app.py CHANGED
@@ -5,11 +5,7 @@ import torch
5
  import spaces
6
 
7
  from PIL import Image
8
-
9
- from optimization import optimize_pipeline_
10
- from qwenimage.pipeline_qwen_image_edit import QwenImageEditPipeline
11
- from qwenimage.transformer_qwenimage import QwenImageTransformer2DModel
12
- from qwenimage.qwen_fa3_processor import QwenDoubleStreamAttnProcessorFA3
13
 
14
  import os
15
  import base64
@@ -144,11 +140,6 @@ device = "cuda" if torch.cuda.is_available() else "cpu"
144
 
145
  # Load the model pipeline
146
  pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
147
- pipe.transformer.__class__ = QwenImageTransformer2DModel
148
- pipe.transformer.set_attn_processor(QwenDoubleStreamAttnProcessorFA3())
149
-
150
- # --- Ahead-of-time compilation ---
151
- optimize_pipeline_(pipe, image=Image.new("RGB", (1024, 1024)), prompt="prompt")
152
 
153
  # --- UI Constants and Helpers ---
154
  MAX_SEED = np.iinfo(np.int32).max
@@ -160,7 +151,7 @@ def infer(
160
  prompt,
161
  seed=120,
162
  randomize_seed=False,
163
- true_guidance_scale=4.0,
164
  num_inference_steps=50,
165
  rewrite_prompt=True,
166
  progress=gr.Progress(track_tqdm=True),
 
5
  import spaces
6
 
7
  from PIL import Image
8
+ from diffusers import QwenImageEditPipeline
 
 
 
 
9
 
10
  import os
11
  import base64
 
140
 
141
  # Load the model pipeline
142
  pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
 
 
 
 
 
