Spaces:
Running
Running
added model path
Browse files
app.py
CHANGED
@@ -35,7 +35,7 @@ from transformers import (
|
|
35 |
n_repetitions = 1
|
36 |
TOTAL_TOKENS = 2048
|
37 |
|
38 |
-
MODEL_PATH = "/
|
39 |
#"/kaggle/input/gemma/transformers/7b-it/1"
|
40 |
|
41 |
# DEEP = True
|
|
|
35 |
n_repetitions = 1
|
36 |
TOTAL_TOKENS = 2048
|
37 |
|
38 |
+
MODEL_PATH = "Pra-tham/quant_deepseekmath"
|
39 |
#"/kaggle/input/gemma/transformers/7b-it/1"
|
40 |
|
41 |
# DEEP = True
|
backup.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
# from huggingface_hub import InferenceClient
|
3 |
+
|
4 |
+
"""
|
5 |
+
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
+
"""
|
7 |
+
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig, set_seed
|
9 |
+
# from accelerate import infer_auto_device_map as iadm
|
10 |
+
|
11 |
+
import torch
|
12 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig
|
13 |
+
|
14 |
+
model_name = "deepseek-ai/deepseek-math-7b-instruct"
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
17 |
+
model.generation_config = GenerationConfig.from_pretrained(model_name)
|
18 |
+
model.generation_config.pad_token_id = model.generation_config.eos_token_id
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
|
23 |
+
def evaluate_response(problem):
|
24 |
+
# problem=b'what is angle x if angle y is 60 degree and angle z in 60 degree of a traingle'
|
25 |
+
problem=problem+'\nPlease reason step by step, and put your final answer within \\boxed{}.'
|
26 |
+
messages = [
|
27 |
+
{"role": "user", "content": problem}
|
28 |
+
]
|
29 |
+
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt")
|
30 |
+
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100)
|
31 |
+
|
32 |
+
result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
|
33 |
+
# result_output, code_output = process_output(raw_output)
|
34 |
+
return result
|
35 |
+
|
36 |
+
# def respond(
|
37 |
+
# evaluate_response,
|
38 |
+
# history: list[tuple[str, str]],
|
39 |
+
# system_message,
|
40 |
+
# max_tokens,
|
41 |
+
# temperature,
|
42 |
+
# top_p,
|
43 |
+
# ):
|
44 |
+
# messages = [{"role": "system", "content": system_message}]
|
45 |
+
|
46 |
+
# for val in history:
|
47 |
+
# if val[0]:
|
48 |
+
# messages.append({"role": "user", "content": val[0]})
|
49 |
+
# if val[1]:
|
50 |
+
# messages.append({"role": "assistant", "content": val[1]})
|
51 |
+
|
52 |
+
# messages.append({"role": "user", "content": message})
|
53 |
+
|
54 |
+
# response = ""
|
55 |
+
|
56 |
+
# for message in client.chat_completion(
|
57 |
+
# messages,
|
58 |
+
# max_tokens=max_tokens,
|
59 |
+
# stream=True,
|
60 |
+
# temperature=temperature,
|
61 |
+
# top_p=top_p,
|
62 |
+
# ):
|
63 |
+
# token = message.choices[0].delta.content
|
64 |
+
|
65 |
+
# response += token
|
66 |
+
# yield response
|
67 |
+
|
68 |
+
"""
|
69 |
+
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
70 |
+
"""
|
71 |
+
# demo = gr.ChatInterface(
|
72 |
+
# evaluate_response,
|
73 |
+
# additional_inputs=[
|
74 |
+
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
75 |
+
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
76 |
+
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
77 |
+
# gr.Slider(
|
78 |
+
# minimum=0.1,
|
79 |
+
# maximum=1.0,
|
80 |
+
# value=0.95,
|
81 |
+
# step=0.05,
|
82 |
+
# label="Top-p (nucleus sampling)",
|
83 |
+
# ),
|
84 |
+
# ],
|
85 |
+
# )
|
86 |
+
|
87 |
+
demo = gr.Interface(
|
88 |
+
fn=evaluate_response,
|
89 |
+
inputs=[gr.Textbox(label="Question")],
|
90 |
+
outputs=gr.Textbox(label="Answer"),
|
91 |
+
title="Question and Answer Interface",
|
92 |
+
description="Enter a question."
