File size: 12,071 Bytes
983684c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
import os
#os.environ['CUDA_VISIBLE_DEVICES'] = "0"
import argparse
import numpy as np
import cv2
import dlib
import torch
from torchvision import transforms
import torch.nn.functional as F
from tqdm import tqdm
from model.vtoonify import VToonify
from model.bisenet.model import BiSeNet
from model.encoder.align_all_parallel import align_face
from util import save_image, load_image, visualize, load_psp_standalone, get_video_crop_parameter, tensor2cv2


class TestOptions():
    def __init__(self):

        self.parser = argparse.ArgumentParser(description="Style Transfer")
        self.parser.add_argument("--content", type=str, default='./data/077436.jpg', help="path of the content image/video")
        self.parser.add_argument("--style_id", type=int, default=26, help="the id of the style image")
        self.parser.add_argument("--style_degree", type=float, default=0.5, help="style degree for VToonify-D")
        self.parser.add_argument("--color_transfer", action="store_true", help="transfer the color of the style")
        self.parser.add_argument("--ckpt", type=str, default='./checkpoint/vtoonify_d_cartoon/vtoonify_s_d.pt', help="path of the saved model")
        self.parser.add_argument("--output_path", type=str, default='./output/', help="path of the output images")
        self.parser.add_argument("--scale_image", action="store_true", help="resize and crop the image to best fit the model")
        self.parser.add_argument("--style_encoder_path", type=str, default='./checkpoint/encoder.pt', help="path of the style encoder")
        self.parser.add_argument("--exstyle_path", type=str, default=None, help="path of the extrinsic style code")
        self.parser.add_argument("--faceparsing_path", type=str, default='./checkpoint/faceparsing.pth', help="path of the face parsing model")
        self.parser.add_argument("--video", action="store_true", help="if true, video stylization; if false, image stylization")
        self.parser.add_argument("--cpu", action="store_true", help="if true, only use cpu")
        self.parser.add_argument("--backbone", type=str, default='dualstylegan', help="dualstylegan | toonify")
        self.parser.add_argument("--padding", type=int, nargs=4, default=[200,200,200,200], help="left, right, top, bottom paddings to the face center")
        self.parser.add_argument("--batch_size", type=int, default=4, help="batch size of frames when processing video")
        self.parser.add_argument("--parsing_map_path", type=str, default=None, help="path of the refined parsing map of the target video")
        
    def parse(self):
        self.opt = self.parser.parse_args()
        if self.opt.exstyle_path is None:
            self.opt.exstyle_path = os.path.join(os.path.dirname(self.opt.ckpt), 'exstyle_code.npy')
        args = vars(self.opt)
        print('Load options')
        for name, value in sorted(args.items()):
            print('%s: %s' % (str(name), str(value)))
        return self.opt
    
if __name__ == "__main__":

    parser = TestOptions()
    args = parser.parse()
    print('*'*98)
    
    
    device = "cpu" if args.cpu else "cuda"
    
    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
        ])
    
    vtoonify = VToonify(backbone = args.backbone)
    vtoonify.load_state_dict(torch.load(args.ckpt, map_location=lambda storage, loc: storage)['g_ema'])
    vtoonify.to(device)

    parsingpredictor = BiSeNet(n_classes=19)
    parsingpredictor.load_state_dict(torch.load(args.faceparsing_path, map_location=lambda storage, loc: storage))
    parsingpredictor.to(device).eval()

    modelname = './checkpoint/shape_predictor_68_face_landmarks.dat'
    if not os.path.exists(modelname):
        import wget, bz2
        wget.download('http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2', modelname+'.bz2')
        zipfile = bz2.BZ2File(modelname+'.bz2')
        data = zipfile.read()
        open(modelname, 'wb').write(data) 
    landmarkpredictor = dlib.shape_predictor(modelname)

    pspencoder = load_psp_standalone(args.style_encoder_path, device)    

    if args.backbone == 'dualstylegan':
        exstyles = np.load(args.exstyle_path, allow_pickle='TRUE').item()
        stylename = list(exstyles.keys())[args.style_id]
        exstyle = torch.tensor(exstyles[stylename]).to(device)
        with torch.no_grad():  
            exstyle = vtoonify.zplus2wplus(exstyle)

    if args.video and args.parsing_map_path is not None:
        x_p_hat = torch.tensor(np.load(args.parsing_map_path))          
            
    print('Load models successfully!')
    
    
    filename = args.content
    basename = os.path.basename(filename).split('.')[0]
    scale = 1
    kernel_1d = np.array([[0.125],[0.375],[0.375],[0.125]])
    print('Processing ' + os.path.basename(filename) + ' with vtoonify_' + args.backbone[0])
    if args.video:
        cropname = os.path.join(args.output_path, basename + '_input.mp4')
        savename = os.path.join(args.output_path, basename + '_vtoonify_' +  args.backbone[0] + '.mp4')

        video_cap = cv2.VideoCapture(filename)
        num = int(video_cap.get(7))