143
 
144
  # --- UI Constants and Helpers ---
145
  MAX_SEED = np.iinfo(np.int32).max
 
151
  prompt,
152
  seed=120,
153
  randomize_seed=False,
154
+ true_guidance_scale=1.0,
155
  num_inference_steps=50,
156
  rewrite_prompt=True,
157
  progress=gr.Progress(track_tqdm=True),
optimization.py DELETED
@@ -1,70 +0,0 @@
1
- """
2
- """
3
-
4
- from typing import Any
5
- from typing import Callable
6
- from typing import ParamSpec
7
- from torchao.quantization import quantize_
8
- from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
9
- import spaces
10
- import torch
11
- from torch.utils._pytree import tree_map
12
-
13
-
14
- P = ParamSpec('P')
15
-
16
-
17
- TRANSFORMER_IMAGE_SEQ_LENGTH_DIM = torch.export.Dim('image_seq_length')
18
- TRANSFORMER_TEXT_SEQ_LENGTH_DIM = torch.export.Dim('text_seq_length')
19
-
20
- TRANSFORMER_DYNAMIC_SHAPES = {
21
- 'hidden_states': {
22
- 1: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
23
- },
24
- 'encoder_hidden_states': {
25
- 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
26
- },
27
- 'encoder_hidden_states_mask': {
28
- 1: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
29
- },
30
- 'image_rotary_emb': ({
31
- 0: TRANSFORMER_IMAGE_SEQ_LENGTH_DIM,
32
- }, {
33
- 0: TRANSFORMER_TEXT_SEQ_LENGTH_DIM,
34
- }),
35
- }
36
-
37
-
38
- INDUCTOR_CONFIGS = {
39
- 'conv_1x1_as_mm': True,
40
- 'epilogue_fusion': False,
41
- 'coordinate_descent_tuning': True,
42
- 'coordinate_descent_check_all_directions': True,
43
- 'max_autotune': True,
44
- 'triton.cudagraphs': True,
45
- }
46
-
47
-
48
- def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
49
-
50
- @spaces.GPU(duration=1500)
51
- def compile_transformer():
52
-
53
- with spaces.aoti_capture(pipeline.transformer) as call:
54
- pipeline(*args, **kwargs)
55
-
56
- dynamic_shapes = tree_map(lambda t: None, call.kwargs)
57
- dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
58
-
59
- # quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
60
-
61
- exported = torch.export.export(
62
- mod=pipeline.transformer,
63
- args=call.args,
64
- kwargs=call.kwargs,
65
- dynamic_shapes=dynamic_shapes,
66
- )
67
-
68
- return spaces.aoti_compile(exported, INDUCTOR_CONFIGS)
69
-
70
- spaces.aoti_apply(compile_transformer(), pipeline.transformer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
qwenimage/__init__.py DELETED
File without changes
qwenimage/pipeline_qwen_image_edit.py DELETED
@@ -1,857 +0,0 @@
1
- # Copyright 2025 Qwen-Image Team and The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import inspect
16
- import math
17
- from typing import Any, Callable, Dict, List, Optional, Union
18
-
19
- import numpy as np
20
- import torch
21
- from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer, Qwen2VLProcessor
22
-
23
- from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
24
- from diffusers.loaders import QwenImageLoraLoaderMixin
25
- from diffusers.models import AutoencoderKLQwenImage, QwenImageTransformer2DModel
26
- from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
27
- from diffusers.utils import is_torch_xla_available, logging, replace_example_docstring
28
- from diffusers.utils.torch_utils import randn_tensor
29
- from diffusers.pipelines.pipeline_utils import DiffusionPipeline
30
- from diffusers.pipelines.qwenimage.pipeline_output import QwenImagePipelineOutput
31
-
32
-
33
- if is_torch_xla_available():
34
- import torch_xla.core.xla_model as xm
35
-
36
- XLA_AVAILABLE = True
37
- else:
38
- XLA_AVAILABLE = False
39
-
40
-
41
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
42
-
43
- EXAMPLE_DOC_STRING = """
44
- Examples:
45
- ```py
46
- >>> import torch
47
- >>> from PIL import Image
48
- >>> from diffusers import QwenImageEditPipeline
49
- >>> from diffusers.utils import load_image
50
-
51
- >>> pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=torch.bfloat16)
52
- >>> pipe.to("cuda")
53
- >>> image = load_image(
54
- ... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/yarn-art-pikachu.png"
55
- ... ).convert("RGB")
56
- >>> prompt = (
57
- ... "Make Pikachu hold a sign that says 'Qwen Edit is awesome', yarn art style, detailed, vibrant colors"
58
- ... )
59
- >>> # Depending on the variant being used, the pipeline call will slightly vary.
60
- >>> # Refer to the pipeline documentation for more details.
61
- >>> image = pipe(image, prompt, num_inference_steps=50).images[0]
62
- >>> image.save("qwenimage_edit.png")
63
- ```
64
- """
65
-
66
-
67
- # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.calculate_shift
68
- def calculate_shift(
69
- image_seq_len,
70
- base_seq_len: int = 256,
71
- max_seq_len: int = 4096,
72
- base_shift: float = 0.5,
73
- max_shift: float = 1.15,
74
- ):
75
- m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
76
- b = base_shift - m * base_seq_len
77
- mu = image_seq_len * m + b
78
- return mu
79
-
80
-
81
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
82
- def retrieve_timesteps(
83
- scheduler,
84
- num_inference_steps: Optional[int] = None,
85
- device: Optional[Union[str, torch.device]] = None,
86
- timesteps: Optional[List[int]] = None,
87
- sigmas: Optional[List[float]] = None,
88
- **kwargs,
89
- ):
90
- r"""
91
- Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
92
- custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
93
-
94
- Args:
95
- scheduler (`SchedulerMixin`):
96
- The scheduler to get timesteps from.
97
- num_inference_steps (`int`):
98
- The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
99
- must be `None`.
100
- device (`str` or `torch.device`, *optional*):
101
- The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
102
- timesteps (`List[int]`, *optional*):
103
- Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
104
- `num_inference_steps` and `sigmas` must be `None`.
105
- sigmas (`List[float]`, *optional*):
106
- Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
107
- `num_inference_steps` and `timesteps` must be `None`.
108
-
109
- Returns:
110
- `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
111
- second element is the number of inference steps.
112
- """
113
- if timesteps is not None and sigmas is not None:
114
- raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
115
- if timesteps is not None:
116
- accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
117
- if not accepts_timesteps:
118
- raise ValueError(
119
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
120
- f" timestep schedules. Please check whether you are using the correct scheduler."
121
- )
122
- scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
123
- timesteps = scheduler.timesteps
124
- num_inference_steps = len(timesteps)
125
- elif sigmas is not None:
126
- accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
127
- if not accept_sigmas:
128
- raise ValueError(
129
- f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
130
- f" sigmas schedules. Please check whether you are using the correct scheduler."
131
- )
132
- scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
133
- timesteps = scheduler.timesteps
134
- num_inference_steps = len(timesteps)
135
- else:
136
- scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
137
- timesteps = scheduler.timesteps
138
- return timesteps, num_inference_steps
139
-
140
-
141
- # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
142
- def retrieve_latents(
143
- encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
144
- ):
145
- if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
146
- return encoder_output.latent_dist.sample(generator)
147
- elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
148
- return encoder_output.latent_dist.mode()
149
- elif hasattr(encoder_output, "latents"):
150
- return encoder_output.latents
151
- else:
152
- raise AttributeError("Could not access latents of provided encoder_output")
153
-
154
-
155
- def calculate_dimensions(target_area, ratio):
156
- width = math.sqrt(target_area * ratio)
157
- height = width / ratio
158
-
159
- width = round(width / 32) * 32
160
- height = round(height / 32) * 32
161
-
162
- return width, height, None
163
-
164
-
165
- class QwenImageEditPipeline(DiffusionPipeline, QwenImageLoraLoaderMixin):
166
- r"""
167
- The Qwen-Image-Edit pipeline for image editing.
168
-
169
- Args:
170
- transformer ([`QwenImageTransformer2DModel`]):
171
- Conditional Transformer (MMDiT) architecture to denoise the encoded image latents.
172
- scheduler ([`FlowMatchEulerDiscreteScheduler`]):
173
- A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
174
- vae ([`AutoencoderKL`]):
175
- Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
176
- text_encoder ([`Qwen2.5-VL-7B-Instruct`]):
177
- [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct), specifically the
178
- [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) variant.
179
- tokenizer (`QwenTokenizer`):
180
- Tokenizer of class
181
- [CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
182
- """
183
-
184
- model_cpu_offload_seq = "text_encoder->transformer->vae"
185
- _callback_tensor_inputs = ["latents", "prompt_embeds"]
186
-
187
- def __init__(
188
- self,
189
- scheduler: FlowMatchEulerDiscreteScheduler,
190
- vae: AutoencoderKLQwenImage,
191
- text_encoder: Qwen2_5_VLForConditionalGeneration,
192
- tokenizer: Qwen2Tokenizer,
193
- processor: Qwen2VLProcessor,
194
- transformer: QwenImageTransformer2DModel,
195
- ):
196
- super().__init__()
197
-
198
- self.register_modules(
199
- vae=vae,
200
- text_encoder=text_encoder,
201
- tokenizer=tokenizer,
202
- processor=processor,
203
- transformer=transformer,
204
- scheduler=scheduler,
205
- )
206
- self.vae_scale_factor = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
207
- self.latent_channels = self.vae.config.z_dim if getattr(self, "vae", None) else 16
208
- # QwenImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
209
- # by the patch size. So the vae scale factor is multiplied by the patch size to account for this
210
- self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
211
- self.vl_processor = processor
212
- self.tokenizer_max_length = 1024
213
-
214
- self.prompt_template_encode = "<|im_start|>system\nDescribe the key features of the input image (color, shape, size, texture, objects, background), then explain how the user's text instruction should alter or modify the image. Generate a new image that meets the user's requirements while maintaining consistency with the original input where appropriate.<|im_end|>\n<|im_start|>user\n<|vision_start|><|image_pad|><|vision_end|>{}<|im_end|>\n<|im_start|>assistant\n"
215
- self.prompt_template_encode_start_idx = 64
216
- self.default_sample_size = 128
217
-
218
- # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._extract_masked_hidden
219
- def _extract_masked_hidden(self, hidden_states: torch.Tensor, mask: torch.Tensor):
220
- bool_mask = mask.bool()
221
- valid_lengths = bool_mask.sum(dim=1)
222
- selected = hidden_states[bool_mask]
223
- split_result = torch.split(selected, valid_lengths.tolist(), dim=0)
224
-
225
- return split_result
226
-
227
- def _get_qwen_prompt_embeds(
228
- self,
229
- prompt: Union[str, List[str]] = None,
230
- image: Optional[torch.Tensor] = None,
231
- device: Optional[torch.device] = None,
232
- dtype: Optional[torch.dtype] = None,
233
- ):
234
- device = device or self._execution_device
235
- dtype = dtype or self.text_encoder.dtype
236
-
237
- prompt = [prompt] if isinstance(prompt, str) else prompt
238
-
239
- template = self.prompt_template_encode
240
- drop_idx = self.prompt_template_encode_start_idx
241
- txt = [template.format(e) for e in prompt]
242
-
243
- model_inputs = self.processor(
244
- text=txt,
245
- images=image,
246
- padding=True,
247
- return_tensors="pt",
248
- ).to(device)
249
-
250
- outputs = self.text_encoder(
251
- input_ids=model_inputs.input_ids,
252
- attention_mask=model_inputs.attention_mask,
253
- pixel_values=model_inputs.pixel_values,
254
- image_grid_thw=model_inputs.image_grid_thw,
255
- output_hidden_states=True,
256
- )
257
-
258
- hidden_states = outputs.hidden_states[-1]
259
- split_hidden_states = self._extract_masked_hidden(hidden_states, model_inputs.attention_mask)
260
- split_hidden_states = [e[drop_idx:] for e in split_hidden_states]
261
- attn_mask_list = [torch.ones(e.size(0), dtype=torch.long, device=e.device) for e in split_hidden_states]
262
- max_seq_len = max([e.size(0) for e in split_hidden_states])
263
- prompt_embeds = torch.stack(
264
- [torch.cat([u, u.new_zeros(max_seq_len - u.size(0), u.size(1))]) for u in split_hidden_states]
265
- )
266
- encoder_attention_mask = torch.stack(
267
- [torch.cat([u, u.new_zeros(max_seq_len - u.size(0))]) for u in attn_mask_list]
268
- )
269
-
270
- prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
271
-
272
- return prompt_embeds, encoder_attention_mask
273
-
274
- def encode_prompt(
275
- self,
276
- prompt: Union[str, List[str]],
277
- image: Optional[torch.Tensor] = None,
278
- device: Optional[torch.device] = None,
279
- num_images_per_prompt: int = 1,
280
- prompt_embeds: Optional[torch.Tensor] = None,
281
- prompt_embeds_mask: Optional[torch.Tensor] = None,
282
- max_sequence_length: int = 1024,
283
- ):
284
- r"""
285
-
286
- Args:
287
- prompt (`str` or `List[str]`, *optional*):
288
- prompt to be encoded
289
- image (`torch.Tensor`, *optional*):
290
- image to be encoded
291
- device: (`torch.device`):
292
- torch device
293
- num_images_per_prompt (`int`):
294
- number of images that should be generated per prompt
295
- prompt_embeds (`torch.Tensor`, *optional*):
296
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
297
- provided, text embeddings will be generated from `prompt` input argument.
298
- """
299
- device = device or self._execution_device
300
-
301
- prompt = [prompt] if isinstance(prompt, str) else prompt
302
- batch_size = len(prompt) if prompt_embeds is None else prompt_embeds.shape[0]
303
-
304
- if prompt_embeds is None:
305
- prompt_embeds, prompt_embeds_mask = self._get_qwen_prompt_embeds(prompt, image, device)
306
-
307
- _, seq_len, _ = prompt_embeds.shape
308
- prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
309
- prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
310
- prompt_embeds_mask = prompt_embeds_mask.repeat(1, num_images_per_prompt, 1)
311
- prompt_embeds_mask = prompt_embeds_mask.view(batch_size * num_images_per_prompt, seq_len)
312
-
313
- return prompt_embeds, prompt_embeds_mask
314
-
315
- def check_inputs(
316
- self,
317
- prompt,
318
- height,
319
- width,
320
- negative_prompt=None,
321
- prompt_embeds=None,
322
- negative_prompt_embeds=None,
323
- prompt_embeds_mask=None,
324
- negative_prompt_embeds_mask=None,
325
- callback_on_step_end_tensor_inputs=None,
326
- max_sequence_length=None,
327
- ):
328
- if height % (self.vae_scale_factor * 2) != 0 or width % (self.vae_scale_factor * 2) != 0:
329
- logger.warning(
330
- f"`height` and `width` have to be divisible by {self.vae_scale_factor * 2} but are {height} and {width}. Dimensions will be resized accordingly"
331
- )
332
-
333
- if callback_on_step_end_tensor_inputs is not None and not all(
334
- k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
335
- ):
336
- raise ValueError(
337
- f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
338
- )
339
-
340
- if prompt is not None and prompt_embeds is not None:
341
- raise ValueError(
342
- f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
343
- " only forward one of the two."
344
- )
345
- elif prompt is None and prompt_embeds is None:
346
- raise ValueError(
347
- "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
348
- )
349
- elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
350
- raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
351
-
352
- if negative_prompt is not None and negative_prompt_embeds is not None:
353
- raise ValueError(
354
- f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
355
- f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
356
- )
357
-
358
- if prompt_embeds is not None and prompt_embeds_mask is None:
359
- raise ValueError(
360
- "If `prompt_embeds` are provided, `prompt_embeds_mask` also have to be passed. Make sure to generate `prompt_embeds_mask` from the same text encoder that was used to generate `prompt_embeds`."
361
- )
362
- if negative_prompt_embeds is not None and negative_prompt_embeds_mask is None:
363
- raise ValueError(
364
- "If `negative_prompt_embeds` are provided, `negative_prompt_embeds_mask` also have to be passed. Make sure to generate `negative_prompt_embeds_mask` from the same text encoder that was used to generate `negative_prompt_embeds`."
365
- )
366
-
367
- if max_sequence_length is not None and max_sequence_length > 1024:
368
- raise ValueError(f"`max_sequence_length` cannot be greater than 1024 but is {max_sequence_length}")
369
-
370
- @staticmethod
371
- # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._pack_latents
372
- def _pack_latents(latents, batch_size, num_channels_latents, height, width):
373
- latents = latents.view(batch_size, num_channels_latents, height // 2, 2, width // 2, 2)
374
- latents = latents.permute(0, 2, 4, 1, 3, 5)
375
- latents = latents.reshape(batch_size, (height // 2) * (width // 2), num_channels_latents * 4)
376
-
377
- return latents
378
-
379
- @staticmethod
380
- # Copied from diffusers.pipelines.qwenimage.pipeline_qwenimage.QwenImagePipeline._unpack_latents
381
- def _unpack_latents(latents, height, width, vae_scale_factor):
382
- batch_size, num_patches, channels = latents.shape
383
-
384
- # VAE applies 8x compression on images but we must also account for packing which requires
385
- # latent height and width to be divisible by 2.
386
- height = 2 * (int(height) // (vae_scale_factor * 2))
387
- width = 2 * (int(width) // (vae_scale_factor * 2))
388
-
389
- latents = latents.view(batch_size, height // 2, width // 2, channels // 4, 2, 2)
390
- latents = latents.permute(0, 3, 1, 4, 2, 5)
391
-
392
- latents = latents.reshape(batch_size, channels // (2 * 2), 1, height, width)
393
-
394
- return latents
395
-
396
- def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator):
397
- if isinstance(generator, list):
398
- image_latents = [
399
- retrieve_latents(self.vae.encode(image[i : i + 1]), generator=generator[i], sample_mode="argmax")
400
- for i in range(image.shape[0])
401
- ]
402
- image_latents = torch.cat(image_latents, dim=0)
403
- else:
404
- image_latents = retrieve_latents(self.vae.encode(image), generator=generator, sample_mode="argmax")
405
- latents_mean = (
406
- torch.tensor(self.vae.config.latents_mean)
407
- .view(1, self.latent_channels, 1, 1, 1)
408
- .to(image_latents.device, image_latents.dtype)
409
- )
410
- latents_std = (
411
- torch.tensor(self.vae.config.latents_std)
412
- .view(1, self.latent_channels, 1, 1, 1)
413
- .to(image_latents.device, image_latents.dtype)
414
- )
415
- image_latents = (image_latents - latents_mean) / latents_std
416
-
417
- return image_latents
418
-
419
- def enable_vae_slicing(self):
420
- r"""
421
- Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
422
- compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
423
- """
424
- self.vae.enable_slicing()
425
-
426
- def disable_vae_slicing(self):
427
- r"""
428
- Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
429
- computing decoding in one step.
430
- """
431
- self.vae.disable_slicing()
432
-
433
- def enable_vae_tiling(self):
434
- r"""
435
- Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
436
- compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
437
- processing larger images.
438
- """
439
