Spaces:
Runtime error
Runtime error
Upload 2 files
Browse files
model.py
CHANGED
|
@@ -57,13 +57,13 @@ class DynamicModel(nn.Module):
|
|
| 57 |
for hidden_layer_params in hidden_layers:
|
| 58 |
layers.append(self.create_layer(hidden_layer_params))
|
| 59 |
|
| 60 |
-
if layer_params.get('memory_augmentation',
|
| 61 |
layers.append(MemoryAugmentationLayer(layer_params['output_size']))
|
| 62 |
|
| 63 |
-
if layer_params.get('hybrid_attention',
|
| 64 |
layers.append(HybridAttentionLayer(layer_params['output_size']))
|
| 65 |
|
| 66 |
-
if layer_params.get('dynamic_flash_attention',
|
| 67 |
layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
|
| 68 |
|
| 69 |
return nn.Sequential(*layers)
|
|
@@ -143,7 +143,7 @@ def create_model_from_folder(folder_path: str) -> DynamicModel:
|
|
| 143 |
print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
|
| 144 |
return DynamicModel({})
|
| 145 |
|
| 146 |
-
xml_files_found =
|
| 147 |
for root, dirs, files in os.walk(folder_path):
|
| 148 |
for file in files:
|
| 149 |
if file.endswith('.xml'):
|
|
@@ -217,4 +217,4 @@ def main():
|
|
| 217 |
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
-
main()
|
|
|
|
| 57 |
for hidden_layer_params in hidden_layers:
|
| 58 |
layers.append(self.create_layer(hidden_layer_params))
|
| 59 |
|
| 60 |
+
if layer_params.get('memory_augmentation', True):
|
| 61 |
layers.append(MemoryAugmentationLayer(layer_params['output_size']))
|
| 62 |
|
| 63 |
+
if layer_params.get('hybrid_attention', True):
|
| 64 |
layers.append(HybridAttentionLayer(layer_params['output_size']))
|
| 65 |
|
| 66 |
+
if layer_params.get('dynamic_flash_attention', True):
|
| 67 |
layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
|
| 68 |
|
| 69 |
return nn.Sequential(*layers)
|
|
|
|
| 143 |
print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
|
| 144 |
return DynamicModel({})
|
| 145 |
|
| 146 |
+
xml_files_found = False
|
| 147 |
for root, dirs, files in os.walk(folder_path):
|
| 148 |
for file in files:
|
| 149 |
if file.endswith('.xml'):
|
|
|
|
| 217 |
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
+
main()
|
model2.py
ADDED
|
@@ -0,0 +1,265 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import xml.etree.ElementTree as ET
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn as nn
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from typing import List, Dict, Any, Optional
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
from accelerate import Accelerator
|
| 9 |
+
from transformers import AutoTokenizer, AutoModel
|
| 10 |
+
import faiss
|
| 11 |
+
import numpy as np
|
| 12 |
+
|
| 13 |
+
class DynamicModel(nn.Module):
|
| 14 |
+
def __init__(self, sections: Dict[str, List[Dict[str, Any]]]):
|
| 15 |
+
super(DynamicModel, self).__init__()
|
| 16 |
+
self.sections = nn.ModuleDict()
|
| 17 |
+
|
| 18 |
+
if not sections:
|
| 19 |
+
sections = {
|
| 20 |
+
'default': [{
|
| 21 |
+
'input_size': 128,
|
| 22 |
+
'output_size': 256,
|
| 23 |
+
'activation': 'relu',
|
| 24 |
+
'batch_norm': True,
|
| 25 |
+
