532 |
-
3,
|
533 |
-
0.25,
|
534 |
-
0.50,
|
535 |
-
],
|
536 |
-
[
|
537 |
-
["./example3/test3.wav"],
|
538 |
-
"./example3/zip_link.txt",
|
539 |
-
"rmvpe+",
|
540 |
-
0,
|
541 |
-
None,
|
542 |
-
0.75,
|
543 |
-
3,
|
544 |
-
0.25,
|
545 |
-
0.50,
|
546 |
-
],
|
547 |
-
|
548 |
-
],
|
549 |
fn=run,
|
550 |
inputs=[
|
551 |
aud,
|
@@ -557,27 +532,12 @@ def get_gui(theme):
|
|
557 |
res_fc,
|
558 |
envel_r,
|
559 |
const,
|
|
|
|
|
560 |
],
|
561 |
-
outputs=[
|
562 |
-
cache_examples=False,
|
563 |
)
|
564 |
|
565 |
-
|
566 |
-
|
567 |
|
568 |
-
|
569 |
-
|
570 |
-
tts_voice_list = asyncio.new_event_loop().run_until_complete(edge_tts.list_voices())
|
571 |
-
voices = sorted([f"{v['ShortName']}-{v['Gender']}" for v in tts_voice_list])
|
572 |
-
|
573 |
-
app = get_gui(theme)
|
574 |
-
|
575 |
-
app.queue(default_concurrency_limit=40)
|
576 |
-
|
577 |
-
app.launch(
|
578 |
-
max_threads=40,
|
579 |
-
share=False,
|
580 |
-
show_error=True,
|
581 |
-
quiet=False,
|
582 |
-
debug=False,
|
583 |
-
)
|
|
|
12 |
import asyncio
|
13 |
import librosa
|
14 |
import traceback
|
15 |
+
import numpy as np
|
16 |
from pedalboard import Pedalboard, Reverb, Compressor, HighpassFilter
|
17 |
from pedalboard.io import AudioFile
|
18 |
from pydub import AudioSegment
|
19 |
import noisereduce as nr
|
|
|
20 |
|
21 |
logging.getLogger("infer_rvc_python").setLevel(logging.ERROR)
|
22 |
|
|
|
31 |
"harvest",
|
32 |
"crepe",
|
33 |
"rmvpe",
|
34 |
+
"rmvpe+"
|
35 |
]
|
36 |
|
37 |
|
|
|
136 |
|
137 |
|
138 |
def apply_noisereduce(audio_list):
|
139 |
+
# https://github.com/saif/Audio-Denoiser
|
140 |
+
print("Noise reduction")
|
141 |
|
142 |
result = []
|
143 |
for audio_path in audio_list:
|
144 |
out_path = f'{os.path.splitext(audio_path)[0]}_noisereduce.wav'
|
145 |
+
|
146 |
try:
|
147 |
# Load audio file
|
148 |
audio = AudioSegment.from_file(audio_path)
|
149 |
+
|
150 |
# Convert audio to numpy array
|
151 |
samples = np.array(audio.get_array_of_samples())
|
152 |
+
|
153 |
# Reduce noise
|
154 |
reduced_noise = nr.reduce_noise(samples, sr=audio.frame_rate, prop_decrease=0.6)
|
155 |
+
|
156 |
# Convert reduced noise signal back to audio
|
157 |
reduced_audio = AudioSegment(
|
158 |
+
reduced_noise.tobytes(),
|
159 |
+
frame_rate=audio.frame_rate,
|
160 |
sample_width=audio.sample_width,
|
161 |
channels=audio.channels
|
162 |
)
|
163 |
+
|
164 |
# Save reduced audio to file
|
165 |
reduced_audio.export(out_path, format="wav")
|
166 |
result.append(out_path)
|
167 |
+
|
168 |
except Exception as e:
|
169 |
traceback.print_exc()
|
170 |
+
print(f"Error in noise reduction: {str(e)}")
|
171 |
result.append(audio_path)
|
172 |
|
173 |
return result
|
174 |
|
175 |
|
176 |
+
def split_audio_into_chunks(audio_file, chunk_length_ms=30000):
|
177 |
+
"""
|
178 |
+
Splits an audio file into smaller chunks.
|
179 |
+
:param audio_file: Path to the input audio file.
|
180 |
+
:param chunk_length_ms: Length of each chunk in milliseconds (default is 30 seconds).
|
181 |
+
:return: List of chunk file paths.
