Spaces:
Running
on
Zero
Running
on
Zero
feature
#6
by
paul28paul
- opened
- app.py +2 -11
- optimization.py +0 -70
- qwenimage/__init__.py +0 -0
- qwenimage/pipeline_qwen_image_edit.py +0 -857
- qwenimage/qwen_fa3_processor.py +0 -142
- qwenimage/transformer_qwenimage.py +0 -642
- requirements.txt +3 -5
app.py
CHANGED
@@ -5,11 +5,7 @@ import torch
|
|
5 |
import spaces
|
6 |
|
7 |
from PIL import Image
|
8 |
-
|
9 |
-
from optimization import optimize_pipeline_
|
10 |
-
from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
|
11 |
-
from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
|
12 |
-
from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
|
13 |
|
14 |
import os
|
15 |
import base64
|
@@ -144,11 +140,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
144 |
|
145 |
# Load the model pipeline
|
146 |
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
|
147 |
-
pipe.transformer.__class__ = QwenImageTransformer2DModel
|
148 |
-
pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
|
149 |
-
|
150 |
-
# --- Ahead-of-time compilation ---
|
151 |
-
optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
|
152 |
|
153 |
# --- UI Constants and Helpers ---
|
154 |
MAX_SEED = np.iinfo(np.int32).max
|
@@ -160,7 +151,7 @@ def infer(
|
|
160 |
prompt,
|
161 |
seed=120,
|
162 |
randomize_seed=False,
|
163 |
-
true_guidance_scale=
|
164 |
num_inference_steps=50,
|
165 |
rewrite_prompt=True,
|
166 |
progress=gr.Progress(track_tqdm=True),
|
|
|
5 |
import spaces
|
6 |
|
7 |
from PIL import Image
|
8 |
+
from diffusers import QwenImageEditPipeline
|
|
|
|
|
|
|
|
|
9 |
|
10 |
import os
|
11 |
import base64
|
|
|
140 |
|
141 |
# Load the model pipeline
|
142 |
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
|
|
|
|
|
|
|
|
|
|
|
143 |
|
144 |
# --- UI Constants and Helpers ---
|
145 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
151 |
prompt,
|
152 |
seed=120,
|
153 |
randomize_seed=False,
|
154 |
+
true_guidance_scale=1.0,
|
155 |
num_inference_steps=50,
|
156 |
rewrite_prompt=True,
|
157 |
progress=gr.Progress(track_tqdm=True),
|
optimization.py
DELETED
@@ -1,70 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
"""
|
3 |
-
|
4 |
-
from typing import Any
|
5 |
-
from typing import Callable
|
6 |
-
from typing import ParamSpec
|
7 |
-
from torchao.quantization import quantize_
|
8 |
-
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
9 |
-
import spaces
|
10 |
-
import torch
|
11 |
-
from torch.utils._pytree import tree_map
|
12 |
-
|
13 |
-
|
14 |
-
P = ParamSpec('P')
|
15 |
-
|
16 |
-
|
17 |
-
TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length')
|
18 |
-
TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length')
|
19 |
-
|
20 |
-
TRANSFORMER_DYNAMIC_SHAPES = {
|
21 |
-
'hidden_states': {
|
22 |
-
1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
|
23 |
-
},
|
24 |
-
'encoder_hidden_states': {
|
25 |
-
1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
|
26 |
-
},
|
27 |
-
'encoder_hidden_states_mask': {
|
28 |
-
1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
|
29 |
-
},
|
30 |
-
'image_rotary_emb': ({
|
31 |
-
0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
|
32 |
-
}, {
|
33 |
-
0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
|
34 |
-
}),
|
35 |
-
}
|
36 |
-
|
37 |
-
|
38 |
-
INDUCTOR_CONFIGS = {
|
39 |
-
'conv_1x1_as_mm': True,
|
40 |
-
'epilogue_fusion': False,
|
41 |
-
'coordinate_descent_tuning': True,
|
42 |
-
'coordinate_descent_check_all_directions': True,
|
43 |
-
'max_autotune': True,
|
44 |
-
'triton.cudagraphs': True,
|
45 |
-
}
|
46 |
-
|
47 |
-
|
48 |
-
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
49 |
-
|
50 |
-
@spaces.GPU(duration=1500)
|
51 |
-
def compile_transformer():
|
52 |
-
|
53 |
-
with spaces.aoti_capture(pipeline.transformer) as call:
|
54 |
-
pipeline(*args, **kwargs)
|
55 |
-
|
56 |
-
dynamic_shapes = tree_map(lambda t: None, call.kwargs)
|
57 |
-
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
58 |
-
|
59 |
-
# quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
60 |
-
|
61 |
-
exported = torch.export.export(
|
62 |
-
mod=pipeline.transformer,
|
63 |
-
args=call.args,
|
64 |
-
kwargs=call.kwargs,
|
65 |
-
dynamic_shapes=dynamic_shapes,
|
66 |
-
)
|
67 |
-
|
68 |
-
return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
|
69 |
-
|
70 |
-
spaces.aoti_apply(compile_transformer(), pipeline.transformer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qwenimage/__init__.py
DELETED
File without changes
|
qwenimage/pipeline_qwen_image_edit.py
DELETED
@@ -1,857 +0,0 @@
|
|
1 |
-
# Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import inspect
|
16 |
-
import math
|
17 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
-
|
19 |
-
import numpy as np
|
20 |
-
import torch
|
21 |
-
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
|
22 |
-
|
23 |
-
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
|
24 |
-
from diffusers.loaders import QwenImageLoraLoaderMixin
|
25 |
-
from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
|
26 |
-
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
27 |
-
from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
|
28 |
-
from diffusers.utils.torch_utils import randn_tensor
|
29 |
-
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
30 |
-
from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
|
31 |
-
|
32 |
-
|
33 |
-
if is_torch_xla_available():
|
34 |
-
import torch_xla.core.xla_model as xm
|
35 |
-
|
36 |
-
XLA_AVAILABLE = True
|
37 |
-
else:
|
38 |
-
XLA_AVAILABLE = False
|
39 |
-
|
40 |
-
|
41 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
42 |
-
|
43 |
-
EXAMPLE_DOC_STRING = """
|
44 |
-
Examples:
|
45 |
-
```py
|
46 |
-
>>> import torch
|
47 |
-
>>> from PIL import Image
|
48 |
-
>>> from diffusers import QwenImageEditPipeline
|
49 |
-
>>> from diffusers.utils import load_image
|
50 |
-
|
51 |
-
>>> pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16)
|
52 |
-
>>> pipe.to("cuda")
|
53 |
-
>>> image = load_image(
|
54 |
-
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
|
55 |
-
... ).convert("RGB")
|
56 |
-
>>> prompt = (
|
57 |
-
... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors"
|
58 |
-
... )
|
59 |
-
>>> # Depending on the variant being used, the pipeline call will slightly vary.
|
60 |
-
>>> # Refer to the pipeline documentation for more details.
|
61 |
-
>>> image = pipe(image, prompt, num_inference_steps=50).images[0]
|
62 |
-
>>> image.save("qwenimage_edit.png")
|
63 |
-
```
|
64 |
-
"""
|
65 |
-
|
66 |
-
|
67 |
-
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
|
68 |
-
def calculate_shift(
|
69 |
-
image_seq_len,
|
70 |
-
base_seq_len: int = 256,
|
71 |
-
max_seq_len: int = 4096,
|
72 |
-
base_shift: float = 0.5,
|
73 |
-
max_shift: float = 1.15,
|
74 |
-
):
|
75 |
-
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
76 |
-
b = base_shift - m * base_seq_len
|
77 |
-
mu = image_seq_len * m + b
|
78 |
-
return mu
|
79 |
-
|
80 |
-
|
81 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
82 |
-
def retrieve_timesteps(
|
83 |
-
scheduler,
|
84 |
-
num_inference_steps: Optional[int] = None,
|
85 |
-
device: Optional[Union[str, torch.device]] = None,
|
86 |
-
timesteps: Optional[List[int]] = None,
|
87 |
-
sigmas: Optional[List[float]] = None,
|
88 |
-
**kwargs,
|
89 |
-
):
|
90 |
-
r"""
|
91 |
-
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
92 |
-
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
93 |
-
|
94 |
-
Args:
|
95 |
-
scheduler (`SchedulerMixin`):
|
96 |
-
The scheduler to get timesteps from.
|
97 |
-
num_inference_steps (`int`):
|
98 |
-
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
99 |
-
must be `None`.
|
100 |
-
device (`str` or `torch.device`, *optional*):
|
101 |
-
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
102 |
-
timesteps (`List[int]`, *optional*):
|
103 |
-
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
104 |
-
`num_inference_steps` and `sigmas` must be `None`.
|
105 |
-
sigmas (`List[float]`, *optional*):
|
106 |
-
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
107 |
-
`num_inference_steps` and `timesteps` must be `None`.
|
108 |
-
|
109 |
-
Returns:
|
110 |
-
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
111 |
-
second element is the number of inference steps.
|
112 |
-
"""
|
113 |
-
if timesteps is not None and sigmas is not None:
|
114 |
-
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
115 |
-
if timesteps is not None:
|
116 |
-
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
117 |
-
if not accepts_timesteps:
|
118 |
-
raise ValueError(
|
119 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
120 |
-
f" timestep schedules. Please check whether you are using the correct scheduler."
