Spaces:
Runtime error
Runtime error
Commit
·
983684c
1
Parent(s):
ff1b8c8
V1
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- app.py +267 -0
- packages.txt +4 -0
- requirements.txt +7 -0
- vtoonify/LICENSE.md +12 -0
- vtoonify/data/077436.jpg +0 -0
- vtoonify/data/pexels-andrea-piacquadio-733872.jpg +0 -0
- vtoonify/model/__init__.py +0 -0
- vtoonify/model/bisenet/LICENSE +21 -0
- vtoonify/model/bisenet/README.md +68 -0
- vtoonify/model/bisenet/model.py +283 -0
- vtoonify/model/bisenet/resnet.py +109 -0
- vtoonify/model/dualstylegan.py +203 -0
- vtoonify/model/encoder/__init__.py +0 -0
- vtoonify/model/encoder/align_all_parallel.py +217 -0
- vtoonify/model/encoder/criteria/id_loss.py +33 -0
- vtoonify/model/encoder/encoders/__init__.py +0 -0
- vtoonify/model/encoder/encoders/helpers.py +119 -0
- vtoonify/model/encoder/encoders/model_irse.py +84 -0
- vtoonify/model/encoder/encoders/psp_encoders.py +186 -0
- vtoonify/model/encoder/psp.py +125 -0
- vtoonify/model/encoder/readme.md +9 -0
- vtoonify/model/raft/LICENSE +29 -0
- vtoonify/model/raft/RAFT.png +0 -0
- vtoonify/model/raft/README.md +80 -0
- vtoonify/model/raft/alt_cuda_corr/correlation.cpp +54 -0
- vtoonify/model/raft/alt_cuda_corr/correlation_kernel.cu +324 -0
- vtoonify/model/raft/alt_cuda_corr/setup.py +15 -0
- vtoonify/model/raft/chairs_split.txt +22872 -0
- vtoonify/model/raft/core/__init__.py +0 -0
- vtoonify/model/raft/core/corr.py +91 -0
- vtoonify/model/raft/core/datasets.py +235 -0
- vtoonify/model/raft/core/extractor.py +267 -0
- vtoonify/model/raft/core/raft.py +144 -0
- vtoonify/model/raft/core/update.py +139 -0
- vtoonify/model/raft/core/utils/__init__.py +0 -0
- vtoonify/model/raft/core/utils/augmentor.py +246 -0
- vtoonify/model/raft/core/utils/flow_viz.py +132 -0
- vtoonify/model/raft/core/utils/frame_utils.py +137 -0
- vtoonify/model/raft/core/utils/utils.py +82 -0
- vtoonify/model/raft/demo.py +75 -0
- vtoonify/model/raft/download_models.sh +3 -0
- vtoonify/model/raft/evaluate.py +197 -0
- vtoonify/model/raft/train.py +247 -0
- vtoonify/model/raft/train_mixed.sh +6 -0
- vtoonify/model/raft/train_standard.sh +6 -0
- vtoonify/model/simple_augment.py +468 -0
- vtoonify/model/stylegan/__init__.py +0 -0
- vtoonify/model/stylegan/dataset.py +40 -0
- vtoonify/model/stylegan/distributed.py +126 -0
- vtoonify/model/stylegan/lpips/__init__.py +161 -0
app.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import pathlib
|
7 |
+
|
8 |
+
import gradio as gr
|
9 |
+
|
10 |
+
from vtoonify_model import Model
|
11 |
+
|
12 |
+
DESCRIPTION = '''
|
13 |
+
<div align=center>
|
14 |
+
<h1 style="font-weight: 900; margin-bottom: 7px;">
|
15 |
+
Portrait Style Transfer with <a href="https://github.com/williamyang1991/VToonify">VToonify</a>
|
16 |
+
</h1>
|
17 |
+
<video id="video" width=50% controls="" preload="none" poster="https://repository-images.githubusercontent.com/534480768/53715b0f-a2df-4daa-969c-0e74c102d339">
|
18 |
+
<source id="mp4" src="https://user-images.githubusercontent.com/18130694/189483939-0fc4a358-fb34-43cc-811a-b22adb820d57.mp4
|
19 |
+
" type="video/mp4">
|
20 |
+
</videos></div>
|
21 |
+
'''
|
22 |
+
FOOTER = '<div align=center><img id="visitor-badge" alt="visitor badge" src="https://visitor-badge.glitch.me/badge?page_id=gradio-blocks.vtoonify" /></div>'
|
23 |
+
|
24 |
+
ARTICLE = r"""
|
25 |
+
If VToonify is helpful, please help to ⭐ the <a href='https://github.com/williamyang1991/VToonify' target='_blank'>Github Repo</a>. Thanks!
|
26 |
+
[](https://github.com/williamyang1991/VToonify)
|
27 |
+
---
|
28 |
+
📝 **Citation**
|
29 |
+
If our work is useful for your research, please consider citing:
|
30 |
+
```bibtex
|
31 |
+
@article{yang2022Vtoonify,
|
32 |
+
title={VToonify: Controllable High-Resolution Portrait Video Style Transfer},
|
33 |
+
author={Yang, Shuai and Jiang, Liming and Liu, Ziwei and Loy, Chen Change},
|
34 |
+
journal={ACM Transactions on Graphics (TOG)},
|
35 |
+
volume={41},
|
36 |
+
number={6},
|
37 |
+
articleno={203},
|
38 |
+
pages={1--15},
|
39 |
+
year={2022},
|
40 |
+
publisher={ACM New York, NY, USA},
|
41 |
+
doi={10.1145/3550454.3555437},
|
42 |
+
}
|
43 |
+
```
|
44 |
+
📋 **License**
|
45 |
+
This project is licensed under <a rel="license" href="https://github.com/williamyang1991/VToonify/blob/main/LICENSE.md">S-Lab License 1.0</a>.
|
46 |
+
Redistribution and use for non-commercial purposes should follow this license.
|
47 |
+
📧 **Contact**
|
48 |
+
If you have any questions, please feel free to reach me out at <b>williamyang@pku.edu.cn</b>.