'dropout': 0.1
|
| 26 |
+
}]
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
for section_name, layers in sections.items():
|
| 30 |
+
self.sections[section_name] = nn.ModuleList()
|
| 31 |
+
for layer_params in layers:
|
| 32 |
+
print(f"Creating layer in section '{section_name}' with params: {layer_params}")
|
| 33 |
+
self.sections[section_name].append(self.create_layer(layer_params))
|
| 34 |
+
|
| 35 |
+
def create_layer(self, layer_params: Dict[str, Any]) -> nn.Module:
|
| 36 |
+
layers = []
|
| 37 |
+
layers.append(nn.Linear(layer_params['input_size'], layer_params['output_size']))
|
| 38 |
+
|
| 39 |
+
if layer_params.get('batch_norm', False):
|
| 40 |
+
layers.append(nn.BatchNorm1d(layer_params['output_size']))
|
| 41 |
+
|
| 42 |
+
activation = layer_params.get('activation', 'relu')
|
| 43 |
+
if activation == 'relu':
|
| 44 |
+
layers.append(nn.ReLU(inplace=True))
|
| 45 |
+
elif activation == 'tanh':
|
| 46 |
+
layers.append(nn.Tanh())
|
| 47 |
+
elif activation == 'sigmoid':
|
| 48 |
+
layers.append(nn.Sigmoid())
|
| 49 |
+
elif activation == 'leaky_relu':
|
| 50 |
+
layers.append(nn.LeakyReLU(negative_slope=0.01, inplace=True))
|
| 51 |
+
elif activation == 'elu':
|
| 52 |
+
layers.append(nn.ELU(alpha=1.0, inplace=True))
|
| 53 |
+
elif activation is not None:
|
| 54 |
+
raise ValueError(f"Unsupported activation function: {activation}")
|
| 55 |
+
|
| 56 |
+
if dropout_rate := layer_params.get('dropout', 0.0):
|
| 57 |
+
layers.append(nn.Dropout(p=dropout_rate))
|
| 58 |
+
|
| 59 |
+
if hidden_layers := layer_params.get('hidden_layers', []):
|
| 60 |
+
for hidden_layer_params in hidden_layers:
|
| 61 |
+
layers.append(self.create_layer(hidden_layer_params))
|
| 62 |
+
|
| 63 |
+
if layer_params.get('memory_augmentation', False):
|
| 64 |
+
layers.append(MemoryAugmentationLayer(layer_params['output_size']))
|
| 65 |
+
|
| 66 |
+
if layer_params.get('hybrid_attention', False):
|
| 67 |
+
layers.append(HybridAttentionLayer(layer_params['output_size']))
|
| 68 |
+
|
| 69 |
+
if layer_params.get('dynamic_flash_attention', False):
|
| 70 |
+
layers.append(DynamicFlashAttentionLayer(layer_params['output_size']))
|
| 71 |
+
|
| 72 |
+
return nn.Sequential(*layers)
|
| 73 |
+
|
| 74 |
+
def forward(self, x: torch.Tensor, section_name: Optional[str] = None) -> torch.Tensor:
|
| 75 |
+
if section_name is not None:
|
| 76 |
+
if section_name not in self.sections:
|
| 77 |
+
raise KeyError(f"Section '{section_name}' not found in model")
|
| 78 |
+
for layer in self.sections[section_name]:
|
| 79 |
+
x = layer(x)
|
| 80 |
+
else:
|
| 81 |
+
for section_name, layers in self.sections.items():
|
| 82 |
+
for layer in layers:
|
| 83 |
+
x = layer(x)
|
| 84 |
+
return x
|
| 85 |
+
|
| 86 |
+
class MemoryAugmentationLayer(nn.Module):
|
| 87 |
+
def __init__(self, size: int):
|
| 88 |
+
super(MemoryAugmentationLayer, self).__init__()
|
| 89 |
+
self.memory = nn.Parameter(torch.randn(size))
|
| 90 |
+
|
| 91 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 92 |
+
return x + self.memory
|
| 93 |
+
|