|
121 |
-
)
|
122 |
-
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
123 |
-
timesteps = scheduler.timesteps
|
124 |
-
num_inference_steps = len(timesteps)
|
125 |
-
elif sigmas is not None:
|
126 |
-
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
127 |
-
if not accept_sigmas:
|
128 |
-
raise ValueError(
|
129 |
-
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
130 |
-
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
131 |
-
)
|
132 |
-
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
133 |
-
timesteps = scheduler.timesteps
|
134 |
-
num_inference_steps = len(timesteps)
|
135 |
-
else:
|
136 |
-
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
137 |
-
timesteps = scheduler.timesteps
|
138 |
-
return timesteps, num_inference_steps
|
139 |
-
|
140 |
-
|
141 |
-
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
|
142 |
-
def retrieve_latents(
|
143 |
-
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
|
144 |
-
):
|
145 |
-
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
|
146 |
-
return encoder_output.latent_dist.sample(generator)
|
147 |
-
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
|
148 |
-
return encoder_output.latent_dist.mode()
|
149 |
-
elif hasattr(encoder_output, "latents"):
|
150 |
-
return encoder_output.latents
|
151 |
-
else:
|
152 |
-
raise AttributeError("Could not access latents of provided encoder_output")
|
153 |
-
|
154 |
-
|
155 |
-
def calculate_dimensions(target_area, ratio):
|
156 |
-
width = math.sqrt(target_area * ratio)
|
157 |
-
height = width / ratio
|
158 |
-
|
159 |
-
width = round(width / 32) * 32
|
160 |
-
height = round(height / 32) * 32
|
161 |
-
|
162 |
-
return width, height, None
|
163 |
-
|
164 |
-
|
165 |
-
class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
|
166 |
-
r"""
|
167 |
-
The Qwen-Image-Edit pipeline for image editing.
|
168 |
-
|
169 |
-
Args:
|
170 |
-
transformer ([`QwenImageTransformer2DModel`]):
|
171 |
-
Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
|
172 |
-
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
173 |
-
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
174 |
-
vae ([`AutoencoderKL`]):
|
175 |
-
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
176 |
-
text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
|
177 |
-
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
|
178 |
-
[Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
|
179 |
-
tokenizer (`QwenTokenizer`):
|
180 |
-
Tokenizer of class
|
181 |
-
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
182 |
-
"""
|
183 |
-
|
184 |
-
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
185 |
-
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
186 |
-
|
187 |
-
def __init__(
|
188 |
-
self,
|
189 |
-
scheduler: FlowMatchEulerDiscreteScheduler,
|
190 |
-
vae: AutoencoderKLQwenImage,
|
191 |
-
text_encoder: Qwen2_5_VLForConditionalGeneration,
|
192 |
-
tokenizer: Qwen2Tokenizer,
|
193 |
-
processor: Qwen2VLProcessor,
|
194 |
-
transformer: QwenImageTransformer2DModel,
|
195 |
-
):
|
196 |
-
super().__init__()
|
197 |
-
|
198 |
-
self.register_modules(
|
199 |
-
vae=vae,
|
200 |
-
text_encoder=text_encoder,
|
201 |
-
tokenizer=tokenizer,
|
202 |
-
processor=processor,
|
203 |
-
transformer=transformer,
|
204 |
-
scheduler=scheduler,
|
205 |
-
)
|
206 |
-
self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
|
207 |
-
self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
|
208 |
-
# QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
209 |
-
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
210 |
-
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
211 |
-
self.vl_processor = processor
|
212 |
-
self.tokenizer_max_length = 1024
|
213 |
-
|
214 |
-
self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
|
215 |
-
self.prompt_template_encode_start_idx = 64
|
216 |
-
self.default_sample_size = 128
|
217 |
-
|
218 |
-
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
|
219 |
-
def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
|
220 |
-
bool_mask = mask.bool()
|
221 |
-
valid_lengths = bool_mask.sum(dim=1)
|
222 |
-
selected = hidden_states[bool_mask]
|
223 |
-
split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
|
224 |
-
|
225 |
-
return split_result
|
226 |
-
|
227 |
-
def _get_qwen_prompt_embeds(
|
228 |
-
self,
|
229 |
-
prompt: Union[str, List[str]] = None,
|
230 |
-
image: Optional[torch.Tensor] = None,
|
231 |
-
device: Optional[torch.device] = None,
|
232 |
-
dtype: Optional[torch.dtype] = None,
|
233 |
-
):
|
234 |
-
device = device or self._execution_device
|
235 |
-
dtype = dtype or self.text_encoder.dtype
|
236 |
-
|
237 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
238 |
-
|
239 |
-
template = self.prompt_template_encode
|
240 |
-
drop_idx = self.prompt_template_encode_start_idx
|
241 |
-
txt = [template.format(e) for e in prompt]
|
242 |
-
|
243 |
-
model_inputs = self.processor(
|
244 |
-
text=txt,
|
245 |
-
images=image,
|
246 |
-
padding=True,
|
247 |
-
return_tensors="pt",
|
248 |
-
).to(device)
|
249 |
-
|
250 |
-
outputs = self.text_encoder(
|
251 |
-
input_ids=model_inputs.input_ids,
|
252 |
-
attention_mask=model_inputs.attention_mask,
|
253 |
-
pixel_values=model_inputs.pixel_values,
|
254 |
-
image_grid_thw=model_inputs.image_grid_thw,
|
255 |
-
output_hidden_states=True,
|
256 |
-
)
|
257 |
-
|
258 |
-
hidden_states = outputs.hidden_states[-1]
|
259 |
-
split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask)
|
260 |
-
split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
|
261 |
-
attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
|
262 |
-
max_seq_len = max([e.size(0) for e in split_hidden_states])
|
263 |
-
prompt_embeds = torch.stack(
|
264 |
-
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
|
265 |
-
)
|
266 |
-
encoder_attention_mask = torch.stack(
|
267 |
-
[torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
|
268 |
-
)
|
269 |
-
|
270 |
-
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
271 |
-
|
272 |
-
return prompt_embeds, encoder_attention_mask
|
273 |
-
|
274 |
-
def encode_prompt(
|
275 |
-
self,
|
276 |
-
prompt: Union[str, List[str]],
|
277 |
-
image: Optional[torch.Tensor] = None,
|
278 |
-
device: Optional[torch.device] = None,
|
279 |
-
num_images_per_prompt: int = 1,
|
280 |
-
prompt_embeds: Optional[torch.Tensor] = None,
|
281 |
-
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
282 |
-
max_sequence_length: int = 1024,
|
283 |
-
):
|
284 |
-
r"""
|
285 |
-
|
286 |
-
Args:
|
287 |
-
prompt (`str` or `List[str]`, *optional*):
|
288 |
-
prompt to be encoded
|
289 |
-
image (`torch.Tensor`, *optional*):
|
290 |
-
image to be encoded
|
291 |
-
device: (`torch.device`):
|
292 |
-
torch device
|
293 |
-
num_images_per_prompt (`int`):
|
294 |
-
number of images that should be generated per prompt
|
295 |
-
prompt_embeds (`torch.Tensor`, *optional*):
|
296 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
297 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
298 |
-
"""
|
299 |
-
device = device or self._execution_device
|
300 |
-
|
301 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
302 |
-
batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
|
303 |
-
|
304 |
-
if prompt_embeds is None:
|
305 |
-
prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device)
|
306 |
-
|
307 |
-
_, seq_len, _ = prompt_embeds.shape
|
308 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
309 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
310 |
-
prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
|
311 |
-
prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
|
312 |
-
|
313 |
-
return prompt_embeds, prompt_embeds_mask
|
314 |
-
|
315 |
-
def check_inputs(
|
316 |
-
self,
|
317 |
-
prompt,
|
318 |
-
height,
|
319 |
-
width,
|
320 |
-
negative_prompt=None,
|
321 |
-
prompt_embeds=None,
|
322 |
-
negative_prompt_embeds=None,
|
323 |
-
prompt_embeds_mask=None,
|
324 |
-
negative_prompt_embeds_mask=None,
|
325 |
-
callback_on_step_end_tensor_inputs=None,
|
326 |
-
max_sequence_length=None,
|
327 |
-
):
|
328 |
-
if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
|
329 |
-
logger.warning(
|
330 |
-
f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
|
331 |
-
)
|
332 |
-
|
333 |
-
if callback_on_step_end_tensor_inputs is not None and not all(
|
334 |
-
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
335 |
-
):
|
336 |
-
raise ValueError(
|
337 |
-
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
338 |
-
)
|
339 |
-
|
340 |
-
if prompt is not None and prompt_embeds is not None:
|
341 |
-
raise ValueError(
|
342 |
-
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
343 |
-
" only forward one of the two."