|
49 |
+
"""
|
50 |
+
|
51 |
+
def update_slider(choice: str) -> dict:
|
52 |
+
if type(choice) == str and choice.endswith('-d'):
|
53 |
+
return gr.Slider.update(maximum=1, minimum=0, value=0.5)
|
54 |
+
else:
|
55 |
+
return gr.Slider.update(maximum=0.5, minimum=0.5, value=0.5)
|
56 |
+
|
57 |
+
def set_example_image(example: list) -> dict:
|
58 |
+
return gr.Image.update(value=example[0])
|
59 |
+
|
60 |
+
def set_example_video(example: list) -> dict:
|
61 |
+
return gr.Video.update(value=example[0]),
|
62 |
+
|
63 |
+
sample_video = ['./vtoonify/data/529.mp4', './vtoonify/data/pexels-anthony-shkraba-7525601.mp4']
|
64 |
+
sample_vid = gr.Video(label='Video file') #for displaying the example
|
65 |
+
example_videos = gr.components.Dataset(components=[sample_vid], samples=[[path] for path in sample_video], type='values', label='Video Examples')
|
66 |
+
|
67 |
+
def main():
|
68 |
+
args = parse_args()
|
69 |
+
model = Model(device=args.device)
|
70 |
+
|
71 |
+
with gr.Blocks(theme=args.theme, css='style.css') as demo:
|
72 |
+
|
73 |
+
gr.Markdown(DESCRIPTION)
|
74 |
+
|
75 |
+
with gr.Box():
|
76 |
+
gr.Markdown('''## Step 1(Select Style)
|
77 |
+
- Select **Style Type**.
|
78 |
+
- Types with `-d` means it supports style degree adjustment.
|
79 |
+
- Types without `-d` usually has better toonification quality.
|
80 |
+
|
81 |
+
''')
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
gr.Markdown('''Select Style Type''')
|
85 |
+
with gr.Row():
|
86 |
+
style_type = gr.Radio(label='Style Type',
|
87 |
+
choices=['cartoon1','cartoon1-d','cartoon2-d','cartoon3-d',
|
88 |
+
'cartoon4','cartoon4-d','cartoon5-d','comic1-d',
|
89 |
+
'comic2-d','comic3-d', 'arcane1','arcane1-d','arcane2', 'arcane2-d',
|
90 |
+
'caricature1','caricature2','pixar','pixar-d'
|
91 |
+
]
|
92 |
+
)
|
93 |
+
exstyle = gr.Variable()
|
94 |
+
with gr.Row():
|
95 |
+
loadmodel_button = gr.Button('Load Model')
|
96 |
+
with gr.Row():
|
97 |
+
load_info = gr.Textbox(label='Process Information', interactive=False, value='No model loaded.')
|
98 |
+
with gr.Column():
|
99 |
+
gr.Markdown('''Reference Styles
|
100 |
+
''')
|
101 |
+
|
102 |
+
|
103 |
+
with gr.Box():
|
104 |
+
gr.Markdown('''## Step 2 (Preprocess Input Image / Video)
|
105 |
+
- Drop an image/video containing a near-frontal face to the **Input Image**/**Input Video.
|
106 |
+
- If there are multiple faces, hit the Edit button in the upper right corner and crop the source beforehand.
|
107 |
+
- Hit the **Rescale Image**/ **Rescale First Frame** button.
|
108 |
+
- The final image result will be based on this **Rescaled Face**.
|
109 |
+
- Use padding parameters to adjust the background space.
|
110 |
+
- For video input, further hit the **Rescale Video** button.
|
111 |
+
- The final video result will be based on this **Rescaled Video**.
|
112 |
+
|
113 |
+
''')
|
114 |
+
with gr.Row():
|
115 |
+
with gr.Box():
|
116 |
+
with gr.Column():
|
117 |
+
gr.Markdown('''Choose the padding parameters.
|
118 |
+
''')
|
119 |
+
with gr.Row():
|
120 |
+
top = gr.Slider(128,
|
121 |
+
320,
|
122 |
+
value=200,
|
123 |
+
step=8,
|
124 |
+
label='top')
|
125 |
+
with gr.Row():
|
126 |
+
bottom = gr.Slider(128,
|
127 |
+
320,
|
128 |
+
value=200,
|
129 |
+
step=8,
|
130 |
+
label='bottom')
|
131 |
+
with gr.Row():
|
132 |
+
left = gr.Slider(128,
|
133 |
+
320,
|
134 |
+
value=200,
|
135 |
+
step=8,
|
136 |
+
label='left')
|
137 |
+
with gr.Row():
|
138 |
+
right = gr.Slider(128,
|
139 |
+
320,
|
140 |
+
value=200,
|
141 |
+
step=8,
|
142 |
+
label='right')
|
143 |
+
with gr.Box():
|
144 |
+
with gr.Column():
|
145 |
+
gr.Markdown('''Input''')
|
146 |
+
with gr.Row():
|
147 |
+
input_image = gr.Image(label='Input Image',
|
148 |
+
type='filepath')
|
149 |
+
with gr.Row():
|
150 |
+
preprocess_image_button = gr.Button('Rescale Image')
|
151 |
+
with gr.Row():
|
152 |
+
input_video = gr.Video(label='Input Video',
|
153 |
+
mirror_webcam=False,
|
154 |
+
type='filepath')
|
155 |
+
with gr.Row():
|
156 |
+
preprocess_video0_button = gr.Button('Rescale First Frame')
|
157 |
+
preprocess_video1_button = gr.Button('Rescale Video')
|
158 |
+
|
159 |
+
with gr.Box():
|
160 |
+
with gr.Column():
|
161 |
+
gr.Markdown('''View''')
|
162 |
+
with gr.Row():
|
163 |
+
input_info = gr.Textbox(label='Process Information', interactive=False, value='n.a.')
|
164 |
+
with gr.Row():
|
165 |
+
aligned_face = gr.Image(label='Rescaled Face',
|
166 |
+
type='numpy',
|
167 |
+
interactive=False)
|
168 |
+
instyle = gr.Variable()
|
169 |
+
with gr.Row():
|
170 |
+
aligned_video = gr.Video(label='Rescaled Video',
|
171 |
+
type='mp4',
|
172 |
+
interactive=False)
|
173 |
+
with gr.Row():
|
174 |
+
with gr.Column():
|
175 |
+
paths = ['./vtoonify/data/077436.jpg', './vtoonify/data/pexels-andrea-piacquadio-733872.jpg']
|
176 |
+
example_images = gr.Dataset(components=[input_image],
|
177 |
+
samples=[[path] for path in paths],
|
178 |
+
label='Image Examples')
|
179 |
+
with gr.Column():
|
180 |
+
#example_videos = gr.Dataset(components=[input_video], samples=[['./vtoonify/data/529.mp4']], type='values')
|
181 |
+
#to render video example on mouse hover/click
|
182 |
+
example_videos.render()
|
183 |
+
#to load sample video into input_video upon clicking on it
|
184 |
+
def load_examples(video):
|
185 |
+
print("****** inside load_example() ******")
|
186 |
+
print("in_video is : ", video[0])
|
187 |
+
return video[0]
|
188 |
+
|
189 |
+
example_videos.click(load_examples, example_videos, input_video)
|
190 |
+
|
191 |
+
with gr.Box():
|
192 |
+
gr.Markdown('''## Step 3 (Generate Style Transferred Image/Video)''')
|
193 |
+
with gr.Row():
|
194 |
+
with gr.Column():
|
195 |
+
gr.Markdown('''
|
196 |
+
|
197 |
+
- Adjust **Style Degree**.