- self.vae.enable_tiling()
440
-
441
- def disable_vae_tiling(self):
442
- r"""
443
- Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
444
- computing decoding in one step.
445
- """
446
- self.vae.disable_tiling()
447
-
448
- def prepare_latents(
449
- self,
450
- image,
451
- batch_size,
452
- num_channels_latents,
453
- height,
454
- width,
455
- dtype,
456
- device,
457
- generator,
458
- latents=None,
459
- ):
460
- # VAE applies 8x compression on images but we must also account for packing which requires
461
- # latent height and width to be divisible by 2.
462
- height = 2 * (int(height) // (self.vae_scale_factor * 2))
463
- width = 2 * (int(width) // (self.vae_scale_factor * 2))
464
-
465
- shape = (batch_size, 1, num_channels_latents, height, width)
466
-
467
- image_latents = None
468
- if image is not None:
469
- image = image.to(device=device, dtype=dtype)
470
- if image.shape[1] != self.latent_channels:
471
- image_latents = self._encode_vae_image(image=image, generator=generator)
472
- else:
473
- image_latents = image
474
- if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
475
- # expand init_latents for batch_size
476
- additional_image_per_prompt = batch_size // image_latents.shape[0]
477
- image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
478
- elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
479
- raise ValueError(
480
- f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
481
- )
482
- else:
483
- image_latents = torch.cat([image_latents], dim=0)
484
-
485
- image_latent_height, image_latent_width = image_latents.shape[3:]
486
- image_latents = self._pack_latents(
487
- image_latents, batch_size, num_channels_latents, image_latent_height, image_latent_width
488
- )
489
-
490
- if isinstance(generator, list) and len(generator) != batch_size:
491
- raise ValueError(
492
- f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
493
- f" size of {batch_size}. Make sure the batch size matches the length of the generators."
494
- )
495
- if latents is None:
496
- latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
497
- latents = self._pack_latents(latents, batch_size, num_channels_latents, height, width)
498
- else:
499
- latents = latents.to(device=device, dtype=dtype)
500
-
501
- return latents, image_latents
502
-
503
- @property
504
- def guidance_scale(self):
505
- return self._guidance_scale
506
-
507
- @property
508
- def attention_kwargs(self):
509
- return self._attention_kwargs
510
-
511
- @property
512
- def num_timesteps(self):
513
- return self._num_timesteps
514
-
515
- @property
516
- def current_timestep(self):
517
- return self._current_timestep
518
-
519
- @property
520
- def interrupt(self):
521
- return self._interrupt
522
-
523
- @torch.no_grad()
524
- @replace_example_docstring(EXAMPLE_DOC_STRING)
525
- def __call__(
526
- self,
527
- image: Optional[PipelineImageInput] = None,
528
- prompt: Union[str, List[str]] = None,
529
- negative_prompt: Union[str, List[str]] = None,
530
- true_cfg_scale: float = 4.0,
531
- height: Optional[int] = None,
532
- width: Optional[int] = None,
533
- num_inference_steps: int = 50,
534
- sigmas: Optional[List[float]] = None,
535
- guidance_scale: float = 1.0,
536
- num_images_per_prompt: int = 1,
537
- generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
538
- latents: Optional[torch.Tensor] = None,
539
- prompt_embeds: Optional[torch.Tensor] = None,
540
- prompt_embeds_mask: Optional[torch.Tensor] = None,
541
- negative_prompt_embeds: Optional[torch.Tensor] = None,
542
- negative_prompt_embeds_mask: Optional[torch.Tensor] = None,
543
- output_type: Optional[str] = "pil",
544
- return_dict: bool = True,
545
- attention_kwargs: Optional[Dict[str, Any]] = None,
546
- callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
547
- callback_on_step_end_tensor_inputs: List[str] = ["latents"],
548
- max_sequence_length: int = 512,
549
- ):
550
- r"""
551
- Function invoked when calling the pipeline for generation.
552
-
553
- Args:
554
- prompt (`str` or `List[str]`, *optional*):
555
- The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
556
- instead.
557
- negative_prompt (`str` or `List[str]`, *optional*):
558
- The prompt or prompts not to guide the image generation. If not defined, one has to pass
559
- `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is
560
- not greater than `1`).
561
- true_cfg_scale (`float`, *optional*, defaults to 1.0):
562
- When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance.
563
- height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
564
- The height in pixels of the generated image. This is set to 1024 by default for the best results.
565
- width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor):
566
- The width in pixels of the generated image. This is set to 1024 by default for the best results.
567
- num_inference_steps (`int`, *optional*, defaults to 50):
568
- The number of denoising steps. More denoising steps usually lead to a higher quality image at the
569
- expense of slower inference.
570
- sigmas (`List[float]`, *optional*):
571
- Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
572
- their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
573
- will be used.
574
- guidance_scale (`float`, *optional*, defaults to 3.5):
575
- Guidance scale as defined in [Classifier-Free Diffusion
576
- Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
577
- of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
578
- `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
579
- the text `prompt`, usually at the expense of lower image quality.
580
-
581
- This parameter in the pipeline is there to support future guidance-distilled models when they come up.
582
- Note that passing `guidance_scale` to the pipeline is ineffective. To enable classifier-free guidance,
583
- please pass `true_cfg_scale` and `negative_prompt` (even an empty negative prompt like " ") should
584
- enable classifier-free guidance computations.
585
- num_images_per_prompt (`int`, *optional*, defaults to 1):
586
- The number of images to generate per prompt.
587
- generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
588
- One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
589
- to make generation deterministic.
590
- latents (`torch.Tensor`, *optional*):
591
- Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
592
- generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
593
- tensor will be generated by sampling using the supplied random `generator`.
594
- prompt_embeds (`torch.Tensor`, *optional*):
595
- Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
596
- provided, text embeddings will be generated from `prompt` input argument.
597
- negative_prompt_embeds (`torch.Tensor`, *optional*):
598
- Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
599
- weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
600
- argument.
601
- output_type (`str`, *optional*, defaults to `"pil"`):
602
- The output format of the generate image. Choose between
603
- [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
604
- return_dict (`bool`, *optional*, defaults to `True`):
605
- Whether or not to return a [`~pipelines.qwenimage.QwenImagePipelineOutput`] instead of a plain tuple.
606
- attention_kwargs (`dict`, *optional*):
607
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
608
- `self.processor` in
609
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
610
- callback_on_step_end (`Callable`, *optional*):
611
- A function that calls at the end of each denoising steps during the inference. The function is called
612
- with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
613
- callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
614
- `callback_on_step_end_tensor_inputs`.
615
- callback_on_step_end_tensor_inputs (`List`, *optional*):
616
- The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
617
- will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
618
- `._callback_tensor_inputs` attribute of your pipeline class.
619
- max_sequence_length (`int` defaults to 512): Maximum sequence length to use with the `prompt`.
620
-
621
- Examples:
622
-
623
- Returns:
624
- [`~pipelines.qwenimage.QwenImagePipelineOutput`] or `tuple`:
625
- [`~pipelines.qwenimage.QwenImagePipelineOutput`] if `return_dict` is True, otherwise a `tuple`. When
626
- returning a tuple, the first element is a list with the generated images.
627
- """
628
- image_size = image[0].size if isinstance(image, list) else image.size
629
- calculated_width, calculated_height, _ = calculate_dimensions(1024 * 1024, image_size[0] / image_size[1])
630
- height = height or calculated_height
631
- width = width or calculated_width
632
-
633
- multiple_of = self.vae_scale_factor * 2
634
- width = width // multiple_of * multiple_of
635
- height = height // multiple_of * multiple_of
636
-
637
- # 1. Check inputs. Raise error if not correct
638
- self.check_inputs(
639
- prompt,
640
- height,
641
- width,
642
- negative_prompt=negative_prompt,
643
- prompt_embeds=prompt_embeds,
644
- negative_prompt_embeds=negative_prompt_embeds,
645
- prompt_embeds_mask=prompt_embeds_mask,
646
- negative_prompt_embeds_mask=negative_prompt_embeds_mask,
647
- callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
648
- max_sequence_length=max_sequence_length,
649
- )
650
-
651
- self._guidance_scale = guidance_scale
652
- self._attention_kwargs = attention_kwargs
653
- self._current_timestep = None
654
- self._interrupt = False
655
-
656
- # 2. Define call parameters
657
- if prompt is not None and isinstance(prompt, str):
658
- batch_size = 1
659
- elif prompt is not None and isinstance(prompt, list):
660
- batch_size = len(prompt)
661
- else:
662
- batch_size = prompt_embeds.shape[0]
663
-
664
- device = self._execution_device
665
- # 3. Preprocess image
666