| 94 |
+
class HybridAttentionLayer(nn.Module):
|
| 95 |
+
def __init__(self, size: int):
|
| 96 |
+
super(HybridAttentionLayer, self).__init__()
|
| 97 |
+
self.attention = nn.MultiheadAttention(size, num_heads=8)
|
| 98 |
+
|
| 99 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 100 |
+
x = x.unsqueeze(1) # Add sequence dimension
|
| 101 |
+
attn_output, _ = self.attention(x, x, x)
|
| 102 |
+
return attn_output.squeeze(1)
|
| 103 |
+
|
| 104 |
+
class DynamicFlashAttentionLayer(nn.Module):
|
| 105 |
+
def __init__(self, size: int):
|
| 106 |
+
super(DynamicFlashAttentionLayer, self).__init__()
|
| 107 |
+
self.attention = nn.MultiheadAttention(size, num_heads=8)
|
| 108 |
+
|
| 109 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 110 |
+
x = x.unsqueeze(1) # Add sequence dimension
|
| 111 |
+
attn_output, _ = self.attention(x, x, x)
|
| 112 |
+
return attn_output.squeeze(1)
|
| 113 |
+
|
| 114 |
+
def parse_xml_file(file_path: str) -> List[Dict[str, Any]]:
|
| 115 |
+
tree = ET.parse(file_path)
|
| 116 |
+
root = tree.getroot()
|
| 117 |
+
|
| 118 |
+
layers = []
|
| 119 |
+
for layer in root.findall('.//layer'):
|
| 120 |
+
layer_params = {}
|
| 121 |
+
layer_params['input_size'] = int(layer.get('input_size', 128))
|
| 122 |
+
layer_params['output_size'] = int(layer.get('output_size', 256))
|
| 123 |
+
layer_params['activation'] = layer.get('activation', 'relu').lower()
|
| 124 |
+
|
| 125 |
+
if layer_params['activation'] not in ['relu', 'tanh', 'sigmoid', 'none']:
|
| 126 |
+
raise ValueError(f"Unsupported activation function: {layer_params['activation']}")
|
| 127 |
+
|
| 128 |
+
if layer_params['input_size'] <= 0 or layer_params['output_size'] <= 0:
|
| 129 |
+
raise ValueError("Layer dimensions must be positive integers")
|
| 130 |
+
|
| 131 |
+
layers.append(layer_params)
|
| 132 |
+
|
| 133 |
+
if not layers:
|
| 134 |
+
layers.append({
|
| 135 |
+
'input_size': 128,
|
| 136 |
+
'output_size': 256,
|
| 137 |
+
'activation': 'relu'
|
| 138 |
+
})
|
| 139 |
+
|
| 140 |
+
return layers
|
| 141 |
+
|
| 142 |
+
def create_model_from_folder(folder_path: str) -> DynamicModel:
|
| 143 |
+
sections = defaultdict(list)
|
| 144 |
+
|
| 145 |
+
if not os.path.exists(folder_path):
|
| 146 |
+
print(f"Warning: Folder {folder_path} does not exist. Creating model with default configuration.")
|
| 147 |
+
return DynamicModel({})
|
| 148 |
+
|
| 149 |
+
xml_files_found = False
|
| 150 |
+
for root, dirs, files in os.walk(folder_path):
|
| 151 |
+
for file in files:
|
| 152 |
+
if file.endswith('.xml'):
|
| 153 |
+
xml_files_found = True
|
| 154 |
+
file_path = os.path.join(root, file)
|
| 155 |
+
try:
|
| 156 |
+
layers = parse_xml_file(file_path)
|
| 157 |
+
section_name = os.path.basename(root).replace('.', '_')
|
| 158 |
+
sections[section_name].extend(layers)
|
| 159 |
+
except Exception as e:
|
| 160 |
+
print(f"Error processing {file_path}: {str(e)}")
|
| 161 |
+
|
| 162 |
+
if not xml_files_found:
|
| 163 |
+
print("Warning: No XML files found. Creating model with default configuration.")