|
198 |
+
- For image, hit **Toonify!** to toonify **Rescaled Face**.
|
199 |
+
- For video, hit e **VToonify!** to toonify **Rescaled Video**.
|
200 |
+
''')
|
201 |
+
style_degree = gr.Slider(0,
|
202 |
+
1,
|
203 |
+
value=0.5,
|
204 |
+
step=0.05,
|
205 |
+
label='Style Degree')
|
206 |
+
with gr.Column():
|
207 |
+
gr.Markdown('''
|
208 |
+
''')
|
209 |
+
with gr.Row():
|
210 |
+
with gr.Column():
|
211 |
+
with gr.Row():
|
212 |
+
result_face = gr.Image(label='Result Image',
|
213 |
+
type='numpy',
|
214 |
+
interactive=False)
|
215 |
+
with gr.Row():
|
216 |
+
toonify_button = gr.Button('Toonify!')
|
217 |
+
with gr.Column():
|
218 |
+
with gr.Row():
|
219 |
+
result_video = gr.Video(label='Result Video',
|
220 |
+
type='mp4',
|
221 |
+
interactive=False)
|
222 |
+
with gr.Row():
|
223 |
+
vtoonify_button = gr.Button('VToonify!')
|
224 |
+
|
225 |
+
gr.Markdown(ARTICLE)
|
226 |
+
gr.Markdown(FOOTER)
|
227 |
+
|
228 |
+
loadmodel_button.click(fn=model.load_model,
|
229 |
+
inputs=[style_type],
|
230 |
+
outputs=[exstyle, load_info])
|
231 |
+
|
232 |
+
|
233 |
+
style_type.change(fn=update_slider,
|
234 |
+
inputs=style_type,
|
235 |
+
outputs=style_degree)
|
236 |
+
|
237 |
+
preprocess_image_button.click(fn=model.detect_and_align_image,
|
238 |
+
inputs=[input_image, top, bottom, left, right],
|
239 |
+
outputs=[aligned_face, instyle, input_info])
|
240 |
+
preprocess_video0_button.click(fn=model.detect_and_align_video,
|
241 |
+
inputs=[input_video, top, bottom, left, right],
|
242 |
+
outputs=[aligned_face, instyle, input_info])
|
243 |
+
preprocess_video1_button.click(fn=model.detect_and_align_full_video,
|
244 |
+
inputs=[input_video, top, bottom, left, right],
|
245 |
+
outputs=[aligned_video, instyle, input_info])
|
246 |
+
|
247 |
+
toonify_button.click(fn=model.image_toonify,
|
248 |
+
inputs=[aligned_face, instyle, exstyle, style_degree],
|
249 |
+
outputs=[result_face])
|
250 |
+
vtoonify_button.click(fn=model.video_tooniy,
|
251 |
+
inputs=[aligned_video, instyle, exstyle, style_degree],
|
252 |
+
outputs=[result_video])
|
253 |
+
|
254 |
+
|
255 |
+
example_images.click(fn=set_example_image,
|
256 |
+
inputs=example_images,
|
257 |
+
outputs=example_images.components)
|
258 |
+
|
259 |
+
demo.launch(
|
260 |
+
enable_queue=args.enable_queue,
|
261 |
+
server_port=args.port,
|
262 |
+
share=args.share,
|
263 |
+
)
|
264 |
+
|
265 |
+
|
266 |
+
if __name__ == '__main__':
|
267 |
+
main()
|
packages.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
bzip2
|
2 |
+
cmake
|
3 |
+
ninja-build
|
4 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
dlib==19.23.0
|
2 |
+
numpy==1.22.3
|
3 |
+
opencv-python-headless==4.5.5.62
|
4 |
+
Pillow==9.0.1
|
5 |
+
scipy==1.8.0
|
6 |
+
torch==1.11.0
|
7 |
+
torchvision==0.12.0
|
vtoonify/LICENSE.md
ADDED
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# S-Lab License 1.0
|
2 |
+
|
3 |
+
Copyright 2022 S-Lab
|
4 |
+
|
5 |
+
Redistribution and use for non-commercial purpose in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
|
6 |
+
1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer.
|
7 |
+
2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution.
|
8 |
+
3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission.\
|
9 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
10 |
+
4. In the event that redistribution and/or use for commercial purpose in source or binary forms, with or without modification is required, please contact the contributor(s) of the work.
|
11 |
+
|
12 |
+
|
vtoonify/data/077436.jpg
ADDED
![]() |
vtoonify/data/pexels-andrea-piacquadio-733872.jpg
ADDED
![]() |
vtoonify/model/__init__.py
ADDED
File without changes
|
vtoonify/model/bisenet/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2019 zll
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
vtoonify/model/bisenet/README.md
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# face-parsing.PyTorch
|
2 |
+
|
3 |
+
<p align="center">
|
4 |
+
<a href="https://github.com/zllrunning/face-parsing.PyTorch">
|
5 |
+
<img class="page-image" src="https://github.com/zllrunning/face-parsing.PyTorch/blob/master/6.jpg" >
|
6 |
+
</a>
|
7 |
+
</p>
|
8 |
+
|
9 |
+
### Contents
|
10 |
+
- [Training](#training)
|
11 |
+
- [Demo](#Demo)
|
12 |
+
- [References](#references)
|
13 |
+
|
14 |
+
## Training
|
15 |
+
|
16 |
+
1. Prepare training data:
|
17 |
+
-- download [CelebAMask-HQ dataset](https://github.com/switchablenorms/CelebAMask-HQ)
|
18 |
+
|
19 |
+
-- change file path in the `prepropess_data.py` and run
|
20 |
+
```Shell
|
21 |
+
python prepropess_data.py
|
22 |
+
```
|
23 |
+
|
24 |
+
2. Train the model using CelebAMask-HQ dataset:
|
25 |
+
Just run the train script:
|
26 |
+
```
|
27 |
+
$ CUDA_VISIBLE_DEVICES=0,1 python -m torch.distributed.launch --nproc_per_node=2 train.py
|
28 |
+
```
|
29 |
+
|
30 |
+
If you do not wish to train the model, you can download [our pre-trained model](https://drive.google.com/open?id=154JgKpzCPW82qINcVieuPH3fZ2e0P812) and save it in `res/cp`.
