Spaces:
Runtime error
Runtime error
File size: 7,820 Bytes
c4736af fc83349 c4736af 3aef1dd 65b66f9 c4736af 188d483 3aef1dd 188d483 3aef1dd 188d483 3aef1dd 806dc65 c4736af 3aef1dd c4736af fc83349 c4736af 1c1dfab c4736af 67ecb5a c4736af 65b66f9 c4736af 1c1dfab c4736af 67ecb5a c4736af 65b66f9 c4736af 3aef1dd c4736af 1c1dfab 65b66f9 1c1dfab c4736af 3aef1dd e2c08bf 0f0c945 c4736af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 |
# Import necessary libraries
from flask import Flask, render_template, request, jsonify
from PIL import Image
from peft import PeftModel
from PIL import Image
import torch
from transformers import AutoProcessor, LlavaForConditionalGeneration, BitsAndBytesConfig
from deep_translator import GoogleTranslator
# from transformers import M2M100ForConditionalGeneration, M2M100Tokenizer
import warnings
from flask import Flask
import base64
from io import BytesIO
# from flask_ngrok import run_with_ngrok
app = Flask(__name__)
# run_with_ngrok(app)
warnings.filterwarnings('ignore')
model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
quantization_config = BitsAndBytesConfig(load_in_4bit=True)
base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16)
# Load the PEFT Lora adapter
peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3"
peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter")
base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter")
processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl")
# model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
# tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
# model_id = r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_model"
# quantization_config = BitsAndBytesConfig(
# load_in_4bit=True,
# )
# base_model = LlavaForConditionalGeneration.from_pretrained(model_id)
# processor = AutoProcessor.from_pretrained(r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_processor")
# Load the PEFT Lora model (adapter)
# peft_lora_adapter_path = r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_adapter"
# Merge the adapters into the base model
# model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
# tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
def inference(image_prompt, image):
prompt = f"USER: <image>\n{image_prompt} ASSISTANT:"
inputs = processor(text=prompt, images=image, return_tensors="pt")
generate_ids = base_model.generate(**inputs, max_new_tokens=15)
decoded_response = processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
# prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
# url = "https://www.ilankelman.org/stopsigns/australia.jpg"
# url = "/kaggle/input/images/images/1921.428_web.jpg"
# image = Image.open(url)
# image = Image.open(requests.get(url, stream=True).raw)
# processor = AutoProcessor.from_pretrained("llava-hf/llava-1.5-7b-hf")
# ... process the image and create inputs ...
# print("Generated response:", decoded_response)
return decoded_response
def deep_translator_bn_en(input_sentence):
english_translation = GoogleTranslator(source="bn", target="en").translate(input_sentence)
return english_translation
def deep_translator_en_bn(input_sentence):
bengali_translation = GoogleTranslator(source="en", target="bn").translate(input_sentence)
return bengali_translation
def google_response(image, input_sentence):
image_prompt = deep_translator_bn_en(input_sentence)
response = inference(image_prompt, image)
assistant_index = response.find("ASSISTANT:")
extracted_string = response[assistant_index + len("ASSISTANT:"):].strip()
output = deep_translator_en_bn(extracted_string)
# print("বটী: ", output)
# url = input("ইমেজ url লিখুন: ")
# input_sentence = input("ছবি সম্পর্কে আপনার প্রশ্ন লিখুন: ")
return output
def facebook_bn_en(input_sentence):
# Translate Bengali to English
tokenizer.src_lang = "bn"
encoded_bn = tokenizer(input_sentence, return_tensors="pt")
generated_tokens = model.generate(**encoded_bn, forced_bos_token_id=tokenizer.get_lang_id("en"))
translated_text_en = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
return translated_text_en
# print("Translated English:", translated_text_en)
# def facebook_en_bn(input_sentence):
# # Translate English to Bengali
# # model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
# # tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
# tokenizer.src_lang = "en"
# encoded_en = tokenizer(input_sentence, return_tensors="pt")
# generated_tokens = model.generate(**encoded_en, forced_bos_token_id=tokenizer.get_lang_id("bn"))
# translated_text_bn = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)[0]
# return translated_text_bn
# def facebook_response(url, input_sentence):
# url = input("ইমেজ url লিখুন: ")
# input_sentence = input("ছবি সম্পর্কে আপনার প্রশ্ন লিখুন: ")
# image_prompt = facebook_bn_en(input_sentence)
# response = inference(image_prompt, url)
# assistant_index = response.find("ASSISTANT:")
# extracted_string = response[assistant_index + len("ASSISTANT:"):].strip()
# output = facebook_en_bn(extracted_string)
# print("বটী: ", output)
# return output
image_cache = {}
@app.route('/upload', methods=['POST'])
def upload_file():
try:
file = request.files['file']
if file.filename.endswith(('.png', '.jpg', '.jpeg')):
image = Image.open(file.stream)
# Convert the image to a base64 string and store it in cache
buffered = BytesIO()
image.save(buffered, format="JPEG")
image_base64 = base64.b64encode(buffered.getvalue())
image = Image.open(BytesIO(base64.b64decode(image_base64)))
# Store the image in cache (replace with a more suitable storage approach)
image_cache['image'] = image
# print("Processing complete. Image stored in cache.")
return jsonify({'status': 'success'})
else:
return jsonify({'status': 'error', 'message': 'Uploaded file is not a jpg image.'})
except Exception as e:
# print(f"Error during file upload: {e}")
return jsonify({'status': 'error', 'message': str(e)})
@app.route("/get")
def get_bot_response():
try:
if 'image' in image_cache:
image = image_cache['image']
# print(image)
query = request.args.get('msg')
# output = query
output = google_response(image, query)
return output
else:
return "Please upload an image to continue"
except Exception as e:
return f"Error: {str(e)}"
@app.route("/")
def home():
image_cache.clear()
return render_template("index.html")
# Run the Flask app
if __name__ == "__main__":
app.run(host="0.0.0.0", port=7860, debug=True)
# from pymongo import MongoClient
# # Connect to MongoDB
# mongodb_client = MongoClient('mongodb://localhost:27017/')
# database_name = 'your_database'
# collection_name = 'file_store'
# db = mongodb_client[database_name]
# collection = db[collection_name]
# # Store documents with unique ID and their chunks
# for i, doc in enumerate(documents):
# doc_id = f'doc_{i}' # Create a unique ID for each document
# collection.insert_one({'_id': doc_id, 'document': doc})
# # Check if index exists, if not create a new one
# if 'index' not in collection.list_indexes():
# index = VectorStoreIndex.from_documents(documents, storage_context=storage_context)
# collection.insert_one({'_id': 'index', 'index': index})
# else:
# index = collection.find_one({'_id': 'index'})['index']
# # Retrieve documents
# retrieved_text_chunks = index.as_retriever().retrieve(question)
|