|
344 |
-
)
|
345 |
-
elif prompt is None and prompt_embeds is None:
|
346 |
-
raise ValueError(
|
347 |
-
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
348 |
-
)
|
349 |
-
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
350 |
-
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
351 |
-
|
352 |
-
if negative_prompt is not None and negative_prompt_embeds is not None:
|
353 |
-
raise ValueError(
|
354 |
-
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
355 |
-
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
356 |
-
)
|
357 |
-
|
358 |
-
if prompt_embeds is not None and prompt_embeds_mask is None:
|
359 |
-
raise ValueError(
|
360 |
-
"If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
|
361 |
-
)
|
362 |
-
if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
|
363 |
-
raise ValueError(
|
364 |
-
"If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
|
365 |
-
)
|
366 |
-
|
367 |
-
if max_sequence_length is not None and max_sequence_length > 1024:
|
368 |
-
raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
|
369 |
-
|
370 |
-
@staticmethod
|
371 |
-
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
|
372 |
-
def _pack_latents(latents, batch_size, num_channels_latents, height, width):
|
373 |
-
latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
|
374 |
-
latents = latents.permute(0, 2, 4, 1, 3, 5)
|
375 |
-
latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
|
376 |
-
|
377 |
-
return latents
|
378 |
-
|
379 |
-
@staticmethod
|
380 |
-
# Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
|
381 |
-
def _unpack_latents(latents, height, width, vae_scale_factor):
|
382 |
-
batch_size, num_patches, channels = latents.shape
|
383 |
-
|
384 |
-
# VAE applies 8x compression on images but we must also account for packing which requires
|
385 |
-
# latent height and width to be divisible by 2.
|
386 |
-
height = 2 * (int(height) // (vae_scale_factor * 2))
|
387 |
-
width = 2 * (int(width) // (vae_scale_factor * 2))
|
388 |
-
|
389 |
-
latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
|
390 |
-
latents = latents.permute(0, 3, 1, 4, 2, 5)
|
391 |
-
|
392 |
-
latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
|
393 |
-
|
394 |
-
return latents
|
395 |
-
|
396 |
-
def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
|
397 |
-
if isinstance(generator, list):
|
398 |
-
image_latents = [
|
399 |
-
retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
|
400 |
-
for i in range(image.shape[0])
|
401 |
-
]
|
402 |
-
image_latents = torch.cat(image_latents, dim=0)
|
403 |
-
else:
|
404 |
-
image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
|
405 |
-
latents_mean = (
|
406 |
-
torch.tensor(self.vae.config.latents_mean)
|
407 |
-
.view(1, self.latent_channels, 1, 1, 1)
|
408 |
-
.to(image_latents.device, image_latents.dtype)
|
409 |
-
)
|
410 |
-
latents_std = (
|
411 |
-
torch.tensor(self.vae.config.latents_std)
|
412 |
-
.view(1, self.latent_channels, 1, 1, 1)
|
413 |
-
.to(image_latents.device, image_latents.dtype)
|
414 |
-
)
|
415 |
-
image_latents = (image_latents - latents_mean) / latents_std
|
416 |
-
|
417 |
-
return image_latents
|
418 |
-
|
419 |
-
def enable_vae_slicing(self):
|
420 |
-
r"""
|
421 |
-
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
422 |
-
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
423 |
-
"""
|
424 |
-
self.vae.enable_slicing()
|
425 |
-
|
426 |
-
def disable_vae_slicing(self):
|
427 |
-
r"""
|
428 |
-
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
429 |
-
computing decoding in one step.
|
430 |
-
"""
|
431 |
-
self.vae.disable_slicing()
|
432 |
-
|
433 |
-
def enable_vae_tiling(self):
|
434 |
-
r"""
|
435 |
-
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
436 |
-
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
437 |
-
processing larger images.
|
438 |
-
"""
|
439 |
-
self.vae.enable_tiling()
|
440 |
-
|
441 |
-
def disable_vae_tiling(self):
|
442 |
-
r"""
|
443 |
-
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
444 |
-
computing decoding in one step.
|
445 |
-
"""
|
446 |
-
self.vae.disable_tiling()
|
447 |
-
|
448 |
-
def prepare_latents(
|
449 |
-
self,
|
450 |
-
image,
|
451 |
-
batch_size,
|
452 |
-
num_channels_latents,
|
453 |
-
height,
|
454 |
-
width,
|
455 |
-
dtype,
|
456 |
-
device,
|
457 |
-
generator,
|
458 |
-
latents=None,
|
459 |
-
):
|
460 |
-
# VAE applies 8x compression on images but we must also account for packing which requires
|
461 |
-
# latent height and width to be divisible by 2.
|
462 |
-
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
463 |
-
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
464 |
-
|
465 |
-
shape = (batch_size, 1, num_channels_latents, height, width)
|
466 |
-
|
467 |
-
image_latents = None
|
468 |
-
if image is not None:
|
469 |
-
image = image.to(device=device, dtype=dtype)
|
470 |
-
if image.shape[1] != self.latent_channels:
|
471 |
-
image_latents = self._encode_vae_image(image=image, generator=generator)
|
472 |
-
else:
|
473 |
-
image_latents = image
|
474 |
-
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
475 |
-
# expand init_latents for batch_size
|
476 |
-
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
477 |
-
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
478 |
-
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
479 |
-
raise ValueError(
|
480 |
-
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
481 |
-
)
|
482 |
-
else:
|
483 |
-
image_latents = torch.cat([image_latents], dim=0)
|
484 |
-
|
485 |
-
image_latent_height, image_latent_width = image_latents.shape[3:]
|
486 |
-
image_latents = self._pack_latents(
|
487 |
-
image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
|
488 |
-
)
|
489 |
-
|
490 |
-
if isinstance(generator, list) and len(generator) != batch_size:
|
491 |
-
raise ValueError(
|
492 |
-
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
493 |
-
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
494 |
-
)
|
495 |
-
if latents is None:
|
496 |
-
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
497 |
-
latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
|
498 |
-
else:
|
499 |
-
latents = latents.to(device=device, dtype=dtype)
|
500 |
-
|
501 |
-
return latents, image_latents
|
502 |
-
|
503 |
-
@property
|
504 |
-
def guidance_scale(self):
|
505 |
-
return self._guidance_scale
|
506 |
-
|
507 |
-
@property
|
508 |
-
def attention_kwargs(self):
|
509 |
-
return self._attention_kwargs
|
510 |
-
|
511 |
-
@property
|
512 |
-
def num_timesteps(self):
|
513 |
-
return self._num_timesteps
|
514 |
-
|
515 |
-
@property
|
516 |
-
def current_timestep(self):
|
517 |
-
return self._current_timestep
|
518 |
-
|
519 |
-
@property
|
520 |
-
def interrupt(self):
|
521 |
-
return self._interrupt
|
522 |
-
|
523 |
-
@torch.no_grad()
|
524 |
-
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
525 |
-
def __call__(
|
526 |
-
self,
|
527 |
-
image: Optional[PipelineImageInput] = None,
|
528 |
-
prompt: Union[str, List[str]] = None,
|
529 |
-
negative_prompt: Union[str, List[str]] = None,
|
530 |
-
true_cfg_scale: float = 4.0,
|
531 |
-
height: Optional[int] = None,
|
532 |
-
width: Optional[int] = None,
|
533 |
-
num_inference_steps: int = 50,
|
534 |
-
sigmas: Optional[List[float]] = None,
|
535 |
-
guidance_scale: float = 1.0,
|
536 |
-
num_images_per_prompt: int = 1,
|
537 |
-
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
538 |
-
latents: Optional[torch.Tensor] = None,
|
539 |
-
prompt_embeds: Optional[torch.Tensor] = None,
|
540 |
-
prompt_embeds_mask: Optional[torch.Tensor] = None,
|
541 |
-
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
542 |
-
negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
|
543 |
-
output_type: Optional[str] = "pil",
|
544 |
-
return_dict: bool = True,
|
545 |
-
attention_kwargs: Optional[Dict[str, Any]] = None,
|
546 |
-
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
547 |
-
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
548 |
-
max_sequence_length: int = 512,
|
549 |
-
):
|
550 |
-
r"""
|
551 |
-
Function invoked when calling the pipeline for generation.
|
552 |
-
|
553 |
-
Args:
|
554 |
-
prompt (`str` or `List[str]`, *optional*):
|
555 |
-
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
556 |
-
instead.
|
557 |
-
negative_prompt (`str` or `List[str]`, *optional*):
|
558 |
-
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
559 |
-
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
|
560 |
-
not greater than `1`).
|
561 |
-
true_cfg_scale (`float`, *optional*, defaults to 1.0):
|
562 |
-
When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
|
563 |
-
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
564 |
-
The height in pixels of the generated image. This is set to 1024 by default for the best results.
|
565 |
-
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
|
566 |
-
The width in pixels of the generated image. This is set to 1024 by default for the best results.
|
567 |
-
num_inference_steps (`int`, *optional*, defaults to 50):
|
568 |
-
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
569 |
-
expense of slower inference.
|
570 |
-
sigmas (`List[float]`, *optional*):
|
571 |
-
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
572 |
-
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
573 |
-
will be used.
|
574 |
-
guidance_scale (`float`, *optional*, defaults to 3.5):
|
575 |
-
Guidance scale as defined in [Classifier-Free Diffusion
|
576 |
-
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
577 |
-
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
578 |
-
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
579 |
-
the text `prompt`, usually at the expense of lower image quality.
|
580 |
-
|
581 |
-
This parameter in the pipeline is there to support future guidance-distilled models when they come up.
|
582 |
-
Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance,
|
583 |
-
please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should
|
584 |
-
enable classifier-free guidance computations.
|
585 |
-
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
586 |
-
The number of images to generate per prompt.
|
587 |
-
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
588 |
-
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
589 |
-
to make generation deterministic.
|
590 |
-
latents (`torch.Tensor`, *optional*):
|
591 |
-
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
592 |
-
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
593 |
-
tensor will be generated by sampling using the supplied random `generator`.
|
594 |
-
prompt_embeds (`torch.Tensor`, *optional*):
|
595 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
596 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
597 |
-
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
598 |
-
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
599 |
-
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
600 |
-
argument.
