File size: 14,512 Bytes
fc8abe1 823b52c 907c533 c2354bc 907c533 78f318b fc8abe1 823b52c c60d2d1 823b52c c60d2d1 907c533 fc8abe1 823b52c 14e49ed 823b52c 91d4500 823b52c ea7a2a8 823b52c ea7a2a8 823b52c ea7a2a8 823b52c ea7a2a8 907c533 a280495 823b52c 4586bfa 823b52c 78f318b 823b52c c60d2d1 a4da1a9 823b52c c60d2d1 823b52c c60d2d1 823b52c fc8abe1 bab30c5 fc8abe1 a280495 7c26327 bab30c5 a280495 7c26327 bab30c5 7c26327 bab30c5 78f318b bab30c5 7c26327 bab30c5 7c26327 bab30c5 7c26327 bab30c5 7c26327 bab30c5 7c26327 bab30c5 7c26327 bab30c5 4586bfa 7c26327 4586bfa 7c26327 bab30c5 4586bfa bab30c5 7c26327 bab30c5 7c26327 20a37c7 4586bfa 20a37c7 4586bfa 20a37c7 b7e5770 c60d2d1 4586bfa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 |
import re
import pandas as pd
import os
from huggingface_hub import InferenceClient
class DataProcessor:
INTERVENTION_COLUMN_OPTIONS = [
'Did the intervention happen today?',
'Did the intervention take place today?'
]
YES_RESPONSES = ['yes', 'assessment day'] # Added this line
ENGAGED_STR = 'Engaged'
PARTIALLY_ENGAGED_STR = 'Partially Engaged'
NOT_ENGAGED_STR = 'Not Engaged'
def __init__(self, student_metrics_df=None):
self.hf_api_key = os.getenv('HF_API_KEY')
if not self.hf_api_key:
raise ValueError("HF_API_KEY not set in environment variables")
self.client = InferenceClient(api_key=self.hf_api_key)
self.student_metrics_df = student_metrics_df
self.intervention_column = None # Will be set when processing data
def read_excel(self, uploaded_file):
return pd.read_excel(uploaded_file)
def format_session_data(self, df):
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
if date_column:
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
else:
print("Warning: Neither 'Date of Session' nor 'Date' column found in the dataframe.")
df['Timestamp'] = self.safe_convert_to_datetime(df['Timestamp'], '%I:%M %p')
df['Session Start Time'] = self.safe_convert_to_time(df['Session Start Time'], '%I:%M %p')
df['Session End Time'] = self.safe_convert_to_time(df['Session End Time'], '%I:%M %p')
return df
def safe_convert_to_time(self, series, format_str='%I:%M %p'):
try:
converted = pd.to_datetime(series, format='%H:%M:%S', errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to time: {e}")
return series
def safe_convert_to_datetime(self, series, format_str=None):
try:
converted = pd.to_datetime(series, errors='coerce')
if format_str:
return converted.dt.strftime(format_str)
return converted
except Exception as e:
print(f"Error converting series to datetime: {e}")
return series
def replace_student_names_with_initials(self, df):
updated_columns = []
for col in df.columns:
if 'Student Attendance' in col:
# Search for the last occurrence of text within square brackets at the end of the string
match = re.search(r'\[(.+?)\]$', col)
if not match:
# Handle cases where the closing bracket might be missing
match = re.search(r'\[(.+)$', col)
if match:
name = match.group(1).strip()
# Remove any trailing closing bracket if it wasn't matched earlier
name = name.rstrip(']')
# Get initials
initials = ''.join([part[0] for part in name.strip().split()])
updated_col = f'Student Attendance [{initials}]'
updated_columns.append(updated_col)
else:
# If no match is found, keep the column name as is
updated_columns.append(col)
else:
updated_columns.append(col)
df.columns = updated_columns
return df
def find_intervention_column(self, df):
for column in self.INTERVENTION_COLUMN_OPTIONS:
if column in df.columns:
self.intervention_column = column
return column
raise ValueError("No intervention column found in the dataframe.")
def get_intervention_column(self, df):
if self.intervention_column is None:
self.intervention_column = self.find_intervention_column(df)
return self.intervention_column
def compute_intervention_statistics(self, df):
intervention_column = self.get_intervention_column(df)
total_days = len(df)
sessions_held = df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES).sum() # Modified line
intervention_frequency = (sessions_held / total_days) * 100 if total_days > 0 else 0
return pd.DataFrame({
'Intervention Dosage (%)': [round(intervention_frequency, 0)],
'Intervention Sessions Held': [sessions_held],
'Intervention Sessions Not Held': [total_days - sessions_held],
'Total Number of Days Available': [total_days]
})
def classify_engagement(self, engagement_str):
engagement_str = str(engagement_str).lower()
if engagement_str.startswith(self.ENGAGED_STR.lower()):
return self.ENGAGED_STR
elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
return self.PARTIALLY_ENGAGED_STR
elif engagement_str.startswith(self.NOT_ENGAGED_STR.lower()):
return self.NOT_ENGAGED_STR
else:
return 'Unknown'
# def compute_student_metrics(self, df):
# intervention_column = self.get_intervention_column(df)
# intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)] # Modified line
# intervention_sessions_held = len(intervention_df)
# student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
# student_metrics = {}
# for col in student_columns:
# student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
# student_data = intervention_df[[col]].copy()
# student_data[col] = student_data[col].fillna('Absent')
# attendance_values = student_data[col].apply(lambda x: 1 if self.classify_engagement(x) in [
# self.ENGAGED_STR,
# self.PARTIALLY_ENGAGED_STR,
# self.NOT_ENGAGED_STR
# ] else 0)
# sessions_attended = attendance_values.sum()
# attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
# attendance_pct = round(attendance_pct)
# engagement_counts = {
# self.ENGAGED_STR: 0,
# self.PARTIALLY_ENGAGED_STR: 0,
# self.NOT_ENGAGED_STR: 0,
# 'Absent': 0
# }
# for x in student_data[col]:
