ProfessorLeVesseur
commited on
Update data_processor.py
Browse files- data_processor.py +76 -82
data_processor.py
CHANGED
@@ -182,8 +182,6 @@
|
|
182 |
|
183 |
|
184 |
|
185 |
-
|
186 |
-
|
187 |
import re
|
188 |
import pandas as pd
|
189 |
import os
|
@@ -210,7 +208,6 @@ class DataProcessor:
|
|
210 |
return pd.read_excel(uploaded_file)
|
211 |
|
212 |
def format_session_data(self, df):
|
213 |
-
# Look for "Date of Session" or "Date" column
|
214 |
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
215 |
if date_column:
|
216 |
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
|
@@ -276,10 +273,9 @@ class DataProcessor:
|
|
276 |
'Intervention Sessions Not Held': [total_days - sessions_held],
|
277 |
'Total Number of Days Available': [total_days]
|
278 |
})
|
279 |
-
|
280 |
|
281 |
def classify_engagement(self, engagement_str):
|
282 |
-
engagement_str = engagement_str.lower()
|
283 |
if engagement_str.startswith(self.ENGAGED_STR.lower()):
|
284 |
return self.ENGAGED_STR
|
285 |
elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
|
@@ -289,84 +285,82 @@ class DataProcessor:
|
|
289 |
else:
|
290 |
return 'Unknown'
|
291 |
|
292 |
-
def compute_student_metrics(self, df):
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
-
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
345 |
-
absent_pct = round(absent_pct)
|
346 |
-
|
347 |
-
# Determine if the student attended ≥ 90% of sessions
|
348 |
-
attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
349 |
-
|
350 |
-
# Determine if the student was engaged ≥ 80% of the time
|
351 |
-
engaged_80 = "Yes" if engaged_pct >= 80 else "No"
|
352 |
-
|
353 |
-
# Store metrics in the required order
|
354 |
-
student_metrics[student_name] = {
|
355 |
-
'Attended ≥ 90%': attended_90,
|
356 |
-
'Engagement ≥ 80%': engaged_80,
|
357 |
-
'Attendance (%)': attendance_pct,
|
358 |
-
'Engagement (%)': engagement_pct,
|
359 |
-
f'{self.ENGAGED_STR} (%)': engaged_pct,
|
360 |
-
f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
|
361 |
-
f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
|
362 |
-
'Absent (%)': absent_pct
|
363 |
-
}
|
364 |
-
|
365 |
-
# Create a DataFrame from student_metrics
|
366 |
-
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
367 |
-
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
368 |
-
return student_metrics_df
|
369 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
370 |
def compute_average_metrics(self, student_metrics_df):
|
371 |
# Calculate the attendance and engagement average percentages across students
|
372 |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
|
|
|
182 |
|
183 |
|
184 |
|
|
|
|
|
185 |
import re
|
186 |
import pandas as pd
|
187 |
import os
|
|
|
208 |
return pd.read_excel(uploaded_file)
|
209 |
|
210 |
def format_session_data(self, df):
|
|
|
211 |
date_column = next((col for col in df.columns if col in ["Date of Session", "Date"]), None)
|
212 |
if date_column:
|
213 |
df[date_column] = pd.to_datetime(df[date_column], errors='coerce').dt.date
|
|
|
273 |
'Intervention Sessions Not Held': [total_days - sessions_held],
|
274 |
'Total Number of Days Available': [total_days]
|
275 |
})
|
|
|
276 |
|
277 |
def classify_engagement(self, engagement_str):
|
278 |
+
engagement_str = str(engagement_str).lower()
|
279 |
if engagement_str.startswith(self.ENGAGED_STR.lower()):
|
280 |
return self.ENGAGED_STR
|
281 |
elif engagement_str.startswith(self.PARTIALLY_ENGAGED_STR.lower()):
|
|
|
285 |
else:
|
286 |
return 'Unknown'
|
287 |
|
288 |
+
def compute_student_metrics(self, df):
|
289 |
+
intervention_column = self.find_intervention_column(df)
|
290 |
+
intervention_df = df[df[intervention_column].str.strip().str.lower() == 'yes']