|
601 |
-
output_type (`str`, *optional*, defaults to `"pil"`):
|
602 |
-
The output format of the generate image. Choose between
|
603 |
-
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
604 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
605 |
-
Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
|
606 |
-
attention_kwargs (`dict`, *optional*):
|
607 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
608 |
-
`self.processor` in
|
609 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
610 |
-
callback_on_step_end (`Callable`, *optional*):
|
611 |
-
A function that calls at the end of each denoising steps during the inference. The function is called
|
612 |
-
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
613 |
-
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
614 |
-
`callback_on_step_end_tensor_inputs`.
|
615 |
-
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
616 |
-
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
617 |
-
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
618 |
-
`._callback_tensor_inputs` attribute of your pipeline class.
|
619 |
-
max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
|
620 |
-
|
621 |
-
Examples:
|
622 |
-
|
623 |
-
Returns:
|
624 |
-
[`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
|
625 |
-
[`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
|
626 |
-
returning a tuple, the first element is a list with the generated images.
|
627 |
-
"""
|
628 |
-
image_size = image[0].size if isinstance(image, list) else image.size
|
629 |
-
calculated_width, calculated_height, _ = calculate_dimensions(1024 * 1024, image_size[0] / image_size[1])
|
630 |
-
height = height or calculated_height
|
631 |
-
width = width or calculated_width
|
632 |
-
|
633 |
-
multiple_of = self.vae_scale_factor * 2
|
634 |
-
width = width // multiple_of * multiple_of
|
635 |
-
height = height // multiple_of * multiple_of
|
636 |
-
|
637 |
-
# 1. Check inputs. Raise error if not correct
|
638 |
-
self.check_inputs(
|
639 |
-
prompt,
|
640 |
-
height,
|
641 |
-
width,
|
642 |
-
negative_prompt=negative_prompt,
|
643 |
-
prompt_embeds=prompt_embeds,
|
644 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
645 |
-
prompt_embeds_mask=prompt_embeds_mask,
|
646 |
-
negative_prompt_embeds_mask=negative_prompt_embeds_mask,
|
647 |
-
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
648 |
-
max_sequence_length=max_sequence_length,
|
649 |
-
)
|
650 |
-
|
651 |
-
self._guidance_scale = guidance_scale
|
652 |
-
self._attention_kwargs = attention_kwargs
|
653 |
-
self._current_timestep = None
|
654 |
-
self._interrupt = False
|
655 |
-
|
656 |
-
# 2. Define call parameters
|
657 |
-
if prompt is not None and isinstance(prompt, str):
|
658 |
-
batch_size = 1
|
659 |
-
elif prompt is not None and isinstance(prompt, list):
|
660 |
-
batch_size = len(prompt)
|
661 |
-
else:
|
662 |
-
batch_size = prompt_embeds.shape[0]
|
663 |
-
|
664 |
-
device = self._execution_device
|
665 |
-
# 3. Preprocess image
|
666 |
-
if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
|
667 |
-
image = self.image_processor.resize(image, calculated_height, calculated_width)
|
668 |
-
prompt_image = image
|
669 |
-
image = self.image_processor.preprocess(image, calculated_height, calculated_width)
|
670 |
-
image = image.unsqueeze(2)
|
671 |
-
|
672 |
-
has_neg_prompt = negative_prompt is not None or (
|
673 |
-
negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
|
674 |
-
)
|
675 |
-
do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
|
676 |
-
prompt_embeds, prompt_embeds_mask = self.encode_prompt(
|
677 |
-
image=prompt_image,
|
678 |
-
prompt=prompt,
|
679 |
-
prompt_embeds=prompt_embeds,
|
680 |
-
prompt_embeds_mask=prompt_embeds_mask,
|
681 |
-
device=device,
|
682 |
-
num_images_per_prompt=num_images_per_prompt,
|
683 |
-
max_sequence_length=max_sequence_length,
|
684 |
-
)
|
685 |
-
if do_true_cfg:
|
686 |
-
negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
|
687 |
-
image=prompt_image,
|
688 |
-
prompt=negative_prompt,
|
689 |
-
prompt_embeds=negative_prompt_embeds,
|
690 |
-
prompt_embeds_mask=negative_prompt_embeds_mask,
|
691 |
-
device=device,
|
692 |
-
num_images_per_prompt=num_images_per_prompt,
|
693 |
-
max_sequence_length=max_sequence_length,
|
694 |
-
)
|
695 |
-
|
696 |
-
# 4. Prepare latent variables
|
697 |
-
num_channels_latents = self.transformer.config.in_channels // 4
|
698 |
-
latents, image_latents = self.prepare_latents(
|
699 |
-
image,
|
700 |
-
batch_size * num_images_per_prompt,
|
701 |
-
num_channels_latents,
|
702 |
-
height,
|
703 |
-
width,
|
704 |
-
prompt_embeds.dtype,
|
705 |
-
device,
|
706 |
-
generator,
|
707 |
-
latents,
|
708 |
-
)
|
709 |
-
img_shapes = [
|
710 |
-
[
|
711 |
-
(1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
|
712 |
-
(1, calculated_height // self.vae_scale_factor // 2, calculated_width // self.vae_scale_factor // 2),
|
713 |
-
]
|
714 |
-
] * batch_size
|
715 |
-
|
716 |
-
# 5. Prepare timesteps
|
717 |
-
sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
|
718 |
-
image_seq_len = latents.shape[1]
|
719 |
-
mu = calculate_shift(
|
720 |
-
image_seq_len,
|
721 |
-
self.scheduler.config.get("base_image_seq_len", 256),
|
722 |
-
self.scheduler.config.get("max_image_seq_len", 4096),
|
723 |
-
self.scheduler.config.get("base_shift", 0.5),
|
724 |
-
self.scheduler.config.get("max_shift", 1.15),
|
725 |
-
)
|
726 |
-
timesteps, num_inference_steps = retrieve_timesteps(
|
727 |
-
self.scheduler,
|
728 |
-
num_inference_steps,
|
729 |
-
device,
|
730 |
-
sigmas=sigmas,
|
731 |
-
mu=mu,
|
732 |
-
)
|
733 |
-
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
734 |
-
self._num_timesteps = len(timesteps)
|
735 |
-
|
736 |
-
# handle guidance
|
737 |
-
if self.transformer.config.guidance_embeds:
|
738 |
-
guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
|
739 |
-
guidance = guidance.expand(latents.shape[0])
|
740 |
-
else:
|
741 |
-
guidance = None
|
742 |
-
|
743 |
-
if self.attention_kwargs is None:
|
744 |
-
self._attention_kwargs = {}
|
745 |
-
|
746 |
-
txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
|
747 |
-
|
748 |
-
image_rotary_emb = self.transformer.pos_embed(img_shapes, txt_seq_lens, device=latents.device)
|
749 |
-
if do_true_cfg:
|
750 |
-
negative_txt_seq_lens = (
|
751 |
-
negative_prompt_embeds_mask.sum(dim=1).tolist()
|
752 |
-
if negative_prompt_embeds_mask is not None
|
753 |
-
else None
|
754 |
-
)
|
755 |
-
uncond_image_rotary_emb = self.transformer.pos_embed(
|
756 |
-
img_shapes, negative_txt_seq_lens, device=latents.device
|
757 |
-
)
|
758 |
-
else:
|
759 |
-
uncond_image_rotary_emb = None
|
760 |
-
|
761 |
-
# 6. Denoising loop
|
762 |
-
self.scheduler.set_begin_index(0)
|
763 |
-
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
764 |
-
for i, t in enumerate(timesteps):
|
765 |
-
if self.interrupt:
|
766 |
-
continue
|
767 |
-
|
768 |
-
self._current_timestep = t
|
769 |
-
|
770 |
-
latent_model_input = latents
|
771 |
-
if image_latents is not None:
|
772 |
-
latent_model_input = torch.cat([latents, image_latents], dim=1)
|
773 |
-
|
774 |
-
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
775 |
-
timestep = t.expand(latents.shape[0]).to(latents.dtype)
|
776 |
-
with self.transformer.cache_context("cond"):
|
777 |
-
noise_pred = self.transformer(
|
778 |
-
hidden_states=latent_model_input,
|
779 |
-
timestep=timestep / 1000,
|
780 |
-
guidance=guidance,
|
781 |
-
encoder_hidden_states_mask=prompt_embeds_mask,
|
782 |
-
encoder_hidden_states=prompt_embeds,
|
783 |
-
image_rotary_emb=image_rotary_emb,
|
784 |
-
attention_kwargs=self.attention_kwargs,
|
785 |
-
return_dict=False,
|
786 |
-
)[0]
|
787 |
-
noise_pred = noise_pred[:, : latents.size(1)]
|
788 |
-
|
789 |
-
if do_true_cfg:
|
790 |
-
with self.transformer.cache_context("uncond"):
|
791 |
-
neg_noise_pred = self.transformer(
|
792 |
-
hidden_states=latent_model_input,
|
793 |
-
timestep=timestep / 1000,
|
794 |
-
guidance=guidance,
|
795 |
-
encoder_hidden_states_mask=negative_prompt_embeds_mask,
|
796 |
-
encoder_hidden_states=negative_prompt_embeds,
|
797 |
-
image_rotary_emb=uncond_image_rotary_emb,
|
798 |
-
attention_kwargs=self.attention_kwargs,
|
799 |
-
return_dict=False,
|
800 |
-
)[0]
|
801 |
-
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
|
802 |
-
comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
|
803 |
-
|
804 |
-
cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
|
805 |
-
noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
|
806 |
-
noise_pred = comb_pred * (cond_norm / noise_norm)
|
807 |
-
|
808 |
-
# compute the previous noisy sample x_t -> x_t-1
|
809 |
-
latents_dtype = latents.dtype
|
810 |
-
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
811 |
-
|
812 |
-
if latents.dtype != latents_dtype:
|
813 |
-
if torch.backends.mps.is_available():
|
814 |
-
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
815 |
-
latents = latents.to(latents_dtype)
|
816 |
-
|
817 |
-
if callback_on_step_end is not None:
|
818 |
-
callback_kwargs = {}
|
819 |
-
for k in callback_on_step_end_tensor_inputs:
|
820 |
-
callback_kwargs[k] = locals()[k]
|
821 |
-
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
822 |
-
|
823 |
-
latents = callback_outputs.pop("latents", latents)
|
824 |
-
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
825 |
-
|
826 |
-
# call the callback, if provided
|
827 |
-
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
828 |
-
progress_bar.update()
|
829 |
-
|
830 |
-
if XLA_AVAILABLE:
|
831 |
-
xm.mark_step()
|
832 |
-
|
833 |
-
self._current_timestep = None
|
834 |
-
if output_type == "latent":
|
835 |
-
image = latents
|
836 |
-
else:
|
837 |
-
latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
838 |
-
latents = latents.to(self.vae.dtype)
|
839 |
-
latents_mean = (
|
840 |
-
torch.tensor(self.vae.config.latents_mean)
|
841 |
-
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
842 |
-
.to(latents.device, latents.dtype)
|
843 |
-
)
|
844 |
-
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
845 |
-
latents.device, latents.dtype
|
846 |
-
)
|
847 |
-
latents = latents / latents_std + latents_mean
|
848 |
-
image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
|
849 |
-
image = self.image_processor.postprocess(image, output_type=output_type)
|
850 |
-
|
851 |
-
# Offload all models
|
852 |
-
self.maybe_free_model_hooks()
|
853 |
-
|
854 |
-
if not return_dict:
|
855 |
-
return (image,)
|
856 |
-
|
857 |
-
return QwenImagePipelineOutput(images=image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qwenimage/qwen_fa3_processor.py
DELETED
@@ -1,142 +0,0 @@
|
|
1 |
-
"""
|
2 |
-
Paired with a good language model. Thanks!
