AOT + FA3 optimizations

#33
by sayakpaul HF Staff - opened
app.py CHANGED
@@ -6,7 +6,8 @@ import spaces
6
 
7
  from PIL import Image
8
  from diffusers import QwenImagePipeline
9
-
 
10
  import os
11
 
12
  def api(prompt, model, kwargs={}):
@@ -145,6 +146,10 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
145
 
146
  # Load the model pipeline
147
  pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
 
 
 
 
148
 
149
  # --- UI Constants and Helpers ---
150
  MAX_SEED = np.iinfo(np.int32).max
 
6
 
7
  from PIL import Image
8
  from diffusers import QwenImagePipeline
9
+ from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
10
+ from optimization import optimize_pipeline_
11
  import os
12
 
13
  def api(prompt, model, kwargs={}):
 
146
 
147
  # Load the model pipeline
148
  pipe = QwenImagePipeline.from_pretrained("Qwen/Qwen-Image", torch_dtype=dtype).to(device)
149
+ pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
150
+
151
+ # --- Ahead-of-time compilation ---
152
+ optimize_pipeline_(pipe, prompt="prompt")
153
 
154
  # --- UI Constants and Helpers ---
155
  MAX_SEED = np.iinfo(np.int32).max
optimization.py ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Any
2
+ from typing import Callable
3
+ from typing import ParamSpec
4
+ import spaces
5
+ import torch
6
+ from torch.utils._pytree import tree_map
7
+ from spaces.zero.torch.aoti import ZeroGPUCompiledModel, ZeroGPUWeights
8
+
9
+ P = ParamSpec('P')
10
+
11
+
12
+ TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length')
13
+ TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length')
14
+
15
+ TRANSFORMER_DYNAMIC_SHAPES = {
16
+ 'hidden_states': {
17
+ 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
18
+ },
19
+ 'encoder_hidden_states': {
20
+ 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
21
+ },
22
+ 'encoder_hidden_states_mask': {
23
+ 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
24
+ },
25
+ 'image_rotary_emb': ({
26
+ 0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
27
+ }, {
28
+ 0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
29
+ }),
30
+ }
31
+
32
+
33
+ INDUCTOR_CONFIGS = {
34
+ 'conv_1x1_as_mm': True,
35
+ 'epilogue_fusion': False,
36
+ 'coordinate_descent_tuning': True,
37
+ 'coordinate_descent_check_all_directions': True,
38
+ 'max_autotune': True,
39
+ 'triton.cudagraphs': True,
40
+ }
41
+
42
+
43
+ def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
44
+
45
+ @spaces.GPU(duration=1500)
46
+ def compile_transformer():
47
+
48
+ # Only capture what the first `transformer_block` sees.
49
+ with spaces.aoti_capture(pipeline.transformer.transformer_blocks[0]) as call:
50
+ pipeline(*args, **kwargs)
51
+
52
+ dynamic_shapes = tree_map(lambda t: None, call.kwargs)
53
+ dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
54
+
55
+ # Optionally quantize it.
56
+ # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
57
+
58
+ # Only export the first transformer block.
59
+ exported = torch.export.export(
60
+ mod=pipeline.transformer.transformer_blocks[0],
61
+ args=call.args,
62
+ kwargs=call.kwargs,
63
+ dynamic_shapes=dynamic_shapes,
64
+ )
65
+ return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
66
+
67
+ compiled = compile_transformer()
68
+ for block in pipeline.transformer.transformer_blocks:
69
+ weights = ZeroGPUWeights(block.state_dict())
70
+ compiled_block = ZeroGPUCompiledModel(compiled.archive_file, weights)
71
+ block.forward = compiled_block
qwenimage/__init__.py ADDED
File without changes
qwenimage/qwen_fa3_processor.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Paired with a good language model. Thanks!
3
+ """
4
+
5
+ import torch
6
+ from typing import Optional, Tuple
7
+ from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
8
+
9
+ try:
10
+ from kernels import get_kernel
11
+ _k = get_kernel("kernels-community/vllm-flash-attn3")
12
+ _flash_attn_func = _k.flash_attn_func
13
+ except Exception as e:
14
+ _flash_attn_func = None
15
+ _kernels_err = e
16
+
17
+
18
+ def _ensure_fa3_available():
19
+ if _flash_attn_func is None:
20
+ raise ImportError(
21
+ "FlashAttention-3 via Hugging Face `kernels` is required. "
22
+ "Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
23
+ f"{_kernels_err}"
24
+ )
25
+
26
+ @torch.library.custom_op("flash::flash_attn_func", mutates_args=())
27
+ def flash_attn_func(
28
+ q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
29
+ ) -> torch.Tensor:
30
+ outputs, lse = _flash_attn_func(q, k, v, causal=causal)