|
31 |
+
|
32 |
+
|
33 |
+
## Demo
|
34 |
+
1. Evaluate the trained model using:
|
35 |
+
```Shell
|
36 |
+
# evaluate using GPU
|
37 |
+
python test.py
|
38 |
+
```
|
39 |
+
|
40 |
+
## Face makeup using parsing maps
|
41 |
+
[**face-makeup.PyTorch**](https://github.com/zllrunning/face-makeup.PyTorch)
|
42 |
+
<table>
|
43 |
+
|
44 |
+
<tr>
|
45 |
+
<th> </th>
|
46 |
+
<th>Hair</th>
|
47 |
+
<th>Lip</th>
|
48 |
+
</tr>
|
49 |
+
|
50 |
+
<!-- Line 1: Original Input -->
|
51 |
+
<tr>
|
52 |
+
<td><em>Original Input</em></td>
|
53 |
+
<td><img src="makeup/116_ori.png" height="256" width="256" alt="Original Input"></td>
|
54 |
+
<td><img src="makeup/116_lip_ori.png" height="256" width="256" alt="Original Input"></td>
|
55 |
+
</tr>
|
56 |
+
|
57 |
+
<!-- Line 3: Color -->
|
58 |
+
<tr>
|
59 |
+
<td>Color</td>
|
60 |
+
<td><img src="makeup/116_1.png" height="256" width="256" alt="Color"></td>
|
61 |
+
<td><img src="makeup/116_3.png" height="256" width="256" alt="Color"></td>
|
62 |
+
</tr>
|
63 |
+
|
64 |
+
</table>
|
65 |
+
|
66 |
+
|
67 |
+
## References
|
68 |
+
- [BiSeNet](https://github.com/CoinCheung/BiSeNet)
|
vtoonify/model/bisenet/model.py
ADDED
@@ -0,0 +1,283 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
import torchvision
|
9 |
+
|
10 |
+
from model.bisenet.resnet import Resnet18
|
11 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
12 |
+
|
13 |
+
|
14 |
+
class ConvBNReLU(nn.Module):
|
15 |
+
def __init__(self, in_chan, out_chan, ks=3, stride=1, padding=1, *args, **kwargs):
|
16 |
+
super(ConvBNReLU, self).__init__()
|
17 |
+
self.conv = nn.Conv2d(in_chan,
|
18 |
+
out_chan,
|
19 |
+
kernel_size = ks,
|
20 |
+
stride = stride,
|
21 |
+
padding = padding,
|
22 |
+
bias = False)
|
23 |
+
self.bn = nn.BatchNorm2d(out_chan)
|
24 |
+
self.init_weight()
|
25 |
+
|
26 |
+
def forward(self, x):
|
27 |
+
x = self.conv(x)
|
28 |
+
x = F.relu(self.bn(x))
|
29 |
+
return x
|
30 |
+
|
31 |
+
def init_weight(self):
|
32 |
+
for ly in self.children():
|
33 |
+
if isinstance(ly, nn.Conv2d):
|
34 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
35 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
36 |
+
|
37 |
+
class BiSeNetOutput(nn.Module):
|
38 |
+
def __init__(self, in_chan, mid_chan, n_classes, *args, **kwargs):
|
39 |
+
super(BiSeNetOutput, self).__init__()
|
40 |
+
self.conv = ConvBNReLU(in_chan, mid_chan, ks=3, stride=1, padding=1)
|
41 |
+
self.conv_out = nn.Conv2d(mid_chan, n_classes, kernel_size=1, bias=False)
|
42 |
+
self.init_weight()
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.conv(x)
|
46 |
+
x = self.conv_out(x)
|
47 |
+
return x
|
48 |
+
|
49 |
+
def init_weight(self):
|
50 |
+
for ly in self.children():
|
51 |
+
if isinstance(ly, nn.Conv2d):
|
52 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
53 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
54 |
+
|
55 |
+
def get_params(self):
|
56 |
+
wd_params, nowd_params = [], []
|
57 |
+
for name, module in self.named_modules():
|
58 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
59 |
+
wd_params.append(module.weight)
|
60 |
+
if not module.bias is None:
|
61 |
+
nowd_params.append(module.bias)
|
62 |
+
elif isinstance(module, nn.BatchNorm2d):
|
63 |
+
nowd_params += list(module.parameters())
|
64 |
+
return wd_params, nowd_params
|
65 |
+
|
66 |
+
|
67 |
+
class AttentionRefinementModule(nn.Module):
|
68 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
69 |
+
super(AttentionRefinementModule, self).__init__()
|
70 |
+
self.conv = ConvBNReLU(in_chan, out_chan, ks=3, stride=1, padding=1)
|
71 |
+
self.conv_atten = nn.Conv2d(out_chan, out_chan, kernel_size= 1, bias=False)
|
72 |
+
self.bn_atten = nn.BatchNorm2d(out_chan)
|
73 |
+
self.sigmoid_atten = nn.Sigmoid()
|
74 |
+
self.init_weight()
|
75 |
+
|
76 |
+
def forward(self, x):
|
77 |
+
feat = self.conv(x)
|
78 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
79 |
+
atten = self.conv_atten(atten)
|
80 |
+
atten = self.bn_atten(atten)
|
81 |
+
atten = self.sigmoid_atten(atten)
|
82 |
+
out = torch.mul(feat, atten)
|
83 |
+
return out
|
84 |
+
|
85 |
+
def init_weight(self):
|
86 |
+
for ly in self.children():
|
87 |
+
if isinstance(ly, nn.Conv2d):
|
88 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
89 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
90 |
+
|
91 |
+
|
92 |
+
class ContextPath(nn.Module):
|
93 |
+
def __init__(self, *args, **kwargs):
|
94 |
+
super(ContextPath, self).__init__()
|
95 |
+
self.resnet = Resnet18()
|
96 |
+
self.arm16 = AttentionRefinementModule(256, 128)
|
97 |
+
self.arm32 = AttentionRefinementModule(512, 128)
|
98 |
+
self.conv_head32 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
99 |
+
self.conv_head16 = ConvBNReLU(128, 128, ks=3, stride=1, padding=1)
|
100 |
+
self.conv_avg = ConvBNReLU(512, 128, ks=1, stride=1, padding=0)
|
101 |
+
|
102 |
+
self.init_weight()
|
103 |
+
|
104 |
+
def forward(self, x):
|
105 |
+
H0, W0 = x.size()[2:]
|
106 |
+
feat8, feat16, feat32 = self.resnet(x)
|
107 |
+
H8, W8 = feat8.size()[2:]
|
108 |
+
H16, W16 = feat16.size()[2:]
|
109 |
+
H32, W32 = feat32.size()[2:]
|
110 |
+
|
111 |
+
avg = F.avg_pool2d(feat32, feat32.size()[2:])
|
112 |
+