- if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels):
667
- image = self.image_processor.resize(image, calculated_height, calculated_width)
668
- prompt_image = image
669
- image = self.image_processor.preprocess(image, calculated_height, calculated_width)
670
- image = image.unsqueeze(2)
671
-
672
- has_neg_prompt = negative_prompt is not None or (
673
- negative_prompt_embeds is not None and negative_prompt_embeds_mask is not None
674
- )
675
- do_true_cfg = true_cfg_scale > 1 and has_neg_prompt
676
- prompt_embeds, prompt_embeds_mask = self.encode_prompt(
677
- image=prompt_image,
678
- prompt=prompt,
679
- prompt_embeds=prompt_embeds,
680
- prompt_embeds_mask=prompt_embeds_mask,
681
- device=device,
682
- num_images_per_prompt=num_images_per_prompt,
683
- max_sequence_length=max_sequence_length,
684
- )
685
- if do_true_cfg:
686
- negative_prompt_embeds, negative_prompt_embeds_mask = self.encode_prompt(
687
- image=prompt_image,
688
- prompt=negative_prompt,
689
- prompt_embeds=negative_prompt_embeds,
690
- prompt_embeds_mask=negative_prompt_embeds_mask,
691
- device=device,
692
- num_images_per_prompt=num_images_per_prompt,
693
- max_sequence_length=max_sequence_length,
694
- )
695
-
696
- # 4. Prepare latent variables
697
- num_channels_latents = self.transformer.config.in_channels // 4
698
- latents, image_latents = self.prepare_latents(
699
- image,
700
- batch_size * num_images_per_prompt,
701
- num_channels_latents,
702
- height,
703
- width,
704
- prompt_embeds.dtype,
705
- device,
706
- generator,
707
- latents,
708
- )
709
- img_shapes = [
710
- [
711
- (1, height // self.vae_scale_factor // 2, width // self.vae_scale_factor // 2),
712
- (1, calculated_height // self.vae_scale_factor // 2, calculated_width // self.vae_scale_factor // 2),
713
- ]
714
- ] * batch_size
715
-
716
- # 5. Prepare timesteps
717
- sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas
718
- image_seq_len = latents.shape[1]
719
- mu = calculate_shift(
720
- image_seq_len,
721
- self.scheduler.config.get("base_image_seq_len", 256),
722
- self.scheduler.config.get("max_image_seq_len", 4096),
723
- self.scheduler.config.get("base_shift", 0.5),
724
- self.scheduler.config.get("max_shift", 1.15),
725
- )
726
- timesteps, num_inference_steps = retrieve_timesteps(
727
- self.scheduler,
728
- num_inference_steps,
729
- device,
730
- sigmas=sigmas,
731
- mu=mu,
732
- )
733
- num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
734
- self._num_timesteps = len(timesteps)
735
-
736
- # handle guidance
737
- if self.transformer.config.guidance_embeds:
738
- guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32)
739
- guidance = guidance.expand(latents.shape[0])
740
- else:
741
- guidance = None
742
-
743
- if self.attention_kwargs is None:
744
- self._attention_kwargs = {}
745
-
746
- txt_seq_lens = prompt_embeds_mask.sum(dim=1).tolist() if prompt_embeds_mask is not None else None
747
-
748
- image_rotary_emb = self.transformer.pos_embed(img_shapes, txt_seq_lens, device=latents.device)
749
- if do_true_cfg:
750
- negative_txt_seq_lens = (
751
- negative_prompt_embeds_mask.sum(dim=1).tolist()
752
- if negative_prompt_embeds_mask is not None
753
- else None
754
- )
755
- uncond_image_rotary_emb = self.transformer.pos_embed(
756
- img_shapes, negative_txt_seq_lens, device=latents.device
757
- )
758
- else:
759
- uncond_image_rotary_emb = None
760
-
761
- # 6. Denoising loop
762
- self.scheduler.set_begin_index(0)
763
- with self.progress_bar(total=num_inference_steps) as progress_bar:
764
- for i, t in enumerate(timesteps):
765
- if self.interrupt:
766
- continue
767
-
768
- self._current_timestep = t
769
-
770
- latent_model_input = latents
771
- if image_latents is not None:
772
- latent_model_input = torch.cat([latents, image_latents], dim=1)
773
-
774
- # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
775
- timestep = t.expand(latents.shape[0]).to(latents.dtype)
776
- with self.transformer.cache_context("cond"):
777
- noise_pred = self.transformer(
778
- hidden_states=latent_model_input,
779
- timestep=timestep / 1000,
780
- guidance=guidance,
781
- encoder_hidden_states_mask=prompt_embeds_mask,
782
- encoder_hidden_states=prompt_embeds,
783
- image_rotary_emb=image_rotary_emb,
784
- attention_kwargs=self.attention_kwargs,
785
- return_dict=False,
786
- )[0]
787
- noise_pred = noise_pred[:, : latents.size(1)]
788
-
789
- if do_true_cfg:
790
- with self.transformer.cache_context("uncond"):
791
- neg_noise_pred = self.transformer(
792
- hidden_states=latent_model_input,
793
- timestep=timestep / 1000,
794
- guidance=guidance,
795
- encoder_hidden_states_mask=negative_prompt_embeds_mask,
796
- encoder_hidden_states=negative_prompt_embeds,
797
- image_rotary_emb=uncond_image_rotary_emb,
798
- attention_kwargs=self.attention_kwargs,
799
- return_dict=False,
800
- )[0]
801
- neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
802
- comb_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
803
-
804
- cond_norm = torch.norm(noise_pred, dim=-1, keepdim=True)
805
- noise_norm = torch.norm(comb_pred, dim=-1, keepdim=True)
806
- noise_pred = comb_pred * (cond_norm / noise_norm)
807
-
808
- # compute the previous noisy sample x_t -> x_t-1
809
- latents_dtype = latents.dtype
810
- latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
811
-
812
- if latents.dtype != latents_dtype:
813
- if torch.backends.mps.is_available():
814
- # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
815
- latents = latents.to(latents_dtype)
816
-
817
- if callback_on_step_end is not None:
818
- callback_kwargs = {}
819
- for k in callback_on_step_end_tensor_inputs:
820
- callback_kwargs[k] = locals()[k]
821
- callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
822
-
823
- latents = callback_outputs.pop("latents", latents)
824
- prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
825
-
826
- # call the callback, if provided
827
- if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
828
- progress_bar.update()
829
-
830
- if XLA_AVAILABLE:
831
- xm.mark_step()
832
-
833
- self._current_timestep = None
834
- if output_type == "latent":
835
- image = latents
836
- else:
837
- latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
838
- latents = latents.to(self.vae.dtype)
839
- latents_mean = (
840
- torch.tensor(self.vae.config.latents_mean)
841
- .view(1, self.vae.config.z_dim, 1, 1, 1)
842
- .to(latents.device, latents.dtype)
843
- )
844
- latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
845
- latents.device, latents.dtype
846
- )
847
- latents = latents / latents_std + latents_mean
848
- image = self.vae.decode(latents, return_dict=False)[0][:, :, 0]
849
- image = self.image_processor.postprocess(image, output_type=output_type)
850
-
851
- # Offload all models
852
- self.maybe_free_model_hooks()
853
-
854
- if not return_dict:
855
- return (image,)
856
-
857
- return QwenImagePipelineOutput(images=image)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
qwenimage/qwen_fa3_processor.py DELETED
@@ -1,142 +0,0 @@
1
- """
2
- Paired with a good language model. Thanks!
3
- """
4
-
5
- import torch
6
- from typing import Optional, Tuple
7
- from diffusers.models.transformers.transformer_qwenimage import apply_rotary_emb_qwen
8
-
9
- try:
10
- from kernels import get_kernel
11
- _k = get_kernel("kernels-community/vllm-flash-attn3")
12
- _flash_attn_func = _k.flash_attn_func
13
- except Exception as e:
14
- _flash_attn_func = None
15
- _kernels_err = e
16
-
17
-
18
- def _ensure_fa3_available():
19
- if _flash_attn_func is None:
20
- raise ImportError(
21
- "FlashAttention-3 via Hugging Face `kernels` is required. "
22
- "Tried `get_kernel('kernels-community/vllm-flash-attn3')` and failed with:\n"
23
- f"{_kernels_err}"
24
- )
25
-
26
- @torch.library.custom_op("flash::flash_attn_func", mutates_args=())
27
- def flash_attn_func(
28
- q: torch.Tensor, k: torch.Tensor, v: torch.Tensor, causal: bool = False
29
- ) -> torch.Tensor:
30
- outputs, lse = _flash_attn_func(q, k, v, causal=causal)
31
- return outputs
32
-
33
- @flash_attn_func.register_fake
34
- def _(q, k, v, **kwargs):
35
- # two outputs:
36
- # 1. output: (batch, seq_len, num_heads, head_dim)
37
- # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32
38
- meta_q = torch.empty_like(q).contiguous()
39
- return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32)
40
-
41
-
42
- class QwenDoubleStreamAttnProcessorFA3:
43
- """
44
- FA3-based attention processor for Qwen double-stream architecture.
45
- Computes joint attention over concatenated [text, image] streams using vLLM FlashAttention-3
46
- accessed via Hugging Face `kernels`.
47
-
48
- Notes / limitations:
49
- - General attention masks are not supported here (FA3 path). `is_causal=False` and no arbitrary mask.
50
- - Optional windowed attention / sink tokens / softcap can be plumbed through if you use those features.
51
- - Expects an available `apply_rotary_emb_qwen` in scope (same as your non-FA3 processor).
52
- """
53
-
54
- _attention_backend = "fa3" # for parity with your other processors, not used internally
55
-
56
- def __init__(self):
57
- _ensure_fa3_available()
58
-
59
- @torch.no_grad()
60
- def __call__(
61
- self,
62
- attn, # Attention module with to_q/to_k/to_v/add_*_proj, norms, to_out, to_add_out, and .heads
63
- hidden_states: torch.FloatTensor, # (B, S_img, D_model) image stream
64
- encoder_hidden_states: torch.FloatTensor = None, # (B, S_txt, D_model) text stream
65
- encoder_hidden_states_mask: torch.FloatTensor = None, # unused in FA3 path
66
- attention_mask: Optional[torch.FloatTensor] = None, # unused in FA3 path
67
- image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # (img_freqs, txt_freqs)
68
- ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
69
- if encoder_hidden_states is None:
70
