Spaces:
Running
Running
File size: 4,142 Bytes
185a8fd 23c6543 3d84723 185a8fd 23c6543 9997a25 f998c2d 23c6543 9997a25 23c6543 9997a25 185a8fd 9997a25 185a8fd de55b15 9997a25 5a97268 9997a25 f998c2d 9997a25 f998c2d 9997a25 f998c2d 9997a25 f998c2d 9997a25 f998c2d 9997a25 3ad2c61 9997a25 f998c2d 9997a25 f998c2d 9997a25 185a8fd 5a97268 9997a25 5a97268 185a8fd 5a97268 185a8fd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 |
import gradio as gr
# from huggingface_hub import InferenceClient
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
# from accelerate import infer_auto_device_map as iadm
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from transformers import BitsAndBytesConfig
from tqdm import tqdm
import os
USE_PAST_KEY = True
import gc
torch.backends.cuda.enable_mem_efficient_sdp(False)
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
AutoConfig,
StoppingCriteria,
set_seed
)
n_repetitions = 1
TOTAL_TOKENS = 2048
MODEL_PATH = "Pra-tham/quant_deepseekmath"
#"/kaggle/input/gemma/transformers/7b-it/1"
# DEEP = True
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import transformers
tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)
model = AutoModelForCausalLM.from_pretrained(
MODEL_PATH,
device_map="cpu",
torch_dtype="auto",
trust_remote_code=True,
)
pipeline = transformers.pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
torch_dtype='auto',
device_map='cpu',
)
from transformers import StoppingCriteriaList
class StoppingCriteriaSub(StoppingCriteria):
def __init__(self, stops = [], encounters=1):
super().__init__()
# self.stops = [stop.to("cuda") for stop in stops]
self.stops = stops
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
for stop in self.stops:
last_token = input_ids[0][-len(stop):]
if torch.all(torch.eq(stop,last_token)):
return True
return False
stop_words = ["```output", "```python", "```\nOutput" , ")\n```" , "``````output"] #,
stop_words_ids = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])
code = """Below is a math problem you are to solve (positive numerical answer):
\"{}\"
To accomplish this, first determine a sympy-based approach for solving the problem by listing each step to take and what functions need to be called in each step. Be clear so even an idiot can follow your instructions, and remember, your final answer should be positive integer, not an algebraic expression!
Write the entire script covering all the steps (use comments and document it well) and print the result. After solving the problem, output the final numerical answer within \\boxed{}.
Approach:"""
cot = """Below is a math problem you are to solve (positive numerical answer!):
\"{}\"
Analyze this problem and think step by step to come to a solution with programs. After solving the problem, output the final numerical answer within \\boxed{}.\n\n"""
promplt_options = [code,cot]
import re
from collections import defaultdict
from collections import Counter
from numpy.random import choice
import numpy as np
tool_instruction = '\n\nPlease integrate natural language reasoning with programs to solve the above problem, and put your final numerical answer within \\boxed{}.\nNote that the intermediary calculations may be real numbers, but the final numercal answer would always be an integer.'
#tool_instruction = " The answer should be given as a non-negative modulo 1000."
#tool_instruction += '\nPlease integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}.'
demo = gr.Interface(
fn=predict,
inputs=[gr.Textbox(label="Question")],
outputs=gr.Textbox(label="Answer"),
title="Question and Answer Interface",
description="Enter a question."
)
if __name__ == "__main__":
demo.launch() |