|
3 |
-
"""
|
4 |
-
|
5 |
-
import torch
|
6 |
-
from typing import Optional, Tuple
|
7 |
-
from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
|
8 |
-
|
9 |
-
try:
|
10 |
-
from kernels import get_kernel
|
11 |
-
_k = get_kernel("kernels-community/vllm-flash-attn3")
|
12 |
-
_flash_attn_func = _k.flash_attn_func
|
13 |
-
except Exception as e:
|
14 |
-
_flash_attn_func = None
|
15 |
-
_kernels_err = e
|
16 |
-
|
17 |
-
|
18 |
-
def _ensure_fa3_available():
|
19 |
-
if _flash_attn_func is None:
|
20 |
-
raise ImportError(
|
21 |
-
"FlashAttention-3 via Hugging Face `kernels` is required. "
|
22 |
-
"Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
|
23 |
-
f"{_kernels_err}"
|
24 |
-
)
|
25 |
-
|
26 |
-
@torch.library.custom_op("flash::flash_attn_func", mutates_args=())
|
27 |
-
def flash_attn_func(
|
28 |
-
q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
|
29 |
-
) -> torch.Tensor:
|
30 |
-
outputs, lse = _flash_attn_func(q, k, v, causal=causal)
|
31 |
-
return outputs
|
32 |
-
|
33 |
-
@flash_attn_func.register_fake
|
34 |
-
def _(q, k, v, **kwargs):
|
35 |
-
# two outputs:
|
36 |
-
# 1. output: (batch, seq_len, num_heads, head_dim)
|
37 |
-
# 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
|
38 |
-
meta_q = torch.empty_like(q).contiguous()
|
39 |
-
return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
|
40 |
-
|
41 |
-
|
42 |
-
class QwenDoubleStreamAttnProcessorFA3:
|
43 |
-
"""
|
44 |
-
FA3-based attention processor for Qwen double-stream architecture.
|
45 |
-
Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
|
46 |
-
accessed via Hugging Face `kernels`.
|
47 |
-
|
48 |
-
Notes / limitations:
|
49 |
-
- General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
|
50 |
-
- Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
|
51 |
-
- Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
|
52 |
-
"""
|
53 |
-
|
54 |
-
_attention_backend = "fa3" # for parity with your other processors, not used internally
|
55 |
-
|
56 |
-
def __init__(self):
|
57 |
-
_ensure_fa3_available()
|
58 |
-
|
59 |
-
@torch.no_grad()
|
60 |
-
def __call__(
|
61 |
-
self,
|
62 |
-
attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
|
63 |
-
hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
|
64 |
-
encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
|
65 |
-
encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
|
66 |
-
attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
|
67 |
-
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
|
68 |
-
) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
|
69 |
-
if encoder_hidden_states is None:
|
70 |
-
raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
|
71 |
-
if attention_mask is not None:
|
72 |
-
# FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
|
73 |
-
raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
|
74 |
-
|
75 |
-
_ensure_fa3_available()
|
76 |
-
|
77 |
-
B, S_img, _ = hidden_states.shape
|
78 |
-
S_txt = encoder_hidden_states.shape[1]
|
79 |
-
|
80 |
-
# ---- QKV projections (image/sample stream) ----
|
81 |
-
img_q = attn.to_q(hidden_states) # (B, S_img, D)
|
82 |
-
img_k = attn.to_k(hidden_states)
|
83 |
-
img_v = attn.to_v(hidden_states)
|
84 |
-
|
85 |
-
# ---- QKV projections (text/context stream) ----
|
86 |
-
txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
|
87 |
-
txt_k = attn.add_k_proj(encoder_hidden_states)
|
88 |
-
txt_v = attn.add_v_proj(encoder_hidden_states)
|
89 |
-
|
90 |
-
# ---- Reshape to (B, S, H, D_h) ----
|
91 |
-
H = attn.heads
|
92 |
-
img_q = img_q.unflatten(-1, (H, -1))
|
93 |
-
img_k = img_k.unflatten(-1, (H, -1))
|
94 |
-
img_v = img_v.unflatten(-1, (H, -1))
|
95 |
-
|
96 |
-
txt_q = txt_q.unflatten(-1, (H, -1))
|
97 |
-
txt_k = txt_k.unflatten(-1, (H, -1))
|
98 |
-
txt_v = txt_v.unflatten(-1, (H, -1))
|
99 |
-
|
100 |
-
# ---- Q/K normalization (per your module contract) ----
|
101 |
-
if getattr(attn, "norm_q", None) is not None:
|
102 |
-
img_q = attn.norm_q(img_q)
|
103 |
-
if getattr(attn, "norm_k", None) is not None:
|
104 |
-
img_k = attn.norm_k(img_k)
|
105 |
-
if getattr(attn, "norm_added_q", None) is not None:
|
106 |
-
txt_q = attn.norm_added_q(txt_q)
|
107 |
-
if getattr(attn, "norm_added_k", None) is not None:
|
108 |
-
txt_k = attn.norm_added_k(txt_k)
|
109 |
-
|
110 |
-
# ---- RoPE (Qwen variant) ----
|
111 |
-
if image_rotary_emb is not None:
|
112 |
-
img_freqs, txt_freqs = image_rotary_emb
|
113 |
-
# expects tensors shaped (B, S, H, D_h)
|
114 |
-
img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
|
115 |
-
img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
|
116 |
-
txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
|
117 |
-
txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
|
118 |
-
|
119 |
-
# ---- Joint attention over [text, image] along sequence axis ----
|
120 |
-
# Shapes: (B, S_total, H, D_h)
|
121 |
-
q = torch.cat([txt_q, img_q], dim=1)
|
122 |
-
k = torch.cat([txt_k, img_k], dim=1)
|
123 |
-
v = torch.cat([txt_v, img_v], dim=1)
|
124 |
-
|
125 |
-
# FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
|
126 |
-
out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
|
127 |
-
|
128 |
-
# ---- Back to (B, S, D_model) ----
|
129 |
-
out = out.flatten(2, 3).to(q.dtype)
|
130 |
-
|
131 |
-
# Split back to text / image segments
|
132 |
-
txt_attn_out = out[:, :S_txt, :]
|
133 |
-
img_attn_out = out[:, S_txt:, :]
|
134 |
-
|
135 |
-
# ---- Output projections ----
|
136 |
-
img_attn_out = attn.to_out[0](img_attn_out)
|
137 |
-
if len(attn.to_out) > 1:
|
138 |
-
img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
|
139 |
-
|
140 |
-
txt_attn_out = attn.to_add_out(txt_attn_out)
|
141 |
-
|
142 |
-
return img_attn_out, txt_attn_out
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
qwenimage/transformer_qwenimage.py
DELETED
@@ -1,642 +0,0 @@
|
|
1 |
-
# Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import functools
|
16 |
-
import math
|
17 |
-
from typing import Any, Dict, List, Optional, Tuple, Union
|
18 |
-
|
19 |
-
import torch
|
20 |
-
import torch.nn as nn
|
21 |
-
import torch.nn.functional as F
|
22 |
-
|
23 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
24 |
-
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
25 |
-
from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
|
26 |
-
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
27 |
-
from diffusers.models.attention import FeedForward, AttentionMixin
|
28 |
-
from diffusers.models.attention_dispatch import dispatch_attention_fn
|
29 |
-
from diffusers.models.attention_processor import Attention
|
30 |
-
from diffusers.models.cache_utils import CacheMixin
|
31 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
32 |
-
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
33 |
-
from diffusers.models.modeling_utils import ModelMixin
|
34 |
-
from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
|
35 |
-
|
36 |
-
|
37 |
-
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
38 |
-
|
39 |
-
|
40 |
-
def get_timestep_embedding(
|
41 |
-
timesteps: torch.Tensor,
|
42 |
-
embedding_dim: int,
|
43 |
-
flip_sin_to_cos: bool = False,
|
44 |
-
downscale_freq_shift: float = 1,
|
45 |
-
scale: float = 1,
|
46 |
-
max_period: int = 10000,
|
47 |
-
) -> torch.Tensor:
|
48 |
-
"""
|
49 |
-
This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
|
50 |
-
|
51 |
-
Args
|
52 |
-
timesteps (torch.Tensor):
|
53 |
-
a 1-D Tensor of N indices, one per batch element. These may be fractional.