- raise ValueError("QwenDoubleStreamAttnProcessorFA3 requires encoder_hidden_states (text stream).")
71
- if attention_mask is not None:
72
- # FA3 kernel path here does not consume arbitrary masks; fail fast to avoid silent correctness issues.
73
- raise NotImplementedError("attention_mask is not supported in this FA3 implementation.")
74
-
75
- _ensure_fa3_available()
76
-
77
- B, S_img, _ = hidden_states.shape
78
- S_txt = encoder_hidden_states.shape[1]
79
-
80
- # ---- QKV projections (image/sample stream) ----
81
- img_q = attn.to_q(hidden_states) # (B, S_img, D)
82
- img_k = attn.to_k(hidden_states)
83
- img_v = attn.to_v(hidden_states)
84
-
85
- # ---- QKV projections (text/context stream) ----
86
- txt_q = attn.add_q_proj(encoder_hidden_states) # (B, S_txt, D)
87
- txt_k = attn.add_k_proj(encoder_hidden_states)
88
- txt_v = attn.add_v_proj(encoder_hidden_states)
89
-
90
- # ---- Reshape to (B, S, H, D_h) ----
91
- H = attn.heads
92
- img_q = img_q.unflatten(-1, (H, -1))
93
- img_k = img_k.unflatten(-1, (H, -1))
94
- img_v = img_v.unflatten(-1, (H, -1))
95
-
96
- txt_q = txt_q.unflatten(-1, (H, -1))
97
- txt_k = txt_k.unflatten(-1, (H, -1))
98
- txt_v = txt_v.unflatten(-1, (H, -1))
99
-
100
- # ---- Q/K normalization (per your module contract) ----
101
- if getattr(attn, "norm_q", None) is not None:
102
- img_q = attn.norm_q(img_q)
103
- if getattr(attn, "norm_k", None) is not None:
104
- img_k = attn.norm_k(img_k)
105
- if getattr(attn, "norm_added_q", None) is not None:
106
- txt_q = attn.norm_added_q(txt_q)
107
- if getattr(attn, "norm_added_k", None) is not None:
108
- txt_k = attn.norm_added_k(txt_k)
109
-
110
- # ---- RoPE (Qwen variant) ----
111
- if image_rotary_emb is not None:
112
- img_freqs, txt_freqs = image_rotary_emb
113
- # expects tensors shaped (B, S, H, D_h)
114
- img_q = apply_rotary_emb_qwen(img_q, img_freqs, use_real=False)
115
- img_k = apply_rotary_emb_qwen(img_k, img_freqs, use_real=False)
116
- txt_q = apply_rotary_emb_qwen(txt_q, txt_freqs, use_real=False)
117
- txt_k = apply_rotary_emb_qwen(txt_k, txt_freqs, use_real=False)
118
-
119
- # ---- Joint attention over [text, image] along sequence axis ----
120
- # Shapes: (B, S_total, H, D_h)
121
- q = torch.cat([txt_q, img_q], dim=1)
122
- k = torch.cat([txt_k, img_k], dim=1)
123
- v = torch.cat([txt_v, img_v], dim=1)
124
-
125
- # FlashAttention-3 path expects (B, S, H, D_h) and returns (out, softmax_lse)
126
- out = flash_attn_func(q, k, v, causal=False) # out: (B, S_total, H, D_h)
127
-
128
- # ---- Back to (B, S, D_model) ----
129
- out = out.flatten(2, 3).to(q.dtype)
130
-
131
- # Split back to text / image segments
132
- txt_attn_out = out[:, :S_txt, :]
133
- img_attn_out = out[:, S_txt:, :]
134
-
135
- # ---- Output projections ----
136
- img_attn_out = attn.to_out[0](img_attn_out)
137
- if len(attn.to_out) > 1:
138
- img_attn_out = attn.to_out[1](img_attn_out) # dropout if present
139
-
140
- txt_attn_out = attn.to_add_out(txt_attn_out)
141
-
142
- return img_attn_out, txt_attn_out
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
qwenimage/transformer_qwenimage.py DELETED
@@ -1,642 +0,0 @@
1
- # Copyright 2025 Qwen-Image Team, The HuggingFace Team. All rights reserved.
2
- #
3
- # Licensed under the Apache License, Version 2.0 (the "License");
4
- # you may not use this file except in compliance with the License.
5
- # You may obtain a copy of the License at
6
- #
7
- # http://www.apache.org/licenses/LICENSE-2.0
8
- #
9
- # Unless required by applicable law or agreed to in writing, software
10
- # distributed under the License is distributed on an "AS IS" BASIS,
11
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
- # See the License for the specific language governing permissions and
13
- # limitations under the License.
14
-
15
- import functools
16
- import math
17
- from typing import Any, Dict, List, Optional, Tuple, Union
18
-
19
- import torch
20
- import torch.nn as nn
21
- import torch.nn.functional as F
22
-
23
- from diffusers.configuration_utils import ConfigMixin, register_to_config
24
- from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
25
- from diffusers.utils import USE_PEFT_BACKEND, logging, scale_lora_layers, unscale_lora_layers
26
- from diffusers.utils.torch_utils import maybe_allow_in_graph
27
- from diffusers.models.attention import FeedForward, AttentionMixin
28
- from diffusers.models.attention_dispatch import dispatch_attention_fn
29
- from diffusers.models.attention_processor import Attention
30
- from diffusers.models.cache_utils import CacheMixin
31
- from diffusers.models.embeddings import TimestepEmbedding, Timesteps
32
- from diffusers.models.modeling_outputs import Transformer2DModelOutput
33
- from diffusers.models.modeling_utils import ModelMixin
34
- from diffusers.models.normalization import AdaLayerNormContinuous, RMSNorm
35
-
36
-
37
- logger = logging.get_logger(__name__) # pylint: disable=invalid-name
38
-
39
-
40
- def get_timestep_embedding(
41
- timesteps: torch.Tensor,
42
- embedding_dim: int,
43
- flip_sin_to_cos: bool = False,
44
- downscale_freq_shift: float = 1,
45
- scale: float = 1,
46
- max_period: int = 10000,
47
- ) -> torch.Tensor:
48
- """
49
- This matches the implementation in Denoising Diffusion Probabilistic Models: Create sinusoidal timestep embeddings.
50
-
51
- Args
52
- timesteps (torch.Tensor):
53
- a 1-D Tensor of N indices, one per batch element. These may be fractional.
54
- embedding_dim (int):
55
- the dimension of the output.
56
- flip_sin_to_cos (bool):
57
- Whether the embedding order should be `cos, sin` (if True) or `sin, cos` (if False)
58
- downscale_freq_shift (float):
59
- Controls the delta between frequencies between dimensions
60
- scale (float):
61
- Scaling factor applied to the embeddings.
62
- max_period (int):
63
- Controls the maximum frequency of the embeddings
64
- Returns
65
- torch.Tensor: an [N x dim] Tensor of positional embeddings.
66
- """
67
- assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
68
-
69
- half_dim = embedding_dim // 2
70
- exponent = -math.log(max_period) * torch.arange(
71
- start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
72
- )
73
- exponent = exponent / (half_dim - downscale_freq_shift)
74
-
75
- emb = torch.exp(exponent).to(timesteps.dtype)
76
- emb = timesteps[:, None].float() * emb[None, :]
77
-
78
- # scale embeddings
79
- emb = scale * emb
80
-
81
- # concat sine and cosine embeddings
82
- emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=-1)
83
-
84
- # flip sine and cosine embeddings
85
- if flip_sin_to_cos:
86
- emb = torch.cat([emb[:, half_dim:], emb[:, :half_dim]], dim=-1)
87
-
88
- # zero pad
89
- if embedding_dim % 2 == 1:
90
- emb = torch.nn.functional.pad(emb, (0, 1, 0, 0))
91
- return emb
92
-
93
-
94
- def apply_rotary_emb_qwen(
95
- x: torch.Tensor,
96
- freqs_cis: Union[torch.Tensor, Tuple[torch.Tensor]],
97
- use_real: bool = True,
98
- use_real_unbind_dim: int = -1,
99
- ) -> Tuple[torch.Tensor, torch.Tensor]:
100
- """
101
- Apply rotary embeddings to input tensors using the given frequency tensor. This function applies rotary embeddings
102
- to the given query or key 'x' tensors using the provided frequency tensor 'freqs_cis'. The input tensors are
103
- reshaped as complex numbers, and the frequency tensor is reshaped for broadcasting compatibility. The resulting
104
- tensors contain rotary embeddings and are returned as real tensors.
105
-
106
- Args:
107
- x (`torch.Tensor`):
108
- Query or key tensor to apply rotary embeddings. [B, S, H, D] xk (torch.Tensor): Key tensor to apply
109
- freqs_cis (`Tuple[torch.Tensor]`): Precomputed frequency tensor for complex exponentials. ([S, D], [S, D],)
110
-
111
- Returns:
112
- Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings.
113
- """
114
- if use_real:
115
- cos, sin = freqs_cis # [S, D]
116
- cos = cos[None, None]
117
- sin = sin[None, None]
118
- cos, sin = cos.to(x.device), sin.to(x.device)
119
-
120
- if use_real_unbind_dim == -1:
121
- # Used for flux, cogvideox, hunyuan-dit
122
- x_real, x_imag = x.reshape(*x.shape[:-1], -1, 2).unbind(-1) # [B, S, H, D//2]
123
- x_rotated = torch.stack([-x_imag, x_real], dim=-1).flatten(3)
124
- elif use_real_unbind_dim == -2:
125
- # Used for Stable Audio, OmniGen, CogView4 and Cosmos
126
- x_real, x_imag = x.reshape(*x.shape[:-1], 2, -1).unbind(-2) # [B, S, H, D//2]
127
- x_rotated = torch.cat([-x_imag, x_real], dim=-1)
128
- else:
129
- raise ValueError(f"`use_real_unbind_dim={use_real_unbind_dim}` but should be -1 or -2.")
130
-
131
- out = (x.float() * cos + x_rotated.float() * sin).to(x.dtype)
132
-
133
- return out
134
- else:
135
- x_rotated = torch.view_as_complex(x.float().reshape(*x.shape[:-1], -1, 2))
136
- freqs_cis = freqs_cis.unsqueeze(1)
137
- x_out = torch.view_as_real(x_rotated * freqs_cis).flatten(3)
138
-
139
- return x_out.type_as(x)
140
-
141
-
142
- class QwenTimestepProjEmbeddings(nn.Module):
143
- def __init__(self, embedding_dim):
144
- super().__init__()
145
-
146
- self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
147
- self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim)
148
-
149
- def forward(self, timestep, hidden_states):
150
- timesteps_proj = self.time_proj(timestep)
151
- timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype)) # (N, D)
152
-
153
- conditioning = timesteps_emb
154
-
155
- return conditioning
156
-
157
-
158
- class QwenEmbedRope(nn.Module):
159
- def __init__(self, theta: int, axes_dim: List[int], scale_rope=False):
160
- super().__init__()
161
- self.theta = theta
162
- self.axes_dim = axes_dim
163
- pos_index = torch.arange(4096)
164
- neg_index = torch.arange(4096).flip(0) * -1 - 1
165
- self.pos_freqs = torch.cat(
166
- [
167
- self.rope_params(pos_index, self.axes_dim[0], self.theta),
168
- self.rope_params(pos_index, self.axes_dim[1], self.theta),