avg = self.conv_avg(avg)
|
113 |
+
avg_up = F.interpolate(avg, (H32, W32), mode='nearest')
|
114 |
+
|
115 |
+
feat32_arm = self.arm32(feat32)
|
116 |
+
feat32_sum = feat32_arm + avg_up
|
117 |
+
feat32_up = F.interpolate(feat32_sum, (H16, W16), mode='nearest')
|
118 |
+
feat32_up = self.conv_head32(feat32_up)
|
119 |
+
|
120 |
+
feat16_arm = self.arm16(feat16)
|
121 |
+
feat16_sum = feat16_arm + feat32_up
|
122 |
+
feat16_up = F.interpolate(feat16_sum, (H8, W8), mode='nearest')
|
123 |
+
feat16_up = self.conv_head16(feat16_up)
|
124 |
+
|
125 |
+
return feat8, feat16_up, feat32_up # x8, x8, x16
|
126 |
+
|
127 |
+
def init_weight(self):
|
128 |
+
for ly in self.children():
|
129 |
+
if isinstance(ly, nn.Conv2d):
|
130 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
131 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
132 |
+
|
133 |
+
def get_params(self):
|
134 |
+
wd_params, nowd_params = [], []
|
135 |
+
for name, module in self.named_modules():
|
136 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
137 |
+
wd_params.append(module.weight)
|
138 |
+
if not module.bias is None:
|
139 |
+
nowd_params.append(module.bias)
|
140 |
+
elif isinstance(module, nn.BatchNorm2d):
|
141 |
+
nowd_params += list(module.parameters())
|
142 |
+
return wd_params, nowd_params
|
143 |
+
|
144 |
+
|
145 |
+
### This is not used, since I replace this with the resnet feature with the same size
|
146 |
+
class SpatialPath(nn.Module):
|
147 |
+
def __init__(self, *args, **kwargs):
|
148 |
+
super(SpatialPath, self).__init__()
|
149 |
+
self.conv1 = ConvBNReLU(3, 64, ks=7, stride=2, padding=3)
|
150 |
+
self.conv2 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
151 |
+
self.conv3 = ConvBNReLU(64, 64, ks=3, stride=2, padding=1)
|
152 |
+
self.conv_out = ConvBNReLU(64, 128, ks=1, stride=1, padding=0)
|
153 |
+
self.init_weight()
|
154 |
+
|
155 |
+
def forward(self, x):
|
156 |
+
feat = self.conv1(x)
|
157 |
+
feat = self.conv2(feat)
|
158 |
+
feat = self.conv3(feat)
|
159 |
+
feat = self.conv_out(feat)
|
160 |
+
return feat
|
161 |
+
|
162 |
+
def init_weight(self):
|
163 |
+
for ly in self.children():
|
164 |
+
if isinstance(ly, nn.Conv2d):
|
165 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
166 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
167 |
+
|
168 |
+
def get_params(self):
|
169 |
+
wd_params, nowd_params = [], []
|
170 |
+
for name, module in self.named_modules():
|
171 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
172 |
+
wd_params.append(module.weight)
|
173 |
+
if not module.bias is None:
|
174 |
+
nowd_params.append(module.bias)
|
175 |
+
elif isinstance(module, nn.BatchNorm2d):
|
176 |
+
nowd_params += list(module.parameters())
|
177 |
+
return wd_params, nowd_params
|
178 |
+
|
179 |
+
|
180 |
+
class FeatureFusionModule(nn.Module):
|
181 |
+
def __init__(self, in_chan, out_chan, *args, **kwargs):
|
182 |
+
super(FeatureFusionModule, self).__init__()
|
183 |
+
self.convblk = ConvBNReLU(in_chan, out_chan, ks=1, stride=1, padding=0)
|
184 |
+
self.conv1 = nn.Conv2d(out_chan,
|
185 |
+
out_chan//4,
|
186 |
+
kernel_size = 1,
|
187 |
+
stride = 1,
|
188 |
+
padding = 0,
|
189 |
+
bias = False)
|
190 |
+
self.conv2 = nn.Conv2d(out_chan//4,
|
191 |
+
out_chan,
|
192 |
+
kernel_size = 1,
|
193 |
+
stride = 1,
|
194 |
+
padding = 0,
|
195 |
+
bias = False)
|
196 |
+
self.relu = nn.ReLU(inplace=True)
|
197 |
+
self.sigmoid = nn.Sigmoid()
|
198 |
+
self.init_weight()
|
199 |
+
|
200 |
+
def forward(self, fsp, fcp):
|
201 |
+
fcat = torch.cat([fsp, fcp], dim=1)
|
202 |
+
feat = self.convblk(fcat)
|
203 |
+
atten = F.avg_pool2d(feat, feat.size()[2:])
|
204 |
+
atten = self.conv1(atten)
|
205 |
+
atten = self.relu(atten)
|
206 |
+
atten = self.conv2(atten)
|
207 |
+
atten = self.sigmoid(atten)
|
208 |
+
feat_atten = torch.mul(feat, atten)
|
209 |
+
feat_out = feat_atten + feat
|
210 |
+
return feat_out
|
211 |
+
|
212 |
+
def init_weight(self):
|
213 |
+
for ly in self.children():
|
214 |
+
if isinstance(ly, nn.Conv2d):
|
215 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
216 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
217 |
+
|
218 |
+
def get_params(self):
|
219 |
+
wd_params, nowd_params = [], []
|
220 |
+
for name, module in self.named_modules():
|
221 |
+
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
|
222 |
+
wd_params.append(module.weight)
|
223 |
+
if not module.bias is None:
|
224 |
+
nowd_params.append(module.bias)
|
225 |
+
elif isinstance(module, nn.BatchNorm2d):
|
226 |
+
nowd_params += list(module.parameters())
|
227 |
+
return wd_params, nowd_params
|
228 |
+
|
229 |
+
|
230 |
+
class BiSeNet(nn.Module):
|
231 |
+
def __init__(self, n_classes, *args, **kwargs):
|
232 |
+
super(BiSeNet, self).__init__()
|
233 |
+
self.cp = ContextPath()
|
234 |
+
## here self.sp is deleted
|
235 |
+
self.ffm = FeatureFusionModule(256, 256)
|
236 |
+
self.conv_out = BiSeNetOutput(256, 256, n_classes)
|
237 |
+
self.conv_out16 = BiSeNetOutput(128, 64, n_classes)
|
238 |
+
self.conv_out32 = BiSeNetOutput(128, 64, n_classes)
|
239 |
+
self.init_weight()
|
240 |
+
|
241 |
+
def forward(self, x):
|
242 |
+
H, W = x.size()[2:]
|
243 |
+