|
54 |
-
embedding_dim (int):
|
55 |
-
the dimension of the output.
|
56 |
-
flip_sin_to_cos (bool):
|
57 |
-
Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
|
58 |
-
downscale_freq_shift (float):
|
59 |
-
Controls the delta between frequencies between dimensions
|
60 |
-
scale (float):
|
61 |
-
Scaling factor applied to the embeddings.
|
62 |
-
max_period (int):
|
63 |
-
Controls the maximum frequency of the embeddings
|
64 |
-
Returns
|
65 |
-
torch.Tensor: an [N x dim] Tensor of positional embeddings.
|
66 |
-
"""
|
67 |
-
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
|
68 |
-
|
69 |
-
half_dim = embedding_dim // 2
|
70 |
-
exponent = -math.log(max_period) * torch.arange(
|
71 |
-
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
|
72 |
-
)
|
73 |
-
exponent = exponent / (half_dim - downscale_freq_shift)
|
74 |
-
|
75 |
-
emb = torch.exp(exponent).to(timesteps.dtype)
|
76 |
-
emb = timesteps[:, None].float() * emb[None, :]
|
77 |
-
|
78 |
-
# scale embeddings
|
79 |
-
emb = scale * emb
|
80 |
-
|
81 |
-
# concat sine and cosine embeddings
|
82 |
-
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
|
83 |
-
|
84 |
-
# flip sine and cosine embeddings
|
85 |
-
if flip_sin_to_cos:
|
86 |
-
emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
|
87 |
-
|
88 |
-
# zero pad
|
89 |
-
if embedding_dim % 2 == 1:
|
90 |
-
emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
|
91 |
-
return emb
|
92 |
-
|
93 |
-
|
94 |
-
def apply_rotary_emb_qwen(
|
95 |
-
x: torch.Tensor,
|
96 |
-
freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
|
97 |
-
use_real: bool = True,
|
98 |
-
use_real_unbind_dim: int = -1,
|
99 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
100 |
-
"""
|
101 |
-
Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
|
102 |
-
to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
|
103 |
-
reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
|
104 |
-
tensors contain rotary embeddings and are returned as real tensors.
|
105 |
-
|
106 |
-
Args:
|
107 |
-
x (`torch.Tensor`):
|
108 |
-
Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
|
109 |
-
freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
|
110 |
-
|
111 |
-
Returns:
|
112 |
-
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
|
113 |
-
"""
|
114 |
-
if use_real:
|
115 |
-
cos, sin = freqs_cis # [S, D]
|
116 |
-
cos = cos[None, None]
|
117 |
-
sin = sin[None, None]
|
118 |
-
cos, sin = cos.to(x.device), sin.to(x.device)
|
119 |
-
|
120 |
-
if use_real_unbind_dim == -1:
|
121 |
-
# Used for flux, cogvideox, hunyuan-dit
|
122 |
-
x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
|
123 |
-
x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
|
124 |
-
elif use_real_unbind_dim == -2:
|
125 |
-
# Used for Stable Audio, OmniGen, CogView4 and Cosmos
|
126 |
-
x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
|
127 |
-
x_rotated = torch.cat([-x_imag, x_real], dim=-1)
|
128 |
-
else:
|
129 |
-
raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
|
130 |
-
|
131 |
-
out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
|
132 |
-
|
133 |
-
return out
|
134 |
-
else:
|
135 |
-
x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
|
136 |
-
freqs_cis = freqs_cis.unsqueeze(1)
|
137 |
-
x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
|
138 |
-
|
139 |
-
return x_out.type_as(x)
|
140 |
-
|
141 |
-
|
142 |
-
class QwenTimestepProjEmbeddings(nn.Module):
|
143 |
-
def __init__(self, embedding_dim):
|
144 |
-
super().__init__()
|
145 |
-
|
146 |
-
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
|
147 |
-
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
|
148 |
-
|
149 |
-
def forward(self, timestep, hidden_states):
|
150 |
-
timesteps_proj = self.time_proj(timestep)
|
151 |
-
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
|
152 |
-
|
153 |
-
conditioning = timesteps_emb
|
154 |
-
|
155 |
-
return conditioning
|
156 |
-
|
157 |
-
|
158 |
-
class QwenEmbedRope(nn.Module):
|
159 |
-
def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
|
160 |
-
super().__init__()
|
161 |
-
self.theta = theta
|
162 |
-
self.axes_dim = axes_dim
|
163 |
-
pos_index = torch.arange(4096)
|
164 |
-
neg_index = torch.arange(4096).flip(0) * -1 - 1
|
165 |
-
self.pos_freqs = torch.cat(
|
166 |
-
[
|
167 |
-
self.rope_params(pos_index, self.axes_dim[0], self.theta),
|
168 |
-
self.rope_params(pos_index, self.axes_dim[1], self.theta),
|
169 |
-
self.rope_params(pos_index, self.axes_dim[2], self.theta),
|
170 |
-
],
|
171 |
-
dim=1,
|
172 |
-
)
|
173 |
-
self.neg_freqs = torch.cat(
|
174 |
-
[
|
175 |
-
self.rope_params(neg_index, self.axes_dim[0], self.theta),
|
176 |
-
self.rope_params(neg_index, self.axes_dim[1], self.theta),
|
177 |
-
self.rope_params(neg_index, self.axes_dim[2], self.theta),
|
178 |
-
],
|
179 |
-
dim=1,
|
180 |
-
)
|
181 |
-
self.rope_cache = {}
|
182 |
-
|
183 |
-
# DO NOT USING REGISTER BUFFER HERE, IT WILL CAUSE COMPLEX NUMBERS LOSE ITS IMAGINARY PART
|
184 |
-
self.scale_rope = scale_rope
|
185 |
-
|
186 |
-
def rope_params(self, index, dim, theta=10000):
|
187 |
-
"""
|
188 |
-
Args:
|
189 |
-
index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
|
190 |
-
"""
|
191 |
-
assert dim % 2 == 0
|
192 |
-
freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
|
193 |
-
freqs = torch.polar(torch.ones_like(freqs), freqs)
|
194 |
-
return freqs
|
195 |
-
|
196 |
-
def forward(self, video_fhw, txt_seq_lens, device):
|
197 |
-
"""
|
198 |
-
Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
|
199 |
-
txt_length: [bs] a list of 1 integers representing the length of the text
|
200 |
-
"""
|
201 |
-
if self.pos_freqs.device != device:
|
202 |
-
self.pos_freqs = self.pos_freqs.to(device)
|
203 |
-
self.neg_freqs = self.neg_freqs.to(device)
|
204 |
-
|
205 |
-
if isinstance(video_fhw, list):
|
206 |
-
video_fhw = video_fhw[0]
|
207 |
-
if not isinstance(video_fhw, list):
|
208 |
-
video_fhw = [video_fhw]
|
209 |
-
|
210 |
-
vid_freqs = []
|
211 |
-
max_vid_index = 0
|
212 |
-
for idx, fhw in enumerate(video_fhw):
|
213 |
-
frame, height, width = fhw
|
214 |
-
rope_key = f"{idx}_{height}_{width}"
|
215 |
-
|
216 |
-
if not torch.compiler.is_compiling():
|
217 |
-
if rope_key not in self.rope_cache:
|
218 |
-
self.rope_cache[rope_key] = self._compute_video_freqs(frame, height, width, idx)
|
219 |
-
video_freq = self.rope_cache[rope_key]
|
220 |
-
else:
|
221 |
-
video_freq = self._compute_video_freqs(frame, height, width, idx)
|
222 |
-
video_freq = video_freq.to(device)
|
223 |
-
vid_freqs.append(video_freq)
|
224 |
-
|
225 |
-
if self.scale_rope:
|
226 |
-
max_vid_index = max(height // 2, width // 2, max_vid_index)
|
227 |
-
else:
|
228 |
-
max_vid_index = max(height, width, max_vid_index)
|
229 |
-
|
230 |
-
max_len = max(txt_seq_lens)
|
231 |
-
txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
|
232 |
-
vid_freqs = torch.cat(vid_freqs, dim=0)
|
233 |
-
|
234 |
-
return vid_freqs, txt_freqs
|
235 |
-
|
236 |
-
@functools.lru_cache(maxsize=None)
|
237 |
-
def _compute_video_freqs(self, frame, height, width, idx=0):
|
238 |
-
seq_lens = frame * height * width
|
239 |
-
freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
240 |
-
freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
|
241 |
-
|
242 |
-
freqs_frame = freqs_pos[0][idx : idx + frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
|
243 |
-
if self.scale_rope:
|
244 |
-
freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
|
245 |
-
freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
|
246 |
-
freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
|
247 |
-
freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
|
248 |
-
else:
|
249 |
-
freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
|
250 |
-
freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
|
251 |
-
|
252 |
-
freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
|
253 |
-
return freqs.clone().contiguous()
|
254 |
-
|
255 |
-
|
256 |
-
class QwenDoubleStreamAttnProcessor2_0:
|
257 |
-
"""
|
258 |
-
Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
|
259 |
-
implements joint attention computation where text and image streams are processed together.