169
- self.rope_params(pos_index, self.axes_dim[2], self.theta),
170
- ],
171
- dim=1,
172
- )
173
- self.neg_freqs = torch.cat(
174
- [
175
- self.rope_params(neg_index, self.axes_dim[0], self.theta),
176
- self.rope_params(neg_index, self.axes_dim[1], self.theta),
177
- self.rope_params(neg_index, self.axes_dim[2], self.theta),
178
- ],
179
- dim=1,
180
- )
181
- self.rope_cache = {}
182
-
183
- # DO NOT USING REGISTER BUFFER HERE, IT WILL CAUSE COMPLEX NUMBERS LOSE ITS IMAGINARY PART
184
- self.scale_rope = scale_rope
185
-
186
- def rope_params(self, index, dim, theta=10000):
187
- """
188
- Args:
189
- index: [0, 1, 2, 3] 1D Tensor representing the position index of the token
190
- """
191
- assert dim % 2 == 0
192
- freqs = torch.outer(index, 1.0 / torch.pow(theta, torch.arange(0, dim, 2).to(torch.float32).div(dim)))
193
- freqs = torch.polar(torch.ones_like(freqs), freqs)
194
- return freqs
195
-
196
- def forward(self, video_fhw, txt_seq_lens, device):
197
- """
198
- Args: video_fhw: [frame, height, width] a list of 3 integers representing the shape of the video Args:
199
- txt_length: [bs] a list of 1 integers representing the length of the text
200
- """
201
- if self.pos_freqs.device != device:
202
- self.pos_freqs = self.pos_freqs.to(device)
203
- self.neg_freqs = self.neg_freqs.to(device)
204
-
205
- if isinstance(video_fhw, list):
206
- video_fhw = video_fhw[0]
207
- if not isinstance(video_fhw, list):
208
- video_fhw = [video_fhw]
209
-
210
- vid_freqs = []
211
- max_vid_index = 0
212
- for idx, fhw in enumerate(video_fhw):
213
- frame, height, width = fhw
214
- rope_key = f"{idx}_{height}_{width}"
215
-
216
- if not torch.compiler.is_compiling():
217
- if rope_key not in self.rope_cache:
218
- self.rope_cache[rope_key] = self._compute_video_freqs(frame, height, width, idx)
219
- video_freq = self.rope_cache[rope_key]
220
- else:
221
- video_freq = self._compute_video_freqs(frame, height, width, idx)
222
- video_freq = video_freq.to(device)
223
- vid_freqs.append(video_freq)
224
-
225
- if self.scale_rope:
226
- max_vid_index = max(height // 2, width // 2, max_vid_index)
227
- else:
228
- max_vid_index = max(height, width, max_vid_index)
229
-
230
- max_len = max(txt_seq_lens)
231
- txt_freqs = self.pos_freqs[max_vid_index : max_vid_index + max_len, ...]
232
- vid_freqs = torch.cat(vid_freqs, dim=0)
233
-
234
- return vid_freqs, txt_freqs
235
-
236
- @functools.lru_cache(maxsize=None)
237
- def _compute_video_freqs(self, frame, height, width, idx=0):
238
- seq_lens = frame * height * width
239
- freqs_pos = self.pos_freqs.split([x // 2 for x in self.axes_dim], dim=1)
240
- freqs_neg = self.neg_freqs.split([x // 2 for x in self.axes_dim], dim=1)
241
-
242
- freqs_frame = freqs_pos[0][idx : idx + frame].view(frame, 1, 1, -1).expand(frame, height, width, -1)
243
- if self.scale_rope:
244
- freqs_height = torch.cat([freqs_neg[1][-(height - height // 2) :], freqs_pos[1][: height // 2]], dim=0)
245
- freqs_height = freqs_height.view(1, height, 1, -1).expand(frame, height, width, -1)
246
- freqs_width = torch.cat([freqs_neg[2][-(width - width // 2) :], freqs_pos[2][: width // 2]], dim=0)
247
- freqs_width = freqs_width.view(1, 1, width, -1).expand(frame, height, width, -1)
248
- else:
249
- freqs_height = freqs_pos[1][:height].view(1, height, 1, -1).expand(frame, height, width, -1)
250
- freqs_width = freqs_pos[2][:width].view(1, 1, width, -1).expand(frame, height, width, -1)
251
-
252
- freqs = torch.cat([freqs_frame, freqs_height, freqs_width], dim=-1).reshape(seq_lens, -1)
253
- return freqs.clone().contiguous()
254
-
255
-
256
- class QwenDoubleStreamAttnProcessor2_0:
257
- """
258
- Attention processor for Qwen double-stream architecture, matching DoubleStreamLayerMegatron logic. This processor
259
- implements joint attention computation where text and image streams are processed together.
260
- """
261
-
262
- _attention_backend = None
263
-
264
- def __init__(self):
265
- if not hasattr(F, "scaled_dot_product_attention"):
266
- raise ImportError(
267
- "QwenDoubleStreamAttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0."
268
- )
269
-
270
- def __call__(
271
- self,
272
- attn: Attention,
273
- hidden_states: torch.FloatTensor, # Image stream
274
- encoder_hidden_states: torch.FloatTensor = None, # Text stream
275
- encoder_hidden_states_mask: torch.FloatTensor = None,
276
- attention_mask: Optional[torch.FloatTensor] = None,
277
- image_rotary_emb: Optional[torch.Tensor] = None,
278
- ) -> torch.FloatTensor:
279
- if encoder_hidden_states is None:
280
- raise ValueError("QwenDoubleStreamAttnProcessor2_0 requires encoder_hidden_states (text stream)")
281
-
282
- seq_txt = encoder_hidden_states.shape[1]
283
-
284
- # Compute QKV for image stream (sample projections)
285
- img_query = attn.to_q(hidden_states)
286
- img_key = attn.to_k(hidden_states)
287
- img_value = attn.to_v(hidden_states)
288
-
289
- # Compute QKV for text stream (context projections)
290
- txt_query = attn.add_q_proj(encoder_hidden_states)
291
- txt_key = attn.add_k_proj(encoder_hidden_states)
292
- txt_value = attn.add_v_proj(encoder_hidden_states)
293
-
294
- # Reshape for multi-head attention
295
- img_query = img_query.unflatten(-1, (attn.heads, -1))
296
- img_key = img_key.unflatten(-1, (attn.heads, -1))
297
- img_value = img_value.unflatten(-1, (attn.heads, -1))
298
-
299
- txt_query = txt_query.unflatten(-1, (attn.heads, -1))
300
- txt_key = txt_key.unflatten(-1, (attn.heads, -1))
301
- txt_value = txt_value.unflatten(-1, (attn.heads, -1))
302
-
303
- # Apply QK normalization
304
- if attn.norm_q is not None:
305
- img_query = attn.norm_q(img_query)
306
- if attn.norm_k is not None:
307
- img_key = attn.norm_k(img_key)
308
- if attn.norm_added_q is not None:
309
- txt_query = attn.norm_added_q(txt_query)
310
- if attn.norm_added_k is not None:
311
- txt_key = attn.norm_added_k(txt_key)
312
-
313
- # Apply RoPE
314
- if image_rotary_emb is not None:
315
- img_freqs, txt_freqs = image_rotary_emb
316
- img_query = apply_rotary_emb_qwen(img_query, img_freqs, use_real=False)
317
- img_key = apply_rotary_emb_qwen(img_key, img_freqs, use_real=False)
318
- txt_query = apply_rotary_emb_qwen(txt_query, txt_freqs, use_real=False)
319
- txt_key = apply_rotary_emb_qwen(txt_key, txt_freqs, use_real=False)
320
-
321
- # Concatenate for joint attention
322
- # Order: [text, image]
323
- joint_query = torch.cat([txt_query, img_query], dim=1)
324
- joint_key = torch.cat([txt_key, img_key], dim=1)
325
- joint_value = torch.cat([txt_value, img_value], dim=1)
326
-
327
- # Compute joint attention
328
- joint_hidden_states = dispatch_attention_fn(
329
- joint_query,
330
- joint_key,
331
- joint_value,
332
- attn_mask=attention_mask,
333
- dropout_p=0.0,
334
- is_causal=False,
335
- backend=self._attention_backend,
336
- )
337
-
338
- # Reshape back
339
- joint_hidden_states = joint_hidden_states.flatten(2, 3)
340
- joint_hidden_states = joint_hidden_states.to(joint_query.dtype)
341
-
342
- # Split attention outputs back
343
- txt_attn_output = joint_hidden_states[:, :seq_txt, :] # Text part
344
- img_attn_output = joint_hidden_states[:, seq_txt:, :] # Image part
345
-
346
- # Apply output projections
347
- img_attn_output = attn.to_out[0](img_attn_output)
348
- if len(attn.to_out) > 1:
349
- img_attn_output = attn.to_out[1](img_attn_output) # dropout
350
-
351
- txt_attn_output = attn.to_add_out(txt_attn_output)
352
-
353
- return img_attn_output, txt_attn_output
354
-
355
-
356
- @maybe_allow_in_graph
357
- class QwenImageTransformerBlock(nn.Module):
358
- def __init__(
359
- self, dim: int, num_attention_heads: int, attention_head_dim: int, qk_norm: str = "rms_norm", eps: float = 1e-6
360
- ):
361
- super().__init__()
362
-
363
- self.dim = dim
364
- self.num_attention_heads = num_attention_heads
365
- self.attention_head_dim = attention_head_dim
366
-
367
- # Image processing modules
368
- self.img_mod = nn.Sequential(
369
- nn.SiLU(),
370
- nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
371
- )
372
- self.img_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
373
- self.attn = Attention(
374
- query_dim=dim,
375
- cross_attention_dim=None, # Enable cross attention for joint computation
376
- added_kv_proj_dim=dim, # Enable added KV projections for text stream
377
- dim_head=attention_head_dim,
378
- heads=num_attention_heads,
379
- out_dim=dim,
380
- context_pre_only=False,
381
- bias=True,
382
- processor=QwenDoubleStreamAttnProcessor2_0(),
383
- qk_norm=qk_norm,
384
- eps=eps,
385
- )
386
- self.img_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
387
- self.img_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
388
-
389
- # Text processing modules
390
- self.txt_mod = nn.Sequential(
391
- nn.SiLU(),
392
- nn.Linear(dim, 6 * dim, bias=True), # For scale, shift, gate for norm1 and norm2
393
- )
394
- self.txt_norm1 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
395
- # Text doesn't need separate attention - it's handled by img_attn joint computation
396
- self.txt_norm2 = nn.LayerNorm(dim, elementwise_affine=False, eps=eps)
397
- self.txt_mlp = FeedForward(dim=dim, dim_out=dim, activation_fn="gelu-approximate")
398
-
399
- def _modulate(self, x, mod_params):
400
- """Apply modulation to input tensor"""
401
- shift, scale, gate = mod_params.chunk(3, dim=-1)
402
- return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1), gate.unsqueeze(1)
403
-
404
- def forward(
405
- self,
406
- hidden_states: torch.Tensor,
407
- encoder_hidden_states: torch.Tensor,
408
- encoder_hidden_states_mask: torch.Tensor,
409
- temb: torch.Tensor,
410
- image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
411
- joint_attention_kwargs: Optional[Dict[str, Any]] = None,
412
- ) -> Tuple[torch.Tensor, torch.Tensor]:
413
