File size: 4,142 Bytes
185a8fd
23c6543
3d84723
185a8fd
 
 
23c6543
 
 
 
 
 
9997a25
 
 
f998c2d
23c6543
9997a25
 
 
23c6543
9997a25
 
 
 
 
 
 
185a8fd
9997a25
 
185a8fd
de55b15
9997a25
5a97268
9997a25
 
f998c2d
9997a25
f998c2d
 
9997a25
 
 
f998c2d
9997a25
 
f998c2d
9997a25
 
f998c2d
9997a25
3ad2c61
9997a25
 
 
 
f998c2d
9997a25
 
 
 
 
 
f998c2d
 
9997a25
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
185a8fd
5a97268
9997a25
5a97268
 
 
 
 
185a8fd
5a97268
185a8fd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import gradio as gr
# from huggingface_hub import InferenceClient

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
# from accelerate import infer_auto_device_map as iadm

import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
from transformers import BitsAndBytesConfig
from tqdm import tqdm
import os 


USE_PAST_KEY = True
import gc
torch.backends.cuda.enable_mem_efficient_sdp(False)

from transformers import (
    AutoModelForCausalLM, 
    AutoTokenizer, 
    AutoConfig,
    StoppingCriteria,
    set_seed
)

n_repetitions = 1 
TOTAL_TOKENS = 2048 

MODEL_PATH = "Pra-tham/quant_deepseekmath"
    #"/kaggle/input/gemma/transformers/7b-it/1"
    
# DEEP = True
import torch

from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig
import transformers



tokenizer = AutoTokenizer.from_pretrained(MODEL_PATH)

model = AutoModelForCausalLM.from_pretrained(
            MODEL_PATH,
            device_map="cpu",
            torch_dtype="auto",
            trust_remote_code=True, 

        )
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    tokenizer=tokenizer,
    torch_dtype='auto',
    device_map='cpu',
)
from transformers import StoppingCriteriaList

class StoppingCriteriaSub(StoppingCriteria):
        def __init__(self, stops = [], encounters=1):
            super().__init__()
            # self.stops = [stop.to("cuda") for stop in stops]
            self.stops = stops

        def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor):
            for stop in self.stops:
                last_token = input_ids[0][-len(stop):]
                if torch.all(torch.eq(stop,last_token)):
                    return True
            return False


stop_words = ["```output", "```python", "```\nOutput" , ")\n```" , "``````output"] #,  
stop_words_ids = [tokenizer(stop_word, return_tensors='pt', add_special_tokens=False)['input_ids'].squeeze() for stop_word in stop_words]
stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)])

code = """Below is a math problem you are to solve (positive numerical answer):
\"{}\"
To accomplish this, first determine a sympy-based approach for solving the problem by listing each step to take and what functions need to be called in each step. Be clear so even an idiot can follow your instructions, and remember, your final answer should be positive integer, not an algebraic expression!
Write the entire script covering all the steps (use comments and document it well) and print the result. After solving the problem, output the final numerical answer within \\boxed{}.

Approach:"""


cot = """Below is a math problem you are to solve (positive numerical answer!):
\"{}\"
Analyze this problem and think step by step to come to a solution with programs. After solving the problem, output the final numerical answer within \\boxed{}.\n\n"""

promplt_options = [code,cot]

import re
from collections import defaultdict
from collections import Counter

from numpy.random import choice
import numpy as np

tool_instruction = '\n\nPlease integrate natural language reasoning with programs to solve the above problem, and put your final numerical answer within \\boxed{}.\nNote that the intermediary calculations may be real numbers, but the final numercal answer would always be an integer.'


#tool_instruction = " The answer should be given as a non-negative modulo 1000."
#tool_instruction += '\nPlease integrate natural language reasoning with programs to solve the problem above, and put your final answer within \\boxed{}.'

demo = gr.Interface(
        fn=predict,
        inputs=[gr.Textbox(label="Question")],
        outputs=gr.Textbox(label="Answer"),
        title="Question and Answer Interface",
        description="Enter a question."
    )

  
if __name__ == "__main__":
    demo.launch()