feat_res8, feat_cp8, feat_cp16 = self.cp(x) # here return res3b1 feature
|
244 |
+
feat_sp = feat_res8 # use res3b1 feature to replace spatial path feature
|
245 |
+
feat_fuse = self.ffm(feat_sp, feat_cp8)
|
246 |
+
|
247 |
+
feat_out = self.conv_out(feat_fuse)
|
248 |
+
feat_out16 = self.conv_out16(feat_cp8)
|
249 |
+
feat_out32 = self.conv_out32(feat_cp16)
|
250 |
+
|
251 |
+
feat_out = F.interpolate(feat_out, (H, W), mode='bilinear', align_corners=True)
|
252 |
+
feat_out16 = F.interpolate(feat_out16, (H, W), mode='bilinear', align_corners=True)
|
253 |
+
feat_out32 = F.interpolate(feat_out32, (H, W), mode='bilinear', align_corners=True)
|
254 |
+
return feat_out, feat_out16, feat_out32
|
255 |
+
|
256 |
+
def init_weight(self):
|
257 |
+
for ly in self.children():
|
258 |
+
if isinstance(ly, nn.Conv2d):
|
259 |
+
nn.init.kaiming_normal_(ly.weight, a=1)
|
260 |
+
if not ly.bias is None: nn.init.constant_(ly.bias, 0)
|
261 |
+
|
262 |
+
def get_params(self):
|
263 |
+
wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params = [], [], [], []
|
264 |
+
for name, child in self.named_children():
|
265 |
+
child_wd_params, child_nowd_params = child.get_params()
|
266 |
+
if isinstance(child, FeatureFusionModule) or isinstance(child, BiSeNetOutput):
|
267 |
+
lr_mul_wd_params += child_wd_params
|
268 |
+
lr_mul_nowd_params += child_nowd_params
|
269 |
+
else:
|
270 |
+
wd_params += child_wd_params
|
271 |
+
nowd_params += child_nowd_params
|
272 |
+
return wd_params, nowd_params, lr_mul_wd_params, lr_mul_nowd_params
|
273 |
+
|
274 |
+
|
275 |
+
if __name__ == "__main__":
|
276 |
+
net = BiSeNet(19)
|
277 |
+
net.cuda()
|
278 |
+
net.eval()
|
279 |
+
in_ten = torch.randn(16, 3, 640, 480).cuda()
|
280 |
+
out, out16, out32 = net(in_ten)
|
281 |
+
print(out.shape)
|
282 |
+
|
283 |
+
net.get_params()
|
vtoonify/model/bisenet/resnet.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/python
|
2 |
+
# -*- encoding: utf-8 -*-
|
3 |
+
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
import torch.utils.model_zoo as modelzoo
|
8 |
+
|
9 |
+
# from modules.bn import InPlaceABNSync as BatchNorm2d
|
10 |
+
|
11 |
+
resnet18_url = 'https://download.pytorch.org/models/resnet18-5c106cde.pth'
|
12 |
+
|
13 |
+
|
14 |
+
def conv3x3(in_planes, out_planes, stride=1):
|
15 |
+
"""3x3 convolution with padding"""
|
16 |
+
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
|
17 |
+
padding=1, bias=False)
|
18 |
+
|
19 |
+
|
20 |
+
class BasicBlock(nn.Module):
|
21 |
+
def __init__(self, in_chan, out_chan, stride=1):
|
22 |
+
super(BasicBlock, self).__init__()
|
23 |
+
self.conv1 = conv3x3(in_chan, out_chan, stride)
|
24 |
+
self.bn1 = nn.BatchNorm2d(out_chan)
|
25 |
+
self.conv2 = conv3x3(out_chan, out_chan)
|
26 |
+
self.bn2 = nn.BatchNorm2d(out_chan)
|
27 |
+
self.relu = nn.ReLU(inplace=True)
|
28 |
+
self.downsample = None
|
29 |
+
if in_chan != out_chan or stride != 1:
|
30 |
+
self.downsample = nn.Sequential(
|
31 |
+
nn.Conv2d(in_chan, out_chan,
|
32 |
+
kernel_size=1, stride=stride, bias=False),
|
33 |
+
nn.BatchNorm2d(out_chan),
|
34 |
+
)
|
35 |
+
|
36 |
+
def forward(self, x):
|
37 |
+
residual = self.conv1(x)
|
38 |
+
residual = F.relu(self.bn1(residual))
|
39 |
+
residual = self.conv2(residual)
|
40 |
+
residual = self.bn2(residual)
|
41 |
+
|
42 |
+
shortcut = x
|
43 |
+
if self.downsample is not None:
|
44 |
+
shortcut = self.downsample(x)
|
45 |
+
|
46 |
+
out = shortcut + residual
|
47 |
+
out = self.relu(out)
|
48 |
+
return out
|
49 |
+
|
50 |
+
|
51 |
+
def create_layer_basic(in_chan, out_chan, bnum, stride=1):
|
52 |
+
layers = [BasicBlock(in_chan, out_chan, stride=stride)]
|
53 |
+
for i in range(bnum-1):
|
54 |
+
layers.append(BasicBlock(out_chan, out_chan, stride=1))
|
55 |
+
return nn.Sequential(*layers)
|
56 |
+
|
57 |
+
|
58 |
+
class Resnet18(nn.Module):
|
59 |
+
def __init__(self):
|
60 |
+
super(Resnet18, self).__init__()
|
61 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3,
|
62 |
+
bias=False)
|
63 |
+
self.bn1 = nn.BatchNorm2d(64)
|
64 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
65 |
+
self.layer1 = create_layer_basic(64, 64, bnum=2, stride=1)
|
66 |
+
self.layer2 = create_layer_basic(64, 128, bnum=2, stride=2)
|
67 |
+
self.layer3 = create_layer_basic(128, 256, bnum=2, stride=2)
|
68 |
+
self.layer4 = create_layer_basic(256, 512, bnum=2, stride=2)
|
69 |
+
self.init_weight()
|
70 |
+
|
71 |
+
def forward(self, x):
|
72 |
+
x = self.conv1(x)
|
73 |
+
x = F.relu(self.bn1(x))
|
74 |
+
x = self.maxpool(x)
|
75 |
+
|
76 |
+
x = self.layer1(x)
|
77 |
+
feat8 = self.layer2(x) # 1/8
|
78 |
+
feat16 = self.layer3(feat8) # 1/16
|
79 |
+
feat32 = self.layer4(feat16) # 1/32
|
80 |
+
return feat8, feat16, feat32
|
81 |
+
|
82 |
+
def init_weight(self):
|
83 |
+
state_dict = modelzoo.load_url(resnet18_url)
|
84 |
+
self_state_dict = self.state_dict()
|
85 |
+
for k, v in state_dict.items():
|
86 |
+
if 'fc' in k: continue
|
87 |
+
self_state_dict.update({k: v})
|
88 |
+
self.load_state_dict(self_state_dict)
|
89 |
+
|
90 |
+
def get_params(self):
|
91 |
+
wd_params, nowd_params = [], []
|
92 |
+
for name, module in self.named_modules():
|
93 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
94 |