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
demo.launch()
|
utils.py
ADDED
@@ -0,0 +1,313 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import math
|
3 |
+
import random
|
4 |
+
|
5 |
+
from collections import defaultdict
|
6 |
+
|
7 |
+
|
8 |
+
|
9 |
+
|
10 |
+
def naive_parse(answer):
|
11 |
+
out = []
|
12 |
+
start = False
|
13 |
+
end = False
|
14 |
+
for l in reversed(list(answer)):
|
15 |
+
if l in '0123456789' and not end:
|
16 |
+
start = True
|
17 |
+
out.append(l)
|
18 |
+
else:
|
19 |
+
if start:
|
20 |
+
end = True
|
21 |
+
|
22 |
+
out = reversed(out)
|
23 |
+
return ''.join(out)
|
24 |
+
|
25 |
+
|
26 |
+
import re
|
27 |
+
import sys
|
28 |
+
import subprocess
|
29 |
+
|
30 |
+
def return_last_print(output, n):
|
31 |
+
lines = output.strip().split('\n')
|
32 |
+
if lines:
|
33 |
+
return lines[n]
|
34 |
+
else:
|
35 |
+
return ""
|
36 |
+
|
37 |
+
def process_code(code, return_shell_output=False):
|
38 |
+
|
39 |
+
def repl(match):
|
40 |
+
if "real" not in match.group():
|
41 |
+
return "{}{}".format(match.group()[:-1], ', real=True)')
|
42 |
+
else:
|
43 |
+
return "{}{}".format(match.group()[:-1], ')')
|
44 |
+
code = re.sub(r"symbols\([^)]+\)", repl, code)
|
45 |
+
|
46 |
+
if return_shell_output:
|
47 |
+
code = code.replace('\n', '\n ')
|
48 |
+
# Add a try...except block
|
49 |
+
code = "\ntry:\n from sympy import *\n{}\nexcept Exception as e:\n print(e)\n print('FAIL')\n".format(code)
|
50 |
+
|
51 |
+
if not return_shell_output:
|
52 |
+
print(code)
|
53 |
+
with open('code.py', 'w') as fout:
|
54 |
+
fout.write(code)
|
55 |
+
|
56 |
+
batcmd = 'timeout 7 ' + sys.executable + ' code.py'
|
57 |
+
try:
|
58 |
+
shell_output = subprocess.check_output(batcmd, shell=True).decode('utf8')
|
59 |
+
return_value = return_last_print(shell_output, -1)
|
60 |
+
print(shell_output)
|
61 |
+
if return_shell_output:
|
62 |
+
if return_value=='FAIL':
|
63 |
+
CODE_STATUS = False
|
64 |
+
return_value = return_last_print(shell_output, -2)
|
65 |
+
if "not defined" in return_value:
|
66 |
+
return_value+='\nTry checking the formatting and imports'
|
67 |
+
else:
|
68 |
+
CODE_STATUS = True
|
69 |
+
return return_value, CODE_STATUS
|
70 |
+
code_output = round(float(eval(return_value))) % 1000
|
71 |
+
except Exception as e:
|
72 |
+
print(e,'shell_output')
|
73 |
+
code_output = -1
|
74 |
+
|
75 |
+
if return_shell_output:
|
76 |
+
if code_output==-1:
|
77 |
+
CODE_STATUS = False
|
78 |
+
else:
|
79 |
+
CODE_STATUS = True
|
80 |
+
return code_output, CODE_STATUS
|
81 |
+
|
82 |
+
|
83 |
+
return code_output
|
84 |
+
|
85 |
+
|
86 |
+
def process_text_output(output):
|
87 |
+
result = output
|
88 |
+
try:
|
89 |
+
result_output = re.findall(r'\\boxed\{(\d+)\}', result)
|
90 |
+
|
91 |
+
print('BOXED', result_output)
|
92 |
+
if not len(result_output):
|
93 |
+
result_output = naive_parse(result)
|
94 |
+
else:
|
95 |
+
result_output = result_output[-1]
|
96 |
+
|
97 |
+
print('BOXED FINAL', result_output)
|
98 |
+
if not len(result_output):
|
99 |
+
result_output = -1
|
100 |
+
|
101 |
+
else:
|
102 |
+
result_output = round(float(eval(result_output))) % 1000
|
103 |
+
|
104 |
+
except Exception as e:
|
105 |
+
print(e)
|
106 |
+
print('ERROR PARSING TEXT')
|
107 |
+
result_output = -1
|
108 |
+
|
109 |
+
return result_output
|
110 |
+
|
111 |
+
from collections import defaultdict
|
112 |
+
from collections import Counter
|
113 |
+
def predict(problem):
|
114 |
+
|
115 |
+
temperature = 0.9
|
116 |
+
top_p = 3.0
|
117 |
+
|
118 |
+