|
260 |
-
"""
|
261 |
-
|
262 |
-
_attention_backend = None
|
263 |
-
|
264 |
-
def __init__(self):
|
265 |
-
if not hasattr(F, "scaled_dot_product_attention"):
|
266 |
-
raise ImportError(
|
267 |
-
"QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
|
268 |
-
)
|
269 |
-
|
270 |
-
def __call__(
|
271 |
-
self,
|
272 |
-
attn: Attention,
|
273 |
-
hidden_states: torch.FloatTensor, # Image stream
|
274 |
-
encoder_hidden_states: torch.FloatTensor = None, # Text stream
|
275 |
-
encoder_hidden_states_mask: torch.FloatTensor = None,
|
276 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
277 |
-
image_rotary_emb: Optional[torch.Tensor] = None,
|
278 |
-
) -> torch.FloatTensor:
|
279 |
-
if encoder_hidden_states is None:
|
280 |
-
raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
|
281 |
-
|
282 |
-
seq_txt = encoder_hidden_states.shape[1]
|
283 |
-
|
284 |
-
# Compute QKV for image stream (sample projections)
|
285 |
-
img_query = attn.to_q(hidden_states)
|
286 |
-
img_key = attn.to_k(hidden_states)
|
287 |
-
img_value = attn.to_v(hidden_states)
|
288 |
-
|
289 |
-
# Compute QKV for text stream (context projections)
|
290 |
-
txt_query = attn.add_q_proj(encoder_hidden_states)
|
291 |
-
txt_key = attn.add_k_proj(encoder_hidden_states)
|
292 |
-
txt_value = attn.add_v_proj(encoder_hidden_states)
|
293 |
-
|
294 |
-
# Reshape for multi-head attention
|
295 |
-
img_query = img_query.unflatten(-1, (attn.heads, -1))
|
296 |
-
img_key = img_key.unflatten(-1, (attn.heads, -1))
|
297 |
-
img_value = img_value.unflatten(-1, (attn.heads, -1))
|
298 |
-
|
299 |
-
txt_query = txt_query.unflatten(-1, (attn.heads, -1))
|
300 |
-
txt_key = txt_key.unflatten(-1, (attn.heads, -1))
|
301 |
-
txt_value = txt_value.unflatten(-1, (attn.heads, -1))
|
302 |
-
|
303 |
-
# Apply QK normalization
|
304 |
-
if attn.norm_q is not None:
|
305 |
-
img_query = attn.norm_q(img_query)
|
306 |
-
if attn.norm_k is not None:
|
307 |
-
img_key = attn.norm_k(img_key)
|
308 |
-
if attn.norm_added_q is not None:
|
309 |
-
txt_query = attn.norm_added_q(txt_query)
|
310 |
-
if attn.norm_added_k is not None:
|
311 |
-
txt_key = attn.norm_added_k(txt_key)
|
312 |
-
|
313 |
-
# Apply RoPE
|
314 |
-
if image_rotary_emb is not None:
|
315 |
-
img_freqs, txt_freqs = image_rotary_emb
|
316 |
-
img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
|
317 |
-
img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
|
318 |
-
txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
|
319 |
-
txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
|
320 |
-
|
321 |
-
# Concatenate for joint attention
|
322 |
-
# Order: [text, image]
|
323 |
-
joint_query = torch.cat([txt_query, img_query], dim=1)
|
324 |
-
joint_key = torch.cat([txt_key, img_key], dim=1)
|
325 |
-
joint_value = torch.cat([txt_value, img_value], dim=1)
|
326 |
-
|
327 |
-
# Compute joint attention
|
328 |
-
joint_hidden_states = dispatch_attention_fn(
|
329 |
-
joint_query,
|
330 |
-
joint_key,
|
331 |
-
joint_value,
|
332 |
-
attn_mask=attention_mask,
|
333 |
-
dropout_p=0.0,
|
334 |
-
is_causal=False,
|
335 |
-
backend=self._attention_backend,
|
336 |
-
)
|
337 |
-
|
338 |
-
# Reshape back
|
339 |
-
joint_hidden_states = joint_hidden_states.flatten(2, 3)
|
340 |
-
joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
|
341 |
-
|
342 |
-
# Split attention outputs back
|
343 |
-
txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
|
344 |
-
img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
|
345 |
-
|
346 |
-
# Apply output projections
|
347 |
-
img_attn_output = attn.to_out[0](img_attn_output)
|
348 |
-
if len(attn.to_out) > 1:
|
349 |
-
img_attn_output = attn.to_out[1](img_attn_output) # dropout
|
350 |
-
|
351 |
-
txt_attn_output = attn.to_add_out(txt_attn_output)
|
352 |
-
|
353 |
-
return img_attn_output, txt_attn_output
|
354 |
-
|
355 |
-
|
356 |
-
@maybe_allow_in_graph
|
357 |
-
class QwenImageTransformerBlock(nn.Module):
|
358 |
-
def __init__(
|
359 |
-
self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
|
360 |
-
):
|
361 |
-
super().__init__()
|
362 |
-
|
363 |
-
self.dim = dim
|
364 |
-
self.num_attention_heads = num_attention_heads
|
365 |
-
self.attention_head_dim = attention_head_dim
|
366 |
-
|
367 |
-
# Image processing modules
|
368 |
-
self.img_mod = nn.Sequential(
|
369 |
-
nn.SiLU(),
|
370 |
-
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
371 |
-
)
|
372 |
-
self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
373 |
-
self.attn = Attention(
|
374 |
-
query_dim=dim,
|
375 |
-
cross_attention_dim=None, # Enable cross attention for joint computation
|
376 |
-
added_kv_proj_dim=dim, # Enable added KV projections for text stream
|
377 |
-
dim_head=attention_head_dim,
|
378 |
-
heads=num_attention_heads,
|
379 |
-
out_dim=dim,
|
380 |
-
context_pre_only=False,
|
381 |
-
bias=True,
|
382 |
-
processor=QwenDoubleStreamAttnProcessor2_0(),
|
383 |
-
qk_norm=qk_norm,
|
384 |
-
eps=eps,
|
385 |
-
)
|
386 |
-
self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
387 |
-
self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
388 |
-
|
389 |
-
# Text processing modules
|
390 |
-
self.txt_mod = nn.Sequential(
|
391 |
-
nn.SiLU(),
|
392 |
-
nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
|
393 |
-
)
|
394 |
-
self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
395 |
-
# Text doesn't need separate attention - it's handled by img_attn joint computation
|
396 |
-
self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
|
397 |
-
self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
|
398 |
-
|
399 |
-
def _modulate(self, x, mod_params):
|
400 |
-
"""Apply modulation to input tensor"""
|
401 |
-
shift, scale, gate = mod_params.chunk(3, dim=-1)
|
402 |
-
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
|
403 |
-
|
404 |
-
def forward(
|
405 |
-
self,
|
406 |
-
hidden_states: torch.Tensor,
|
407 |
-
encoder_hidden_states: torch.Tensor,
|
408 |
-
encoder_hidden_states_mask: torch.Tensor,
|
409 |
-
temb: torch.Tensor,
|
410 |
-
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
411 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
412 |
-
) -> Tuple[torch.Tensor, torch.Tensor]:
|
413 |
-
# Get modulation parameters for both streams
|
414 |
-
img_mod_params = self.img_mod(temb) # [B, 6*dim]
|
415 |
-
txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
|
416 |
-
|
417 |
-
# Split modulation parameters for norm1 and norm2
|
418 |
-
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
419 |
-
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
|
420 |
-
|
421 |
-
# Process image stream - norm1 + modulation
|
422 |
-
img_normed = self.img_norm1(hidden_states)
|
423 |
-
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
|
424 |
-
|
425 |
-
# Process text stream - norm1 + modulation
|
426 |
-
txt_normed = self.txt_norm1(encoder_hidden_states)
|
427 |
-
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
|
428 |
-
|
429 |
-
# Use QwenAttnProcessor2_0 for joint attention computation
|
430 |
-
# This directly implements the DoubleStreamLayerMegatron logic:
|
431 |
-
# 1. Computes QKV for both streams
|
432 |
-
# 2. Applies QK normalization and RoPE
|
433 |
-
# 3. Concatenates and runs joint attention
|
434 |
-
# 4. Splits results back to separate streams
|
435 |
-
joint_attention_kwargs = joint_attention_kwargs or {}
|
436 |
-
attn_output = self.attn(
|
437 |
-
hidden_states=img_modulated, # Image stream (will be processed as "sample")
|
438 |
-
encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
|
439 |
-
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
440 |
-
image_rotary_emb=image_rotary_emb,
|
441 |
-
**joint_attention_kwargs,
|
442 |
-
)
|
443 |
-
|
444 |
-
# QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
|
445 |
-
img_attn_output, txt_attn_output = attn_output
|
446 |
-
|
447 |
-
# Apply attention gates and add residual (like in Megatron)
|
448 |
-
hidden_states = hidden_states + img_gate1 * img_attn_output
|
449 |
-
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
|
450 |
-
|
451 |
-
# Process image stream - norm2 + MLP
|
452 |
-
img_normed2 = self.img_norm2(hidden_states)
|
453 |
-
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
|
454 |
-
img_mlp_output = self.img_mlp(img_modulated2)
|
455 |
-
hidden_states = hidden_states + img_gate2 * img_mlp_output
|
456 |
-
|
457 |
-
# Process text stream - norm2 + MLP
|
458 |
-
txt_normed2 = self.txt_norm2(encoder_hidden_states)
|
459 |
-
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
|
460 |
-
txt_mlp_output = self.txt_mlp(txt_modulated2)
|
461 |
-
encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
|
462 |
-
|
463 |
-
# Clip to prevent overflow for fp16
|
464 |
-
if encoder_hidden_states.dtype == torch.float16:
|
465 |
-
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
466 |
-
if hidden_states.dtype == torch.float16:
|
467 |
-
hidden_states = hidden_states.clip(-65504, 65504)
|
468 |
-
|
469 |
-
return encoder_hidden_states, hidden_states
|
470 |
-
|
471 |
-
|
472 |
-
class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
|
473 |
-
"""
|
474 |
-
The Transformer model introduced in Qwen.