# classified_engagement = self.classify_engagement(x)
# if classified_engagement in engagement_counts:
# engagement_counts[classified_engagement] += 1
# else:
# engagement_counts['Absent'] += 1 # Count as Absent if not engaged
# total_sessions = sum(engagement_counts.values())
# engaged_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
# engaged_pct = round(engaged_pct)
# partially_engaged_pct = (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
# partially_engaged_pct = round(partially_engaged_pct)
# not_engaged_pct = (engagement_counts[self.NOT_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
# not_engaged_pct = round(not_engaged_pct)
# absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
# absent_pct = round(absent_pct)
# # Engagement percentage is based on Engaged and Partially Engaged sessions
# engagement_pct = ((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_sessions * 100) if total_sessions > 0 else 0
# engagement_pct = round(engagement_pct)
# # Determine if the student attended ≥ 90% of sessions
# attended_90 = "Yes" if attendance_pct >= 90 else "No"
# # Determine if the student was engaged ≥ 80% of the time
# engaged_80 = "Yes" if engagement_pct >= 80 else "No"
# # Store metrics in the required order
# student_metrics[student_name] = {
# 'Attended ≥ 90%': attended_90,
# 'Engagement ≥ 80%': engaged_80,
# 'Attendance (%)': attendance_pct,
# 'Engagement (%)': engagement_pct,
# f'{self.ENGAGED_STR} (%)': engaged_pct,
# f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
# f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
# 'Absent (%)': absent_pct
# }
# # Create a DataFrame from student_metrics
# student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
# student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
# return student_metrics_df
def compute_student_metrics(self, df):
intervention_column = self.get_intervention_column(df)
intervention_df = df[df[intervention_column].str.strip().str.lower().isin(self.YES_RESPONSES)]
intervention_sessions_held = len(intervention_df)
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
student_metrics = {}
for col in student_columns:
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
student_data = intervention_df[[col]].copy()
student_data[col] = student_data[col].fillna('Absent')
# Classify each entry
student_data['Engagement'] = student_data[col].apply(self.classify_engagement)
# Calculate attendance
attendance_values = student_data['Engagement'].apply(
lambda x: 1 if x in [self.ENGAGED_STR, self.PARTIALLY_ENGAGED_STR, self.NOT_ENGAGED_STR] else 0
)
sessions_attended = attendance_values.sum()
attendance_pct = (sessions_attended / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
attendance_pct = round(attendance_pct)
# Engagement counts (excluding 'Absent')
engagement_counts = {
self.ENGAGED_STR: 0,
self.PARTIALLY_ENGAGED_STR: 0,
self.NOT_ENGAGED_STR: 0
}
# Count the engagement types, excluding 'Absent'
for x in student_data['Engagement']:
if x in engagement_counts:
engagement_counts[x] += 1
# 'Absent' is not counted in engagement_counts
total_present_sessions = sum(engagement_counts.values())
engaged_pct = (
(engagement_counts[self.ENGAGED_STR] / total_present_sessions * 100)
if total_present_sessions > 0 else 0
)
engaged_pct = round(engaged_pct)
partially_engaged_pct = (
(engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_present_sessions * 100)
if total_present_sessions > 0 else 0
)
partially_engaged_pct = round(partially_engaged_pct)
not_engaged_pct = (
(engagement_counts[self.NOT_ENGAGED_STR] / total_present_sessions * 100)
if total_present_sessions > 0 else 0
)
not_engaged_pct = round(not_engaged_pct)
# Engagement percentage is based on Engaged and Partially Engaged sessions
engagement_pct = (
((engagement_counts[self.ENGAGED_STR] + engagement_counts[self.PARTIALLY_ENGAGED_STR]) / total_present_sessions * 100)
if total_present_sessions > 0 else 0
)
engagement_pct = round(engagement_pct)
# Absent percentage (for reference, not used in engagement calculation)
absent_sessions = student_data['Engagement'].value_counts().get('Absent', 0)
absent_pct = (absent_sessions / intervention_sessions_held * 100) if intervention_sessions_held > 0 else 0
absent_pct = round(absent_pct)
# Determine if the student attended ≥ 90% of sessions
attended_90 = "Yes" if attendance_pct >= 90 else "No"
# Determine if the student was engaged ≥ 80% of the time
engaged_80 = "Yes" if engagement_pct >= 80 else "No"
# Store metrics
student_metrics[student_name] = {
'Attended ≥ 90%': attended_90,
'Engagement ≥ 80%': engaged_80,
'Attendance (%)': attendance_pct,
'Engagement (%)': engagement_pct,
f'{self.ENGAGED_STR} (%)': engaged_pct,
f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
'Absent (%)': absent_pct
}
# Create a DataFrame from student_metrics
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
return student_metrics_df
def compute_average_metrics(self, student_metrics_df):
# Calculate the attendance and engagement average percentages across students
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Average attendance percentage
engagement_avg_stats = student_metrics_df['Engagement (%)'].mean() # Average engagement percentage
# Round the averages to whole numbers
attendance_avg_stats = round(attendance_avg_stats)
engagement_avg_stats = round(engagement_avg_stats)
return attendance_avg_stats, engagement_avg_stats
def evaluate_student(self, row, attendance_threshold=90, engagement_threshold=80):
if row["Attended ≥ 90%"] == "No":
return "Address Attendance"
elif row["Engagement ≥ 80%"] == "No":
return "Address Engagement"
else:
return "Consider barriers, fidelity, and progress monitoring" |