- # Get modulation parameters for both streams
414
- img_mod_params = self.img_mod(temb) # [B, 6*dim]
415
- txt_mod_params = self.txt_mod(temb) # [B, 6*dim]
416
-
417
- # Split modulation parameters for norm1 and norm2
418
- img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
419
- txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1) # Each [B, 3*dim]
420
-
421
- # Process image stream - norm1 + modulation
422
- img_normed = self.img_norm1(hidden_states)
423
- img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
424
-
425
- # Process text stream - norm1 + modulation
426
- txt_normed = self.txt_norm1(encoder_hidden_states)
427
- txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
428
-
429
- # Use QwenAttnProcessor2_0 for joint attention computation
430
- # This directly implements the DoubleStreamLayerMegatron logic:
431
- # 1. Computes QKV for both streams
432
- # 2. Applies QK normalization and RoPE
433
- # 3. Concatenates and runs joint attention
434
- # 4. Splits results back to separate streams
435
- joint_attention_kwargs = joint_attention_kwargs or {}
436
- attn_output = self.attn(
437
- hidden_states=img_modulated, # Image stream (will be processed as "sample")
438
- encoder_hidden_states=txt_modulated, # Text stream (will be processed as "context")
439
- encoder_hidden_states_mask=encoder_hidden_states_mask,
440
- image_rotary_emb=image_rotary_emb,
441
- **joint_attention_kwargs,
442
- )
443
-
444
- # QwenAttnProcessor2_0 returns (img_output, txt_output) when encoder_hidden_states is provided
445
- img_attn_output, txt_attn_output = attn_output
446
-
447
- # Apply attention gates and add residual (like in Megatron)
448
- hidden_states = hidden_states + img_gate1 * img_attn_output
449
- encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
450
-
451
- # Process image stream - norm2 + MLP
452
- img_normed2 = self.img_norm2(hidden_states)
453
- img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
454
- img_mlp_output = self.img_mlp(img_modulated2)
455
- hidden_states = hidden_states + img_gate2 * img_mlp_output
456
-
457
- # Process text stream - norm2 + MLP
458
- txt_normed2 = self.txt_norm2(encoder_hidden_states)
459
- txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
460
- txt_mlp_output = self.txt_mlp(txt_modulated2)
461
- encoder_hidden_states = encoder_hidden_states + txt_gate2 * txt_mlp_output
462
-
463
- # Clip to prevent overflow for fp16
464
- if encoder_hidden_states.dtype == torch.float16:
465
- encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
466
- if hidden_states.dtype == torch.float16:
467
- hidden_states = hidden_states.clip(-65504, 65504)
468
-
469
- return encoder_hidden_states, hidden_states
470
-
471
-
472
- class QwenImageTransformer2DModel(ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin, CacheMixin, AttentionMixin):
473
- """
474
- The Transformer model introduced in Qwen.
475
-
476
- Args:
477
- patch_size (`int`, defaults to `2`):
478
- Patch size to turn the input data into small patches.
479
- in_channels (`int`, defaults to `64`):
480
- The number of channels in the input.
481
- out_channels (`int`, *optional*, defaults to `None`):
482
- The number of channels in the output. If not specified, it defaults to `in_channels`.
483
- num_layers (`int`, defaults to `60`):
484
- The number of layers of dual stream DiT blocks to use.
485
- attention_head_dim (`int`, defaults to `128`):
486
- The number of dimensions to use for each attention head.
487
- num_attention_heads (`int`, defaults to `24`):
488
- The number of attention heads to use.
489
- joint_attention_dim (`int`, defaults to `3584`):
490
- The number of dimensions to use for the joint attention (embedding/channel dimension of
491
- `encoder_hidden_states`).
492
- guidance_embeds (`bool`, defaults to `False`):
493
- Whether to use guidance embeddings for guidance-distilled variant of the model.
494
- axes_dims_rope (`Tuple[int]`, defaults to `(16, 56, 56)`):
495
- The dimensions to use for the rotary positional embeddings.
496
- """
497
-
498
- _supports_gradient_checkpointing = True
499
- _no_split_modules = ["QwenImageTransformerBlock"]
500
- _skip_layerwise_casting_patterns = ["pos_embed", "norm"]
501
- _repeated_blocks = ["QwenImageTransformerBlock"]
502
-
503
- @register_to_config
504
- def __init__(
505
- self,
506
- patch_size: int = 2,
507
- in_channels: int = 64,
508
- out_channels: Optional[int] = 16,
509
- num_layers: int = 60,
510
- attention_head_dim: int = 128,
511
- num_attention_heads: int = 24,
512
- joint_attention_dim: int = 3584,
513
- guidance_embeds: bool = False, # TODO: this should probably be removed
514
- axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
515
- ):
516
- super().__init__()
517
- self.out_channels = out_channels or in_channels
518
- self.inner_dim = num_attention_heads * attention_head_dim
519
-
520
- self.pos_embed = QwenEmbedRope(theta=10000, axes_dim=list(axes_dims_rope), scale_rope=True)
521
-
522
- self.time_text_embed = QwenTimestepProjEmbeddings(embedding_dim=self.inner_dim)
523
-
524
- self.txt_norm = RMSNorm(joint_attention_dim, eps=1e-6)
525
-
526
- self.img_in = nn.Linear(in_channels, self.inner_dim)
527
- self.txt_in = nn.Linear(joint_attention_dim, self.inner_dim)
528
-
529
- self.transformer_blocks = nn.ModuleList(
530
- [
531
- QwenImageTransformerBlock(
532
- dim=self.inner_dim,
533
- num_attention_heads=num_attention_heads,
534
- attention_head_dim=attention_head_dim,
535
- )
536
- for _ in range(num_layers)
537
- ]
538
- )
539
-
540
- self.norm_out = AdaLayerNormContinuous(self.inner_dim, self.inner_dim, elementwise_affine=False, eps=1e-6)
541
- self.proj_out = nn.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True)
542
-
543
- self.gradient_checkpointing = False
544
-
545
- def forward(
546
- self,
547
- hidden_states: torch.Tensor,
548
- encoder_hidden_states: torch.Tensor = None,
549
- encoder_hidden_states_mask: torch.Tensor = None,
550
- timestep: torch.LongTensor = None,
551
- image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
552
- guidance: torch.Tensor = None, # TODO: this should probably be removed
553
- attention_kwargs: Optional[Dict[str, Any]] = None,
554
- return_dict: bool = True,
555
- ) -> Union[torch.Tensor, Transformer2DModelOutput]:
556
- """
557
- The [`QwenTransformer2DModel`] forward method.
558
-
559
- Args:
560
- hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
561
- Input `hidden_states`.
562
- encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
563
- Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
564
- encoder_hidden_states_mask (`torch.Tensor` of shape `(batch_size, text_sequence_length)`):
565
- Mask of the input conditions.
566
- timestep ( `torch.LongTensor`):
567
- Used to indicate denoising step.
568
- attention_kwargs (`dict`, *optional*):
569
- A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
570
- `self.processor` in
571
- [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
572
- return_dict (`bool`, *optional*, defaults to `True`):
573
- Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
574
- tuple.
575
-
576
- Returns:
577
- If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
578
- `tuple` where the first element is the sample tensor.
579
- """
580
- if attention_kwargs is not None:
581
- attention_kwargs = attention_kwargs.copy()
582
- lora_scale = attention_kwargs.pop("scale", 1.0)
583
- else:
584
- lora_scale = 1.0
585
-
586
- if USE_PEFT_BACKEND:
587
- # weight the lora layers by setting `lora_scale` for each PEFT layer
588
- scale_lora_layers(self, lora_scale)
589
- else:
590
- if attention_kwargs is not None and attention_kwargs.get("scale", None) is not None:
591
- logger.warning(
592
- "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
593
- )
594
-
595
- hidden_states = self.img_in(hidden_states)
596
-
597
- timestep = timestep.to(hidden_states.dtype)
598
- encoder_hidden_states = self.txt_norm(encoder_hidden_states)
599
- encoder_hidden_states = self.txt_in(encoder_hidden_states)
600
-
601
- if guidance is not None:
602
- guidance = guidance.to(hidden_states.dtype) * 1000
603
-
604
- temb = (
605
- self.time_text_embed(timestep, hidden_states)
606
- if guidance is None
607
- else self.time_text_embed(timestep, guidance, hidden_states)
608
- )
609
-
610
- for index_block, block in enumerate(self.transformer_blocks):
611
- if torch.is_grad_enabled() and self.gradient_checkpointing:
612
- encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
613
- block,
614
- hidden_states,
615
- encoder_hidden_states,
616
- encoder_hidden_states_mask,
617
- temb,
618
- image_rotary_emb,
619
- )
620
-
621
- else:
622
- encoder_hidden_states, hidden_states = block(
623
- hidden_states=hidden_states,
624
- encoder_hidden_states=encoder_hidden_states,
625
- encoder_hidden_states_mask=encoder_hidden_states_mask,
626
- temb=temb,
627
- image_rotary_emb=image_rotary_emb,
628
- joint_attention_kwargs=attention_kwargs,
629
- )
630
-
631
- # Use only the image part (hidden_states) from the dual-stream blocks
632
- hidden_states = self.norm_out(hidden_states, temb)
633
- output = self.proj_out(hidden_states)
634
-
635
- if USE_PEFT_BACKEND:
636
- # remove `lora_scale` from each PEFT layer
637
- unscale_lora_layers(self, lora_scale)
638
-
639
- if not return_dict:
640
- return (output,)
641
-
642
- return Transformer2DModelOutput(sample=output)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
requirements.txt CHANGED
@@ -1,10 +1,8 @@
1
- git+https://github.com/huggingface/diffusers.git@qwenimage-lru-cache-bypass
2
- kernels
3
- torchao==0.11.0
4
  transformers
5
  accelerate
6
  safetensors
7
  sentencepiece
8
  dashscope
9
- torchvision
10
- peft
 
1
+ git+https://github.com/huggingface/diffusers.git
2
+
 
3
  transformers
4
  accelerate
5
  safetensors
6
  sentencepiece
7
  dashscope
8
+ torchvision