|
291 |
+
intervention_sessions_held = len(intervention_df)
|
292 |
+
student_columns = [col for col in df.columns if col.startswith('Student Attendance')]
|
293 |
+
|
294 |
+
student_metrics = {}
|
295 |
+
for col in student_columns:
|
296 |
+
student_name = col.replace('Student Attendance [', '').replace(']', '').strip()
|
297 |
+
student_data = intervention_df[[col]].copy()
|
298 |
+
student_data[col] = student_data[col].fillna('Absent')
|
299 |
+
|
300 |
+
attendance_values = student_data[col].apply(lambda x: 1 if self.classify_engagement(x) in [
|
301 |
+
self.ENGAGED_STR,
|
302 |
+
self.PARTIALLY_ENGAGED_STR,
|
303 |
+
self.NOT_ENGAGED_STR
|
304 |
+
] else 0)
|
305 |
+
|
306 |
+
sessions_attended = attendance_values.sum()
|
307 |
+
attendance_pct = (sessions_attended / intervention_sessions_held) * 100 if intervention_sessions_held > 0 else 0
|
308 |
+
attendance_pct = round(attendance_pct)
|
309 |
+
|
310 |
+
engagement_counts = {
|
311 |
+
self.ENGAGED_STR: 0,
|
312 |
+
self.PARTIALLY_ENGAGED_STR: 0,
|
313 |
+
self.NOT_ENGAGED_STR: 0,
|
314 |
+
'Absent': 0
|
315 |
+
}
|
316 |
+
|
317 |
+
for x in student_data[col]:
|
318 |
+
classified_engagement = self.classify_engagement(x)
|
319 |
+
if classified_engagement in engagement_counts:
|
320 |
+
engagement_counts[classified_engagement] += 1
|
321 |
+
else:
|
322 |
+
engagement_counts['Absent'] += 1 # Count as Absent if not engaged
|
323 |
+
|
324 |
+
total_sessions = sum(engagement_counts.values())
|
325 |
+
|
326 |
+
engagement_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
327 |
+
engagement_pct = round(engagement_pct)
|
328 |
+
|
329 |
+
engaged_pct = (engagement_counts[self.ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
330 |
+
engaged_pct = round(engaged_pct)
|
331 |
+
|
332 |
+
partially_engaged_pct = (engagement_counts[self.PARTIALLY_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
333 |
+
partially_engaged_pct = round(partially_engaged_pct)
|
334 |
+
|
335 |
+
not_engaged_pct = (engagement_counts[self.NOT_ENGAGED_STR] / total_sessions * 100) if total_sessions > 0 else 0
|
336 |
+
not_engaged_pct = round(not_engaged_pct)
|
337 |
+
|
338 |
+
absent_pct = (engagement_counts['Absent'] / total_sessions * 100) if total_sessions > 0 else 0
|
339 |
+
absent_pct = round(absent_pct)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
340 |
|
341 |
+
# Determine if the student attended ≥ 90% of sessions
|
342 |
+
attended_90 = "Yes" if attendance_pct >= 90 else "No"
|
343 |
+
|
344 |
+
# Determine if the student was engaged ≥ 80% of the time
|
345 |
+
engaged_80 = "Yes" if engaged_pct >= 80 else "No"
|
346 |
+
|
347 |
+
# Store metrics in the required order
|
348 |
+
student_metrics[student_name] = {
|
349 |
+
'Attended ≥ 90%': attended_90,
|
350 |
+
'Engagement ≥ 80%': engaged_80,
|
351 |
+
'Attendance (%)': attendance_pct,
|
352 |
+
'Engagement (%)': engagement_pct,
|
353 |
+
f'{self.ENGAGED_STR} (%)': engaged_pct,
|
354 |
+
f'{self.PARTIALLY_ENGAGED_STR} (%)': partially_engaged_pct,
|
355 |
+
f'{self.NOT_ENGAGED_STR} (%)': not_engaged_pct,
|
356 |
+
'Absent (%)': absent_pct
|
357 |
+
}
|
358 |
+
|
359 |
+
# Create a DataFrame from student_metrics
|
360 |
+
student_metrics_df = pd.DataFrame.from_dict(student_metrics, orient='index').reset_index()
|
361 |
+
student_metrics_df.rename(columns={'index': 'Student'}, inplace=True)
|
362 |
+
return student_metrics_df
|
363 |
+
|
364 |
def compute_average_metrics(self, student_metrics_df):
|
365 |
# Calculate the attendance and engagement average percentages across students
|
366 |
attendance_avg_stats = student_metrics_df['Attendance (%)'].mean() # Calculate the average attendance percentage
|