+
wd_params.append(module.weight)
|
95 |
+
if not module.bias is None:
|
96 |
+
nowd_params.append(module.bias)
|
97 |
+
elif isinstance(module, nn.BatchNorm2d):
|
98 |
+
nowd_params += list(module.parameters())
|
99 |
+
return wd_params, nowd_params
|
100 |
+
|
101 |
+
|
102 |
+
if __name__ == "__main__":
|
103 |
+
net = Resnet18()
|
104 |
+
x = torch.randn(16, 3, 224, 224)
|
105 |
+
out = net(x)
|
106 |
+
print(out[0].size())
|
107 |
+
print(out[1].size())
|
108 |
+
print(out[2].size())
|
109 |
+
net.get_params()
|
vtoonify/model/dualstylegan.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import random
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from model.stylegan.model import ConvLayer, PixelNorm, EqualLinear, Generator
|
5 |
+
|
6 |
+
class AdaptiveInstanceNorm(nn.Module):
|
7 |
+
def __init__(self, fin, style_dim=512):
|
8 |
+
super().__init__()
|
9 |
+
|
10 |
+
self.norm = nn.InstanceNorm2d(fin, affine=False)
|
11 |
+
self.style = nn.Linear(style_dim, fin * 2)
|
12 |
+
|
13 |
+
self.style.bias.data[:fin] = 1
|
14 |
+
self.style.bias.data[fin:] = 0
|
15 |
+
|
16 |
+
def forward(self, input, style):
|
17 |
+
style = self.style(style).unsqueeze(2).unsqueeze(3)
|
18 |
+
gamma, beta = style.chunk(2, 1)
|
19 |
+
out = self.norm(input)
|
20 |
+
out = gamma * out + beta
|
21 |
+
return out
|
22 |
+
|
23 |
+
# modulative residual blocks (ModRes)
|
24 |
+
class AdaResBlock(nn.Module):
|
25 |
+
def __init__(self, fin, style_dim=512, dilation=1): # modified
|
26 |
+
super().__init__()
|
27 |
+
|
28 |
+
self.conv = ConvLayer(fin, fin, 3, dilation=dilation) # modified
|
29 |
+
self.conv2 = ConvLayer(fin, fin, 3, dilation=dilation) # modified
|
30 |
+
self.norm = AdaptiveInstanceNorm(fin, style_dim)
|
31 |
+
self.norm2 = AdaptiveInstanceNorm(fin, style_dim)
|
32 |
+
|
33 |
+
# model initialization
|
34 |
+
# the convolution filters are set to values close to 0 to produce negligible residual features
|
35 |
+
self.conv[0].weight.data *= 0.01
|
36 |
+
self.conv2[0].weight.data *= 0.01
|
37 |
+
|
38 |
+
def forward(self, x, s, w=1):
|
39 |
+
skip = x
|
40 |
+
if w == 0:
|
41 |
+
return skip
|
42 |
+
out = self.conv(self.norm(x, s))
|
43 |
+
out = self.conv2(self.norm2(out, s))
|
44 |
+
out = out * w + skip
|
45 |
+
return out
|
46 |
+
|
47 |
+
class DualStyleGAN(nn.Module):
|
48 |
+
def __init__(self, size, style_dim, n_mlp, channel_multiplier=2, twoRes=True, res_index=6):
|
49 |
+
super().__init__()
|
50 |
+
|
51 |
+
layers = [PixelNorm()]
|
52 |
+
for i in range(n_mlp-6):
|
53 |
+
layers.append(EqualLinear(512, 512, lr_mul=0.01, activation="fused_lrelu"))
|
54 |
+
# color transform blocks T_c
|
55 |
+
self.style = nn.Sequential(*layers)
|
56 |
+
# StyleGAN2
|
57 |
+
self.generator = Generator(size, style_dim, n_mlp, channel_multiplier)
|
58 |
+
# The extrinsic style path
|
59 |
+
self.res = nn.ModuleList()
|
60 |
+
self.res_index = res_index//2 * 2
|
61 |
+
self.res.append(AdaResBlock(self.generator.channels[2 ** 2])) # for conv1
|
62 |
+
for i in range(3, self.generator.log_size + 1):
|
63 |
+
out_channel = self.generator.channels[2 ** i]
|
64 |
+
if i < 3 + self.res_index//2:
|
65 |
+
# ModRes
|
66 |
+
self.res.append(AdaResBlock(out_channel))
|
67 |
+
self.res.append(AdaResBlock(out_channel))
|
68 |
+
else:
|
69 |
+
# structure transform block T_s
|
70 |
+
self.res.append(EqualLinear(512, 512))
|
71 |
+
# FC layer is initialized with identity matrices, meaning no changes to the input latent code
|
72 |
+
self.res[-1].weight.data = torch.eye(512) * 512.0**0.5 + torch.randn(512, 512) * 0.01
|
73 |
+
self.res.append(EqualLinear(512, 512))
|
74 |
+
self.res[-1].weight.data = torch.eye(512) * 512.0**0.5 + torch.randn(512, 512) * 0.01
|
75 |
+
self.res.append(EqualLinear(512, 512)) # for to_rgb7
|
76 |
+
self.res[-1].weight.data = torch.eye(512) * 512.0**0.5 + torch.randn(512, 512) * 0.01
|
77 |
+
self.size = self.generator.size
|
78 |
+
self.style_dim = self.generator.style_dim
|
79 |
+
self.log_size = self.generator.log_size
|
80 |
+
self.num_layers = self.generator.num_layers
|
81 |
+
self.n_latent = self.generator.n_latent
|
82 |
+
self.channels = self.generator.channels
|
83 |
+
|
84 |
+
def forward(
|
85 |
+
self,
|
86 |
+
styles, # intrinsic style code
|
87 |
+
exstyles, # extrinsic style code
|
88 |
+
return_latents=False,
|
89 |
+
return_feat=False,
|
90 |
+
inject_index=None,
|
91 |
+
truncation=1,
|
92 |
+
truncation_latent=None,
|
93 |
+
input_is_latent=False,
|
94 |
+
noise=None,
|
95 |
+
randomize_noise=True,
|
96 |
+
z_plus_latent=False, # intrinsic style code is z+ or z
|
97 |
+
use_res=True, # whether to use the extrinsic style path
|
98 |
+
fuse_index=18, # layers > fuse_index do not use the extrinsic style path
|
99 |
+
interp_weights=[1]*18, # weight vector for style combination of two paths
|
100 |
+
):
|
101 |
+
|
102 |
+
if not input_is_latent:
|
103 |
+
if not z_plus_latent:
|
104 |
+
styles = [self.generator.style(s) for s in styles]
|
105 |
+
else:
|
106 |
+
styles = [self.generator.style(s.reshape(s.shape[0]*s.shape[1], s.shape[2])).reshape(s.shape) for s in styles]
|
107 |
+
|
108 |
+
if noise is None:
|
109 |
+
if randomize_noise:
|
110 |
+
noise = [None] * self.generator.num_layers