|
| 164 |
+
return DynamicModel({})
|
| 165 |
+
|
| 166 |
+
return DynamicModel(dict(sections))
|
| 167 |
+
|
| 168 |
+
def create_embeddings_and_stores(folder_path: str, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
|
| 169 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 170 |
+
model = AutoModel.from_pretrained(model_name)
|
| 171 |
+
|
| 172 |
+
vector_store = faiss.IndexFlatL2(384) # Assuming 384-dimensional embeddings
|
| 173 |
+
doc_store = []
|
| 174 |
+
|
| 175 |
+
for root, dirs, files in os.walk(folder_path):
|
| 176 |
+
for file in files:
|
| 177 |
+
if file.endswith('.xml'):
|
| 178 |
+
file_path = os.path.join(root, file)
|
| 179 |
+
try:
|
| 180 |
+
tree = ET.parse(file_path)
|
| 181 |
+
root = tree.getroot()
|
| 182 |
+
for elem in root.iter():
|
| 183 |
+
if elem.text:
|
| 184 |
+
text = elem.text.strip()
|
| 185 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
| 186 |
+
with torch.no_grad():
|
| 187 |
+
embeddings = model(**inputs).last_hidden_state.mean(dim=1).numpy()
|
| 188 |
+
vector_store.add(embeddings)
|
| 189 |
+
doc_store.append(text)
|
| 190 |
+
except Exception as e:
|
| 191 |
+
print(f"Error processing {file_path}: {str(e)}")
|
| 192 |
+
|
| 193 |
+
return vector_store, doc_store
|
| 194 |
+
|
| 195 |
+
def query_vector_store(query: str, vector_store, doc_store, model_name: str = "sentence-transformers/all-MiniLM-L6-v2"):
|
| 196 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 197 |
+
model = AutoModel.from_pretrained(model_name)
|
| 198 |
+
|
| 199 |
+
inputs = tokenizer(query, return_tensors="pt", truncation=True, padding=True)
|
| 200 |
+
with torch.no_grad():
|
| 201 |
+
query_embedding = model(**inputs).last_hidden_state.mean(dim=1).numpy()
|
| 202 |
+
|
| 203 |
+
D, I = vector_store.search(query_embedding, k=5) # Retrieve top 5 documents
|
| 204 |
+
results = [doc_store[i] for i in I[0]]
|
| 205 |
+
return results
|
| 206 |
+
|
| 207 |
+
def main():
|
| 208 |
+
folder_path = 'data'
|
| 209 |
+
model = create_model_from_folder(folder_path)
|
| 210 |
+
|
| 211 |
+
print(f"Created dynamic PyTorch model with sections: {list(model.sections.keys())}")
|
| 212 |
+
|
| 213 |
+
first_section = next(iter(model.sections.keys()))
|
| 214 |
+
first_layer = model.sections[first_section][0]
|
| 215 |
+
input_features = first_layer[0].in_features
|
| 216 |
+
|
| 217 |
+
sample_input = torch.randn(1, input_features)
|
| 218 |
+
output = model(sample_input)
|
| 219 |
+
print(f"Sample output shape: {output.shape}")
|
| 220 |
+
|
| 221 |
+
vector_store, doc_store = create_embeddings_and_stores(folder_path)
|
| 222 |
+
|
| 223 |
+
accelerator = Accelerator()
|
| 224 |
+
|
| 225 |
+
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
|
| 226 |
+
criterion = nn.CrossEntropyLoss()
|
| 227 |
+
num_epochs = 10
|
| 228 |
+
|
| 229 |
+
dataset = torch.utils.data.TensorDataset(
|
| 230 |
+
torch.randn(100, input_features),
|
| 231 |
+
torch.randint(0, 2, (100,))
|
| 232 |
+
)
|
| 233 |
+
train_dataloader = torch.utils.data.DataLoader(
|
| 234 |
+
dataset,
|
| 235 |
+
batch_size=16,
|
| 236 |
+
shuffle=True
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
model, optimizer, train_dataloader = accelerator.prepare(
|
| 240 |
+
model,
|
| 241 |
+
optimizer,
|
| 242 |
+
train_dataloader
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
for epoch in range(num_epochs):
|
| 246 |
+
model.train()
|
| 247 |
+
total_loss = 0
|
| 248 |
+
for batch_idx, (inputs, labels) in enumerate(train_dataloader):
|
| 249 |
+
optimizer.zero_grad()
|
| 250 |
+
outputs = model(inputs)
|
| 251 |
+
loss = criterion(outputs, labels)
|
| 252 |
+
accelerator.backward(loss)
|
| 253 |
+
optimizer.step()
|
| 254 |
+
total_loss += loss.item()
|
| 255 |
+
|
| 256 |
+
avg_loss = total_loss / len(train_dataloader)
|
| 257 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Average Loss: {avg_loss:.4f}")
|
| 258 |
+
|
| 259 |
+
# Query the vector store after training
|
| 260 |
+
user_query = "example query text"
|
| 261 |
+
results = query_vector_store(user_query, vector_store, doc_store)
|
| 262 |
+
print(f"Query results: {results}")
|
| 263 |
+
|
| 264 |
+
if __name__ == "__main__":
|
| 265 |
+
main()
|