Praveen0309 commited on
Commit
188d483
·
1 Parent(s): 446fe03

updated dockerfile&app

Browse files
Files changed (2) hide show
  1. Dockerfile +0 -5
  2. app.py +9 -9
Dockerfile CHANGED
@@ -1,14 +1,9 @@
1
  FROM python:3.10
2
- RUN useradd -m -u 1000 user
3
- USER user
4
  WORKDIR /app
5
  ENV FLASK_APP=app.py
6
  ENV FLASK_RUN_HOST=0.0.0.0
7
  COPY requirements.txt requirements.txt
8
-
9
  RUN pip install -r requirements.txt
10
- RUN chown -R user:user /app
11
- COPY --chown=user:user . /app
12
  EXPOSE 7860
13
  COPY . .
14
  CMD ["flask", "run"]
 
1
  FROM python:3.10
 
 
2
  WORKDIR /app
3
  ENV FLASK_APP=app.py
4
  ENV FLASK_RUN_HOST=0.0.0.0
5
  COPY requirements.txt requirements.txt
 
6
  RUN pip install -r requirements.txt
 
 
7
  EXPOSE 7860
8
  COPY . .
9
  CMD ["flask", "run"]
app.py CHANGED
@@ -15,19 +15,19 @@ app = Flask(__name__)
15
  # run_with_ngrok(app)
16
 
17
  warnings.filterwarnings('ignore')
 
18
  model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
19
- quantization_config = BitsAndBytesConfig(
20
- load_in_4bit=True,
21
- )
22
- base_model = LlavaForConditionalGeneration.from_pretrained(model_id,
23
- quantization_config=quantization_config,
24
- torch_dtype=torch.float16)
25
- processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl")
26
  peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3"
27
  peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter")
28
  base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter")
29
- model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
30
- tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
 
 
31
 
32
 
33
  # model_id = r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_model"
 
15
  # run_with_ngrok(app)
16
 
17
  warnings.filterwarnings('ignore')
18
+
19
  model_id = "HuggingFaceH4/vsft-llava-1.5-7b-hf-trl"
20
+ quantization_config = BitsAndBytesConfig(load_in_4bit=True)
21
+ base_model = LlavaForConditionalGeneration.from_pretrained(model_id, quantization_config=quantization_config, torch_dtype=torch.float16)
22
+
23
+ # Load the PEFT Lora adapter
 
 
 
24
  peft_lora_adapter_path = "Praveen0309/llava-1.5-7b-hf-ft-mix-vsft-3"
25
  peft_lora_adapter = PeftModel.from_pretrained(base_model, peft_lora_adapter_path, adapter_name="lora_adapter")
26
  base_model.load_adapter(peft_lora_adapter_path, adapter_name="lora_adapter")
27
+
28
+ processor = AutoProcessor.from_pretrained("HuggingFaceH4/vsft-llava-1.5-7b-hf-trl")
29
+ # model = M2M100ForConditionalGeneration.from_pretrained("facebook/m2m100_418M")
30
+ # tokenizer = M2M100Tokenizer.from_pretrained("facebook/m2m100_418M")
31
 
32
 
33
  # model_id = r"C:\Users\prave\OneDrive\Desktop\MLOPS\Mlops_2\huggingface_model"