temperature_coding = 0.9
|
119 |
+
top_p_coding = 3.0
|
120 |
+
|
121 |
+
|
122 |
+
total_results = {}
|
123 |
+
total_answers = {}
|
124 |
+
best_stats = {}
|
125 |
+
total_outputs = {}
|
126 |
+
question_type_counts = {}
|
127 |
+
starting_counts = (2,3)
|
128 |
+
i = 0
|
129 |
+
|
130 |
+
global n_repetitions,TOTAL_TOKENS,model,tokenizer,USE_PAST_KEY,NOTEBOOK_START_TIME,promplt_options,code,cot
|
131 |
+
|
132 |
+
|
133 |
+
|
134 |
+
for jj in tqdm(range(n_repetitions)):
|
135 |
+
best, best_count = best_stats.get(i,(-1,-1))
|
136 |
+
if best_count>np.sqrt(jj):
|
137 |
+
print("SKIPPING CAUSE ALREADY FOUND BEST")
|
138 |
+
continue
|
139 |
+
|
140 |
+
outputs = total_outputs.get(i,[])
|
141 |
+
text_answers, code_answers = question_type_counts.get(i,starting_counts)
|
142 |
+
results = total_results.get(i,[])
|
143 |
+
answers = total_answers.get(i,[])
|
144 |
+
|
145 |
+
for _ in range(5):
|
146 |
+
torch.cuda.empty_cache()
|
147 |
+
gc.collect()
|
148 |
+
time.sleep(0.2)
|
149 |
+
|
150 |
+
try:
|
151 |
+
ALREADY_GEN = 0
|
152 |
+
code_error = None
|
153 |
+
code_error_count = 0
|
154 |
+
code_output = -1
|
155 |
+
#initail_message = problem + tool_instruction
|
156 |
+
counts = np.array([text_answers,code_answers])
|
157 |
+
|
158 |
+
draw = choice(promplt_options, 1,
|
159 |
+
p=counts/counts.sum())
|
160 |
+
|
161 |
+
initail_message = draw[0].format(problem,"{}")
|
162 |
+
prompt = f"User: {initail_message}"
|
163 |
+
|
164 |
+
current_printed = len(prompt)
|
165 |
+
print(f"{jj}_{prompt}\n")
|
166 |
+
|
167 |
+
model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
168 |
+
input_len = len(model_inputs['input_ids'][0])
|
169 |
+
|
170 |
+
generation_output = model.generate(**model_inputs,
|
171 |
+
max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
|
172 |
+
return_dict_in_generate=USE_PAST_KEY,
|
173 |
+
do_sample = True,
|
174 |
+
temperature = temperature,
|
175 |
+
top_p = top_p,
|
176 |
+
num_return_sequences=1, stopping_criteria = stopping_criteria)
|
177 |
+
|
178 |
+
if USE_PAST_KEY:
|
179 |
+
output_ids = generation_output.sequences[0]
|
180 |
+
else:
|
181 |
+
output_ids = generation_output[0]
|
182 |
+
decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
183 |
+
print(f"{decoded_output[current_printed:]}\n")
|
184 |
+
current_printed += len(decoded_output[current_printed:])
|
185 |
+
cummulative_code = ""
|
186 |
+
|
187 |
+
stop_word_cond = False
|
188 |
+
for stop_word in stop_words:
|
189 |
+
stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
|
190 |
+
|
191 |
+
|
192 |
+
while (stop_word_cond) and (ALREADY_GEN<(TOTAL_TOKENS)):
|
193 |
+
|
194 |
+
if (decoded_output[-len("```python"):]=="```python"):
|
195 |
+
temperature_inner=temperature_coding
|
196 |
+
top_p_inner = top_p_coding
|
197 |
+
prompt = decoded_output
|
198 |
+
else:
|
199 |
+
temperature_inner=temperature
|
200 |
+
top_p_inner = top_p
|
201 |
+
try:
|
202 |
+
if (decoded_output[-len("``````output"):]=="``````output"):
|
203 |
+
code_text = decoded_output.split('```python')[-1].split("``````")[0]
|
204 |
+
else:
|
205 |
+
code_text = decoded_output.split('```python')[-1].split("```")[0]
|
206 |
+
|
207 |
+
|
208 |
+
cummulative_code+=code_text
|
209 |
+
code_output, CODE_STATUS = process_code(cummulative_code, return_shell_output=True)
|
210 |
+
print('CODE RESULTS', code_output)
|
211 |
+
|
212 |
+
if code_error==code_output:
|
213 |
+
code_error_count+=1
|
214 |
+
else:
|
215 |
+
code_error=code_output
|
216 |
+
code_error_count = 0
|
217 |
+
|
218 |
+
if not CODE_STATUS:
|
219 |
+
cummulative_code = cummulative_code[:-len(code_text)]
|
220 |
+
|
221 |
+
if code_error_count>=1:
|
222 |
+
print("REPEATED ERRORS")
|
223 |
+
break
|
224 |
+
|
225 |
+
except Exception as e:
|
226 |
+
print(e)
|
227 |
+
print('ERROR PARSING CODE')
|
228 |
+
code_output = -1
|
229 |
+
|
230 |
+
if code_output!=-1:
|
231 |
+
if (decoded_output[-len(")\n```"):]==")\n```"):
|
232 |
+
prompt = decoded_output+'```output\n'+str(code_output)+'\n```\n'
|
233 |
+
else:
|
234 |
+
prompt = decoded_output+'\n'+str(code_output)+'\n```\n'
|
235 |
+
else:
|
236 |
+
prompt = decoded_output
|
237 |
+
cummulative_code=""
|
238 |
+
model_inputs = tokenizer(prompt, return_tensors='pt').to(model.device)
|
239 |
+
ALREADY_GEN = len(model_inputs['input_ids'][0])-input_len
|
240 |
+
|
241 |
+
if USE_PAST_KEY:
|
242 |
+
old_values = generation_output.past_key_values
|
243 |
+
else:
|
244 |
+
old_values = None
|
245 |
+
|
246 |
+
generation_output = model.generate(**model_inputs,
|
247 |
+
max_new_tokens=TOTAL_TOKENS-ALREADY_GEN,
|
248 |
+
return_dict_in_generate=USE_PAST_KEY,
|
249 |
+
past_key_values=old_values,
|
250 |
+
do_sample = True,
|
251 |
+
temperature = temperature_inner,
|
252 |
+
top_p = top_p_inner,
|
253 |
+
num_return_sequences=1, stopping_criteria = stopping_criteria)
|
254 |
+
if USE_PAST_KEY:
|
255 |
+
output_ids = generation_output.sequences[0]
|
256 |
+
else:
|
257 |
+
output_ids = generation_output[0]
|
258 |
+
decoded_output = tokenizer.decode(output_ids, skip_special_tokens=True)
|
259 |
+
print(f"\nINTERMEDIATE OUT :\n{decoded_output[current_printed:]}\n")
|
260 |
+
current_printed+=len(decoded_output[current_printed:])
|
261 |
+
|
262 |
+
stop_word_cond = False
|
263 |
+
for stop_word in stop_words:
|
264 |
+
stop_word_cond = stop_word_cond or (decoded_output[-len(stop_word):]==stop_word)
|
265 |
+
if USE_PAST_KEY:
|
266 |
+
output_ids = generation_output.sequences[0]
|
267 |
+
else:
|
268 |
+
output_ids = generation_output[0]
|
269 |
+
|
270 |
+
raw_output = tokenizer.decode(output_ids[input_len:], skip_special_tokens=True)
|
271 |
+
#print(f"\n\nOutput :\n{raw_output}\n")
|
272 |
+
result_output = process_text_output(raw_output)
|
273 |
+
|
274 |
+
try:
|
275 |
+
code_output = round(float(eval(code_output))) % 1000
|
276 |
+
except Exception as e:
|
277 |
+
print(e,'final_eval')
|
278 |
+
code_output = -1
|
279 |
+
except Exception as e:
|
280 |
+
print(e,"5")
|
281 |
+
result_output, code_output = -1, -1
|
282 |
+
|
283 |
+
if code_output!=-1:
|
284 |
+
outputs.append(code_output)
|
285 |
+
code_answers+=1
|
286 |
+
|
287 |
+
if result_output!=-1:
|
288 |
+
outputs.append(result_output)
|
289 |
+
text_answers+=1
|
290 |
+
|
291 |
+
if len(outputs) > 0:
|
292 |
+
occurances = Counter(outputs).most_common()
|
293 |
+
print(occurances)
|
294 |
+
if occurances[0][1] > best_count:
|
295 |
+
print("GOOD ANSWER UPDATED!")
|
296 |
+
best = occurances[0][0]
|
297 |
+
best_count = occurances[0][1]
|
298 |
+
if occurances[0][1] > 5:
|
299 |
+
print("ANSWER FOUND!")
|
300 |
+
break
|
301 |
+
|
302 |
+
results.append(result_output)
|
303 |
+
answers.append(code_output)
|
304 |
+
|
305 |
+
best_stats[i] = (best, best_count)
|
306 |
+
question_type_counts[i] = (text_answers, code_answers)
|
307 |
+
total_outputs[i] = outputs
|
308 |
+
|
309 |
+
total_results[i] = results
|
310 |
+
total_answers[i] = answers
|
311 |
+
|
312 |
+
print("code_answers",code_answers-starting_counts[1],"text_answers",text_answers-starting_counts[0])
|
313 |
+
return best_stats[0][0]
|