|
475 |
-
|
476 |
-
Args:
|
477 |
-
patch_size (`int`, defaults to `2`):
|
478 |
-
Patch size to turn the input data into small patches.
|
479 |
-
in_channels (`int`, defaults to `64`):
|
480 |
-
The number of channels in the input.
|
481 |
-
out_channels (`int`, *optional*, defaults to `None`):
|
482 |
-
The number of channels in the output. If not specified, it defaults to `in_channels`.
|
483 |
-
num_layers (`int`, defaults to `60`):
|
484 |
-
The number of layers of dual stream DiT blocks to use.
|
485 |
-
attention_head_dim (`int`, defaults to `128`):
|
486 |
-
The number of dimensions to use for each attention head.
|
487 |
-
num_attention_heads (`int`, defaults to `24`):
|
488 |
-
The number of attention heads to use.
|
489 |
-
joint_attention_dim (`int`, defaults to `3584`):
|
490 |
-
The number of dimensions to use for the joint attention (embedding/channel dimension of
|
491 |
-
`encoder_hidden_states`).
|
492 |
-
guidance_embeds (`bool`, defaults to `False`):
|
493 |
-
Whether to use guidance embeddings for guidance-distilled variant of the model.
|
494 |
-
axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
|
495 |
-
The dimensions to use for the rotary positional embeddings.
|
496 |
-
"""
|
497 |
-
|
498 |
-
_supports_gradient_checkpointing = True
|
499 |
-
_no_split_modules = ["QwenImageTransformerBlock"]
|
500 |
-
_skip_layerwise_casting_patterns = ["pos_embed", "norm"]
|
501 |
-
_repeated_blocks = ["QwenImageTransformerBlock"]
|
502 |
-
|
503 |
-
@register_to_config
|
504 |
-
def __init__(
|
505 |
-
self,
|
506 |
-
patch_size: int = 2,
|
507 |
-
in_channels: int = 64,
|
508 |
-
out_channels: Optional[int] = 16,
|
509 |
-
num_layers: int = 60,
|
510 |
-
attention_head_dim: int = 128,
|
511 |
-
num_attention_heads: int = 24,
|
512 |
-
joint_attention_dim: int = 3584,
|
513 |
-
guidance_embeds: bool = False, # TODO: this should probably be removed
|
514 |
-
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
|
515 |
-
):
|
516 |
-
super().__init__()
|
517 |
-
self.out_channels = out_channels or in_channels
|
518 |
-
self.inner_dim = num_attention_heads * attention_head_dim
|
519 |
-
|
520 |
-
self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
|
521 |
-
|
522 |
-
self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
|
523 |
-
|
524 |
-
self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
|
525 |
-
|
526 |
-
self.img_in = nn.Linear(in_channels, self.inner_dim)
|
527 |
-
self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
|
528 |
-
|
529 |
-
self.transformer_blocks = nn.ModuleList(
|
530 |
-
[
|
531 |
-
QwenImageTransformerBlock(
|
532 |
-
dim=self.inner_dim,
|
533 |
-
num_attention_heads=num_attention_heads,
|
534 |
-
attention_head_dim=attention_head_dim,
|
535 |
-
)
|
536 |
-
for _ in range(num_layers)
|
537 |
-
]
|
538 |
-
)
|
539 |
-
|
540 |
-
self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
|
541 |
-
self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
|
542 |
-
|
543 |
-
self.gradient_checkpointing = False
|
544 |
-
|
545 |
-
def forward(
|
546 |
-
self,
|
547 |
-
hidden_states: torch.Tensor,
|
548 |
-
encoder_hidden_states: torch.Tensor = None,
|
549 |
-
encoder_hidden_states_mask: torch.Tensor = None,
|
550 |
-
timestep: torch.LongTensor = None,
|
551 |
-
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
552 |
-
guidance: torch.Tensor = None, # TODO: this should probably be removed
|
553 |
-
attention_kwargs: Optional[Dict[str, Any]] = None,
|
554 |
-
return_dict: bool = True,
|
555 |
-
) -> Union[torch.Tensor, Transformer2DModelOutput]:
|
556 |
-
"""
|
557 |
-
The [`QwenTransformer2DModel`] forward method.
|
558 |
-
|
559 |
-
Args:
|
560 |
-
hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
|
561 |
-
Input `hidden_states`.
|
562 |
-
encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
|
563 |
-
Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
|
564 |
-
encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
|
565 |
-
Mask of the input conditions.
|
566 |
-
timestep ( `torch.LongTensor`):
|
567 |
-
Used to indicate denoising step.
|
568 |
-
attention_kwargs (`dict`, *optional*):
|
569 |
-
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
570 |
-
`self.processor` in
|
571 |
-
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
572 |
-
return_dict (`bool`, *optional*, defaults to `True`):
|
573 |
-
Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
|
574 |
-
tuple.
|
575 |
-
|
576 |
-
Returns:
|
577 |
-
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
|
578 |
-
`tuple` where the first element is the sample tensor.
|
579 |
-
"""
|
580 |
-
if attention_kwargs is not None:
|
581 |
-
attention_kwargs = attention_kwargs.copy()
|
582 |
-
lora_scale = attention_kwargs.pop("scale", 1.0)
|
583 |
-
else:
|
584 |
-
lora_scale = 1.0
|
585 |
-
|
586 |
-
if USE_PEFT_BACKEND:
|
587 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
588 |
-
scale_lora_layers(self, lora_scale)
|
589 |
-
else:
|
590 |
-
if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
|
591 |
-
logger.warning(
|
592 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
593 |
-
)
|
594 |
-
|
595 |
-
hidden_states = self.img_in(hidden_states)
|
596 |
-
|
597 |
-
timestep = timestep.to(hidden_states.dtype)
|
598 |
-
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
|
599 |
-
encoder_hidden_states = self.txt_in(encoder_hidden_states)
|
600 |
-
|
601 |
-
if guidance is not None:
|
602 |
-
guidance = guidance.to(hidden_states.dtype) * 1000
|
603 |
-
|
604 |
-
temb = (
|
605 |
-
self.time_text_embed(timestep, hidden_states)
|
606 |
-
if guidance is None
|
607 |
-
else self.time_text_embed(timestep, guidance, hidden_states)
|
608 |
-
)
|
609 |
-
|
610 |
-
for index_block, block in enumerate(self.transformer_blocks):
|
611 |
-
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
612 |
-
encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
|
613 |
-
block,
|
614 |
-
hidden_states,
|
615 |
-
encoder_hidden_states,
|
616 |
-
encoder_hidden_states_mask,
|
617 |
-
temb,
|
618 |
-
image_rotary_emb,
|
619 |
-
)
|
620 |
-
|
621 |
-
else:
|
622 |
-
encoder_hidden_states, hidden_states = block(
|
623 |
-
hidden_states=hidden_states,
|
624 |
-
encoder_hidden_states=encoder_hidden_states,
|
625 |
-
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
626 |
-
temb=temb,
|
627 |
-
image_rotary_emb=image_rotary_emb,
|
628 |
-
joint_attention_kwargs=attention_kwargs,
|
629 |
-
)
|
630 |
-
|
631 |
-
# Use only the image part (hidden_states) from the dual-stream blocks
|
632 |
-
hidden_states = self.norm_out(hidden_states, temb)
|
633 |
-
output = self.proj_out(hidden_states)
|
634 |
-
|
635 |
-
if USE_PEFT_BACKEND:
|
636 |
-
# remove `lora_scale` from each PEFT layer
|
637 |
-
unscale_lora_layers(self, lora_scale)
|
638 |
-
|
639 |
-
if not return_dict:
|
640 |
-
return (output,)
|
641 |
-
|
642 |
-
return Transformer2DModelOutput(sample=output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
CHANGED
@@ -1,10 +1,8 @@
|
|
1 |
-
git+https://github.com/huggingface/diffusers.git
|
2 |
-
|
3 |
-
torchao==0.11.0
|
4 |
transformers
|
5 |
accelerate
|
6 |
safetensors
|
7 |
sentencepiece
|
8 |
dashscope
|
9 |
-
torchvision
|
10 |
-
peft
|
|
|
1 |
+
git+https://github.com/huggingface/diffusers.git
|
2 |
+
|
|
|
3 |
transformers
|
4 |
accelerate
|
5 |
safetensors
|
6 |
sentencepiece
|
7 |
dashscope
|
8 |
+
torchvision
|
|