31
+ return outputs
32
+
33
+ @flash_attn_func.register_fake
34
+ def _(q, k, v, **kwargs):
35
+ # two outputs:
36
+ # 1. output: (batch, seq_len, num_heads, head_dim)
37
+ # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
38
+ meta_q = torch.empty_like(q).contiguous()
39
+ return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
40
+
41
+
42
+ class QwenDoubleStreamAttnProcessorFA3:
43
+ """
44
+ FA3-based attention processor for Qwen double-stream architecture.
45
+ Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
46
+ accessed via Hugging Face `kernels`.
47
+
48
+ Notes / limitations:
49
+ - General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
50
+ - Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
51
+ - Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
52
+ """
53
+
54
+ _attention_backend = "fa3" # for parity with your other processors, not used internally
55
+
56
+ def __init__(self):
57
+ _ensure_fa3_available()
58
+
59
+ @torch.no_grad()
60
+ def __call__(
61
+ self,
62
+ attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
63
+ hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
64
+ encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
65
+ encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
66
+ attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
67
+ image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
68
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
69
+ if encoder_hidden_states is None:
70
+ raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
71
+ if attention_mask is not None:
72
+ # FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
73
+ raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
74
+
75
+ _ensure_fa3_available()
76
+
77
+ B, S_img, _ = hidden_states.shape
78
+ S_txt = encoder_hidden_states.shape[1]
79
+
80
+ # ---- QKV projections (image/sample stream) ----
81
+ img_q = attn.to_q(hidden_states) # (B, S_img, D)
82
+ img_k = attn.to_k(hidden_states)
83
+ img_v = attn.to_v(hidden_states)
84
+
85
+ # ---- QKV projections (text/context stream) ----
86
+ txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
87
+ txt_k = attn.add_k_proj(encoder_hidden_states)
88
+ txt_v = attn.add_v_proj(encoder_hidden_states)
89
+
90
+ # ---- Reshape to (B, S, H, D_h) ----
91
+ H = attn.heads
92
+ img_q = img_q.unflatten(-1, (H, -1))
93
+ img_k = img_k.unflatten(-1, (H, -1))
94
+ img_v = img_v.unflatten(-1, (H, -1))
95
+
96
+ txt_q = txt_q.unflatten(-1, (H, -1))
97
+ txt_k = txt_k.unflatten(-1, (H, -1))
98
+ txt_v = txt_v.unflatten(-1, (H, -1))
99
+
100
+ # ---- Q/K normalization (per your module contract) ----
101
+ if getattr(attn, "norm_q", None) is not None:
102
+ img_q = attn.norm_q(img_q)
103
+ if getattr(attn, "norm_k", None) is not None:
104
+ img_k = attn.norm_k(img_k)
105
+ if getattr(attn, "norm_added_q", None) is not None:
106
+ txt_q = attn.norm_added_q(txt_q)
107
+ if getattr(attn, "norm_added_k", None) is not None:
108
+ txt_k = attn.norm_added_k(txt_k)
109
+
110
+ # ---- RoPE (Qwen variant) ----
111
+ if image_rotary_emb is not None:
112
+ img_freqs, txt_freqs = image_rotary_emb
113
+ # expects tensors shaped (B, S, H, D_h)
114
+ img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
115
+ img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
116
+ txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
117
+ txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
118
+
119
+ # ---- Joint attention over [text, image] along sequence axis ----
120
+ # Shapes: (B, S_total, H, D_h)
121
+ q = torch.cat([txt_q, img_q], dim=1)
122
+ k = torch.cat([txt_k, img_k], dim=1)
123
+ v = torch.cat([txt_v, img_v], dim=1)
124
+
125
+ # FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
126
+ out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
127
+
128
+ # ---- Back to (B, S, D_model) ----
129
+ out = out.flatten(2, 3).to(q.dtype)
130
+
131
+ # Split back to text / image segments
132
+ txt_attn_out = out[:, :S_txt, :]
133
+ img_attn_out = out[:, S_txt:, :]
134
+
135
+ # ---- Output projections ----
136
+ img_attn_out = attn.to_out[0](img_attn_out)
137
+ if len(attn.to_out) > 1:
138
+ img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
139
+
140
+ txt_attn_out = attn.to_add_out(txt_attn_out)
141
+
142
+ return img_attn_out, txt_attn_out
requirements.txt CHANGED
@@ -3,4 +3,5 @@ transformers
3
  accelerate
4
  safetensors
5
  sentencepiece
6
- dashscope
 
 
3
  accelerate
4
  safetensors
5
  sentencepiece
6
+ dashscope
7
+ kernels