|
182 |
+
"""
|
183 |
+
try:
|
184 |
+
audio = AudioSegment.from_file(audio_file)
|
185 |
+
chunks = [audio[i:i + chunk_length_ms] for i in range(0, len(audio), chunk_length_ms)]
|
186 |
+
chunk_paths = []
|
187 |
+
|
188 |
+
base_name = os.path.splitext(os.path.basename(audio_file))[0]
|
189 |
+
output_dir = os.path.join(os.path.dirname(audio_file), f"{base_name}_chunks")
|
190 |
+
os.makedirs(output_dir, exist_ok=True)
|
191 |
+
|
192 |
+
for index, chunk in enumerate(chunks):
|
193 |
+
chunk_path = os.path.join(output_dir, f"{base_name}_chunk_{index + 1}.wav")
|
194 |
+
chunk.export(chunk_path, format="wav")
|
195 |
+
chunk_paths.append(chunk_path)
|
196 |
+
|
197 |
+
return chunk_paths
|
198 |
+
except Exception as e:
|
199 |
+
traceback.print_exc()
|
200 |
+
print(f"Error splitting audio into chunks: {str(e)}")
|
201 |
+
return [audio_file]
|
202 |
+
|
203 |
+
|
204 |
@spaces.GPU()
|
205 |
def convert_now(audio_files, random_tag, converter):
|
206 |
return converter(
|
|
|
223 |
c_b_p,
|
224 |
active_noise_reduce,
|
225 |
audio_effects,
|
226 |
+
chunk_length_ms=30000
|
227 |
):
|
228 |
if not audio_files:
|
229 |
+
raise ValueError("Please provide audio files")
|
230 |
+
|
231 |
if isinstance(audio_files, str):
|
232 |
audio_files = [audio_files]
|
233 |
|
|
|
235 |
file_m, file_index = find_my_model(file_m, file_index)
|
236 |
print(file_m, file_index)
|
237 |
|
238 |
+
random_tag = "USER_" + str(random.randint(10000000, 99999999))
|
239 |
|
240 |
converter.apply_conf(
|
241 |
tag=random_tag,
|
|
|
247 |
respiration_median_filtering=r_m_f,
|
248 |
envelope_ratio=e_r,
|
249 |
consonant_breath_protection=c_b_p,
|
250 |
+
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
|
251 |
)
|
252 |
time.sleep(0.1)
|
253 |
|
254 |
+
# Split each audio file into chunks
|
255 |
+
chunked_audio_files = []
|
256 |
+
for audio_file in audio_files:
|
257 |
+
chunked_audio_files.extend(split_audio_into_chunks(audio_file, chunk_length_ms))
|
258 |
+
|
259 |
+
result = convert_now(chunked_audio_files, random_tag, converter)
|
260 |
|
261 |
if active_noise_reduce:
|
262 |
result = apply_noisereduce(result)
|
263 |
|
264 |
if audio_effects:
|
265 |
result = add_audio_effects(result)
|
266 |
+
|
267 |
return result
|
268 |
|
269 |
|
|
|
373 |
return gr.Checkbox(
|
374 |
False,
|
375 |
label="TTS",
|
|
|
376 |
container=False,
|
377 |
)
|
378 |
|
379 |
|
380 |
def tts_voice_conf():
|
381 |
return gr.Dropdown(
|
382 |
+
label="TTS Voice",
|
383 |
+
choices=[
|
384 |
+
"en-US-EmmaMultilingualNeural-Female",
|
385 |
+
"en-US-GuyMultilingualNeural-Male",
|
386 |
+
"en-GB-SoniaNeural-Female",
|
387 |
+
"fr-FR-DeniseNeural-Female"
|
388 |
+
],
|
389 |
visible=False,
|
390 |
value="en-US-EmmaMultilingualNeural-Female",
|
391 |
)
|
|
|
408 |
visible=False,
|
409 |
)
|
410 |
|
411 |
+
|
412 |
def tts_play_conf():
|
413 |
return gr.Checkbox(
|
414 |
False,
|
415 |
label="Play",
|
|
|
416 |
container=False,
|
417 |
visible=False,
|
418 |
)
|
|
|
422 |
return gr.Audio(
|
423 |
value=None,
|
424 |
type="filepath",
|
|
|
425 |
autoplay=True,
|
426 |
visible=False,
|
427 |
)
|
|
|
431 |
return gr.Checkbox(
|
432 |
False,
|
433 |
label="Denoise",
|
|
|
434 |
container=False,
|
435 |
visible=True,
|
436 |
)
|
|
|
440 |
return gr.Checkbox(
|
441 |
False,
|
442 |
label="Effects",
|
|
|
443 |
container=False,
|
444 |
visible=True,
|
445 |
)
|
|
|
447 |
|
448 |
def infer_tts_audio(tts_voice, tts_text, play_tts):
|
449 |
out_dir = "output"
|
450 |
+
folder_tts = "USER_" + str(random.randint(10000, 99999))
|
451 |
+
|
452 |
os.makedirs(out_dir, exist_ok=True)
|
453 |
os.makedirs(os.path.join(out_dir, folder_tts), exist_ok=True)
|
454 |
out_path = os.path.join(out_dir, folder_tts, "tts.mp3")
|
455 |
+
|
456 |
asyncio.run(edge_tts.Communicate(tts_text, "-".join(tts_voice.split('-')[:-1])).save(out_path))
|
457 |
if play_tts:
|
458 |
return [out_path], out_path
|
|
|
470 |
visible=value_active
|
471 |
)
|
472 |
|
473 |
+
|
474 |
def get_gui(theme):
|
475 |
with gr.Blocks(theme=theme) as app:
|
476 |
gr.Markdown(title)
|
|
|
515 |
res_fc = respiration_filter_conf()
|
516 |
envel_r = envelope_ratio_conf()
|
517 |
const = consonant_protec_conf()
|
518 |
+
denoise = denoise_conf()
|
519 |
+
effects = effects_conf()
|
520 |
+
inference_button = button_conf()
|
521 |
+
output = output_conf()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
522 |
|
523 |
+
inference_button.click(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
524 |
fn=run,
|
525 |
inputs=[
|
526 |
aud,
|
|
|
532 |
res_fc,
|
533 |
envel_r,
|
534 |
const,
|
535 |
+
denoise,
|
536 |
+
effects,
|
537 |
],
|
538 |
+
outputs=[output],
|
|
|
539 |
)
|
540 |
|
541 |
+
app.launch()
|
|
|
542 |
|
543 |
+
get_gui(theme=theme)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|