        first_valid_frame = True
        batch_frames = []
        for i in tqdm(range(num)):
            success, frame = video_cap.read()
            if success == False:
                assert('load video frames error')
            frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
            # We proprocess the video by detecting the face in the first frame, 
            # and resizing the frame so that the eye distance is 64 pixels.
            # Centered on the eyes, we crop the first frame to almost 400x400 (based on args.padding).
            # All other frames use the same resizing and cropping parameters as the first frame.
            if first_valid_frame:
                if args.scale_image:
                    paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding)
                    if paras is None:
                        continue
                    h,w,top,bottom,left,right,scale = paras
                    H, W = int(bottom-top), int(right-left)
                    # for HR video, we apply gaussian blur to the frames to avoid flickers caused by bilinear downsampling
                    # this can also prevent over-sharp stylization results. 
                    if scale <= 0.75:
                        frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
                    if scale <= 0.375:
                        frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
                    frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
                else:
                    H, W = frame.shape[0], frame.shape[1]

                fourcc = cv2.VideoWriter_fourcc(*'mp4v')
                videoWriter = cv2.VideoWriter(cropname, fourcc, video_cap.get(5), (W, H))
                videoWriter2 = cv2.VideoWriter(savename, fourcc, video_cap.get(5), (4*W, 4*H))
                
                # For each video, we detect and align the face in the first frame for pSp to obtain the style code. 
                # This style code is used for all other frames.
                with torch.no_grad():
                    I = align_face(frame, landmarkpredictor)
                    I = transform(I).unsqueeze(dim=0).to(device)
                    s_w = pspencoder(I)
                    s_w = vtoonify.zplus2wplus(s_w)
                    if vtoonify.backbone == 'dualstylegan':
                        if args.color_transfer:
                            s_w = exstyle
                        else:
                            s_w[:,:7] = exstyle[:,:7]
                first_valid_frame = False
            elif args.scale_image:
                if scale <= 0.75:
                    frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
                if scale <= 0.375:
                    frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
                frame = cv2.resize(frame, (w, h))[top:bottom, left:right]

            videoWriter.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))

            batch_frames += [transform(frame).unsqueeze(dim=0).to(device)]

            if len(batch_frames) == args.batch_size or (i+1) == num:
                x = torch.cat(batch_frames, dim=0)
                batch_frames = []
                with torch.no_grad():
                    # parsing network works best on 512x512 images, so we predict parsing maps on upsmapled frames
                    # followed by downsampling the parsing maps
                    if args.video and args.parsing_map_path is not None:
                        x_p = x_p_hat[i+1-x.size(0):i+1].to(device)
                    else:
                        x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], 
                                        scale_factor=0.5, recompute_scale_factor=False).detach()
                    # we give parsing maps lower weight (1/16)
                    inputs = torch.cat((x, x_p/16.), dim=1)
                    # d_s has no effect when backbone is toonify
                    y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree)       
                    y_tilde = torch.clamp(y_tilde, -1, 1)
                for k in range(y_tilde.size(0)):
                    videoWriter2.write(tensor2cv2(y_tilde[k].cpu()))

        videoWriter.release()
        videoWriter2.release()
        video_cap.release()

    
    else:
        cropname = os.path.join(args.output_path, basename + '_input.jpg')
        savename = os.path.join(args.output_path, basename + '_vtoonify_' +  args.backbone[0] + '.jpg')

        frame = cv2.imread(filename)
        frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)

        # We detect the face in the image, and resize the image so that the eye distance is 64 pixels.
        # Centered on the eyes, we crop the image to almost 400x400 (based on args.padding).
        if args.scale_image:
            paras = get_video_crop_parameter(frame, landmarkpredictor, args.padding)
            if paras is not None:
                h,w,top,bottom,left,right,scale = paras
                H, W = int(bottom-top), int(right-left)
                # for HR image, we apply gaussian blur to it to avoid over-sharp stylization results
                if scale <= 0.75:
                    frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
                if scale <= 0.375:
                    frame = cv2.sepFilter2D(frame, -1, kernel_1d, kernel_1d)
                frame = cv2.resize(frame, (w, h))[top:bottom, left:right]

        with torch.no_grad():
            I = align_face(frame, landmarkpredictor)
            I = transform(I).unsqueeze(dim=0).to(device)
            s_w = pspencoder(I)
            s_w = vtoonify.zplus2wplus(s_w)
            if vtoonify.backbone == 'dualstylegan':
                if args.color_transfer:
                    s_w = exstyle
                else:
                    s_w[:,:7] = exstyle[:,:7]

            x = transform(frame).unsqueeze(dim=0).to(device)
            # parsing network works best on 512x512 images, so we predict parsing maps on upsmapled frames
            # followed by downsampling the parsing maps
            x_p = F.interpolate(parsingpredictor(2*(F.interpolate(x, scale_factor=2, mode='bilinear', align_corners=False)))[0], 
                                scale_factor=0.5, recompute_scale_factor=False).detach()
            # we give parsing maps lower weight (1/16)
            inputs = torch.cat((x, x_p/16.), dim=1)
            # d_s has no effect when backbone is toonify
            y_tilde = vtoonify(inputs, s_w.repeat(inputs.size(0), 1, 1), d_s = args.style_degree)        
            y_tilde = torch.clamp(y_tilde, -1, 1)

        cv2.imwrite(cropname, cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
        save_image(y_tilde[0].cpu(), savename)
        
    print('Transfer style successfully!')