Spaces:
Runtime error
Runtime error
File size: 8,195 Bytes
a67dc80 2ab54e6 a67dc80 d5730cd a67dc80 2ab54e6 9a38883 2ab54e6 a67dc80 775c6bb a67dc80 9a38883 a67dc80 9a38883 a67dc80 9a38883 a67dc80 9a38883 3af37cb 9a38883 3af37cb 9a38883 3af37cb 9a38883 a67dc80 9a38883 a67dc80 9a38883 a67dc80 9a38883 2ab54e6 9a38883 a67dc80 2ab54e6 3af37cb a67dc80 2ab54e6 a67dc80 775c6bb a67dc80 2ab54e6 a67dc80 02e561f a67dc80 94fd810 2ab54e6 a67dc80 94fd810 a67dc80 d5730cd a67dc80 d5730cd a67dc80 d5730cd a67dc80 d5730cd a67dc80 d5730cd a67dc80 3af37cb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 |
import os
import xml.etree.ElementTree as ET
import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import List, Dict, Any, Optional
from collections import defaultdict
from accelerate import Accelerator
from torch.utils.data import DataLoader, TensorDataset
from torch.cuda.amp import GradScaler, autocast
class DynamicModel(nn.Module):
def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
super(DynamicModel, self).__init__()
self.sections = nn.ModuleDict()
if not sections:
sections = {
'default': [{
'input_size': 128,
'output_size': 256,
'activation': 'relu',
'batch_norm': True,
'dropout': 0.1
}]
}
for section_name, layers in sections.items():
self.sections[section_name] = nn.ModuleList()
for layer_params in layers:
print(f"Creating layer in section '{section_name}' with params: {layer_params}")
self.sections[section_name].append(self.create_layer(layer_params))
def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
layers = []
layers.append(nn.Linear(layer_params['input_size'], layer_params['output_size']))
if layer_params.get('batch_norm', False):
layers.append(nn.BatchNorm1d(layer_params['output_size']))
activation = layer_params.get('activation', 'relu')
if activation == 'relu':
layers.append(nn.ReLU(inplace=True))
elif activation == 'tanh':
layers.append(nn.Tanh())
elif activation == 'sigmoid':
layers.append(nn.Sigmoid())
elif activation == 'leaky_relu':
layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
elif activation == 'elu':
layers.append(nn.ELU(alpha=1.0, inplace=True))
elif activation is not None:
raise ValueError(f"Unsupported activation function: {activation}")
if dropout_rate := layer_params.get('dropout', 0.0):
layers.append(nn.Dropout(p=dropout_rate))
if hidden_layers := layer_params.get('hidden_layers', []):
for hidden_layer_params in hidden_layers:
layers.append(self.create_layer(hidden_layer_params))
if layer_params.get('memory_augmentation', True):
layers.append(MemoryAugmentationLayer(layer_params['output_size']))
if layer_params.get('hybrid_attention', True):
layers.append(HybridAttentionLayer(layer_params['output_size']))
if layer_params.get('dynamic_flash_attention', True):
layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
return nn.Sequential(*layers)
def forward(self, x: torch.Tensor, section_name: Optional[str] = None) -> torch.Tensor:
if section_name is not None:
if section_name not in self.sections:
raise KeyError(f"Section '{section_name}' not found in model")
for layer in self.sections[section_name]:
x = layer(x)
else:
for section_name, layers in self.sections.items():
for layer in layers:
x = layer(x)
return x
class MemoryAugmentationLayer(nn.Module):
def __init__(self, size: int):
super(MemoryAugmentationLayer, self).__init__()
self.memory = nn.Parameter(torch.randn(size))
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.memory
class HybridAttentionLayer(nn.Module):
def __init__(self, size: int):
super(HybridAttentionLayer, self).__init__()
self.attention = nn.MultiheadAttention(size, num_heads=8)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.unsqueeze(1) # Add sequence dimension
attn_output, _ = self.attention(x, x, x)
return attn_output.squeeze(1)
class DynamicFlashAttentionLayer(nn.Module):
def __init__(self, size: int):
super(DynamicFlashAttentionLayer, self).__init__()
self.attention = nn.MultiheadAttention(size, num_heads=8)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = x.unsqueeze(1) # Add sequence dimension
attn_output, _ = self.attention(x, x, x)
return attn_output.squeeze(1)
def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
tree = ET.parse(file_path)
root = tree.getroot()
layers = []
for layer in root.findall('.//layer'):
layer_params = {}
layer_params['input_size'] = int(layer.get('input_size', 128))
layer_params['output_size'] = int(layer.get('output_size', 256))
layer_params['activation'] = layer.get('activation', 'relu').lower()
if layer_params['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
raise ValueError(f"Unsupported activation function: {layer_params['activation']}")
if layer_params['input_size'] <= 0 or layer_params['output_size'] <= 0:
raise ValueError("Layer dimensions must be positive integers")
layers.append(layer_params)
if not layers:
layers.append({
'input_size': 128,
'output_size': 256,
'activation': 'relu'
})
return layers
def create_model_from_folder(folder_path: str) -> DynamicModel:
sections = defaultdict(list)
if not os.path.exists(folder_path):
print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
return DynamicModel({})
xml_files_found = False
for root, dirs, files in os.walk(folder_path):
for file in files:
if file.endswith('.xml'):
xml_files_found = True
file_path = os.path.join(root, file)
try:
layers = parse_xml_file(file_path)
section_name = os.path.basename(root).replace('.', '_')
sections[section_name].extend(layers)
except Exception as e:
print(f"Error processing {file_path}: {str(e)}")
if not xml_files_found:
print("Warning: No XML files found. Creating model with default configuration.")
return DynamicModel({})
return DynamicModel(dict(sections))
def main():
folder_path = 'data'
model = create_model_from_folder(folder_path)
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
# Print the model architecture
print(model)
first_section = next(iter(model.sections.keys()))
first_layer = model.sections[first_section][0]
input_features = first_layer[0].in_features
# Ensure the input tensor size matches the expected input size
sample_input = torch.randn(1, input_features)
output = model(sample_input)
print(f"Sample output shape: {output.shape}")
accelerator = Accelerator()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
criterion = nn.CrossEntropyLoss()
num_epochs = 10
dataset = TensorDataset(
torch.randn(100, input_features),
torch.randint(0, 2, (100,))
)
train_dataloader = DataLoader(
dataset,
batch_size=8, # Reduced batch size
shuffle=True
)
model, optimizer, train_dataloader = accelerator.prepare(
model,
optimizer,
train_dataloader
)
scaler = GradScaler() # Mixed precision training
for epoch in range(num_epochs):
model.train()
total_loss = 0
for batch_idx, (inputs, labels) in enumerate(train_dataloader):
optimizer.zero_grad()
with autocast(): # Mixed precision training
outputs = model(inputs)
loss = criterion(outputs, labels)
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
total_loss += loss.item()
avg_loss = total_loss / len(train_dataloader)
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
if __name__ == "__main__":
main()
|