|
111 |
+
else:
|
112 |
+
noise = [
|
113 |
+
getattr(self.generator.noises, f"noise_{i}") for i in range(self.generator.num_layers)
|
114 |
+
]
|
115 |
+
|
116 |
+
if truncation < 1:
|
117 |
+
style_t = []
|
118 |
+
|
119 |
+
for style in styles:
|
120 |
+
style_t.append(
|
121 |
+
truncation_latent + truncation * (style - truncation_latent)
|
122 |
+
)
|
123 |
+
|
124 |
+
styles = style_t
|
125 |
+
|
126 |
+
if len(styles) < 2:
|
127 |
+
inject_index = self.generator.n_latent
|
128 |
+
|
129 |
+
if styles[0].ndim < 3:
|
130 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
131 |
+
|
132 |
+
else:
|
133 |
+
latent = styles[0]
|
134 |
+
|
135 |
+
else:
|
136 |
+
if inject_index is None:
|
137 |
+
inject_index = random.randint(1, self.generator.n_latent - 1)
|
138 |
+
|
139 |
+
if styles[0].ndim < 3:
|
140 |
+
latent = styles[0].unsqueeze(1).repeat(1, inject_index, 1)
|
141 |
+
latent2 = styles[1].unsqueeze(1).repeat(1, self.generator.n_latent - inject_index, 1)
|
142 |
+
|
143 |
+
latent = torch.cat([latent, latent2], 1)
|
144 |
+
else:
|
145 |
+
latent = torch.cat([styles[0][:,0:inject_index], styles[1][:,inject_index:]], 1)
|
146 |
+
|
147 |
+
if use_res:
|
148 |
+
if exstyles.ndim < 3:
|
149 |
+
resstyles = self.style(exstyles).unsqueeze(1).repeat(1, self.generator.n_latent, 1)
|
150 |
+
adastyles = exstyles.unsqueeze(1).repeat(1, self.generator.n_latent, 1)
|
151 |
+
else:
|
152 |
+
nB, nL, nD = exstyles.shape
|
153 |
+
resstyles = self.style(exstyles.reshape(nB*nL, nD)).reshape(nB, nL, nD)
|
154 |
+
adastyles = exstyles
|
155 |
+
|
156 |
+
out = self.generator.input(latent)
|
157 |
+
out = self.generator.conv1(out, latent[:, 0], noise=noise[0])
|
158 |
+
if use_res and fuse_index > 0:
|
159 |
+
out = self.res[0](out, resstyles[:, 0], interp_weights[0])
|
160 |
+
|
161 |
+
skip = self.generator.to_rgb1(out, latent[:, 1])
|
162 |
+
i = 1
|
163 |
+
for conv1, conv2, noise1, noise2, to_rgb in zip(
|
164 |
+
self.generator.convs[::2], self.generator.convs[1::2], noise[1::2], noise[2::2], self.generator.to_rgbs):
|
165 |
+
if use_res and fuse_index >= i and i > self.res_index:
|
166 |
+
out = conv1(out, interp_weights[i] * self.res[i](adastyles[:, i]) +
|
167 |
+
(1-interp_weights[i]) * latent[:, i], noise=noise1)
|
168 |
+
else:
|
169 |
+
out = conv1(out, latent[:, i], noise=noise1)
|
170 |
+
if use_res and fuse_index >= i and i <= self.res_index:
|
171 |
+
out = self.res[i](out, resstyles[:, i], interp_weights[i])
|
172 |
+
if use_res and fuse_index >= (i+1) and i > self.res_index:
|
173 |
+
out = conv2(out, interp_weights[i+1] * self.res[i+1](adastyles[:, i+1]) +
|
174 |
+
(1-interp_weights[i+1]) * latent[:, i+1], noise=noise2)
|
175 |
+
else:
|
176 |
+
out = conv2(out, latent[:, i + 1], noise=noise2)
|
177 |
+
if use_res and fuse_index >= (i+1) and i <= self.res_index:
|
178 |
+
out = self.res[i+1](out, resstyles[:, i+1], interp_weights[i+1])
|
179 |
+
if use_res and fuse_index >= (i+2) and i >= self.res_index-1:
|
180 |
+
skip = to_rgb(out, interp_weights[i+2] * self.res[i+2](adastyles[:, i+2]) +
|
181 |
+
(1-interp_weights[i+2]) * latent[:, i + 2], skip)
|
182 |
+
else:
|
183 |
+
skip = to_rgb(out, latent[:, i + 2], skip)
|
184 |
+
i += 2
|
185 |
+
if i > self.res_index and return_feat:
|
186 |
+
return out, skip
|
187 |
+
|
188 |
+
image = skip
|
189 |
+
|
190 |
+
if return_latents:
|
191 |
+
return image, latent
|
192 |
+
|
193 |
+
else:
|
194 |
+
return image, None
|
195 |
+
|
196 |
+
def make_noise(self):
|
197 |
+
return self.generator.make_noise()
|
198 |
+
|
199 |
+
def mean_latent(self, n_latent):
|
200 |
+
return self.generator.mean_latent(n_latent)
|
201 |
+
|
202 |
+
def get_latent(self, input):
|
203 |
+
return self.generator.style(input)
|
vtoonify/model/encoder/__init__.py
ADDED
File without changes
|
vtoonify/model/encoder/align_all_parallel.py
ADDED
@@ -0,0 +1,217 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
brief: face alignment with FFHQ method (https://github.com/NVlabs/ffhq-dataset)
|
3 |
+
author: lzhbrian (https://lzhbrian.me)
|
4 |
+
date: 2020.1.5
|
5 |
+
note: code is heavily borrowed from
|
6 |
+
https://github.com/NVlabs/ffhq-dataset
|
7 |
+
http://dlib.net/face_landmark_detection.py.html
|
8 |
+
|
9 |
+
requirements:
|
10 |
+
apt install cmake
|
11 |
+
conda install Pillow numpy scipy
|
12 |
+
pip install dlib
|
13 |
+
# download face landmark model from:
|
14 |
+
# http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
|
15 |
+
"""
|
16 |
+
from argparse import ArgumentParser
|
17 |
+
import time
|
18 |
+
import numpy as np
|
19 |
+
import PIL
|
20 |
+
import PIL.Image
|
21 |
+
import os
|
22 |
+
import scipy
|
23 |
+
import scipy.ndimage
|
24 |
+
import dlib
|
25 |
+
import multiprocessing as mp
|
26 |
+
import math
|
27 |
+
|
28 |
+
#from configs.paths_config import model_paths
|
29 |
+
SHAPE_PREDICTOR_PATH = 'shape_predictor_68_face_landmarks.dat'#model_paths["shape_predictor"]
|
30 |
+
|
31 |
+
|
32 |
+
def get_landmark(filepath, predictor):
|
33 |
+
"""get landmark with dlib
|
34 |
+
:return: np.array shape=(68, 2)
|
35 |
+
"""
|
36 |
+
detector = dlib.get_frontal_face_detector()
|
37 |
+
if type(filepath) == str:
|
38 |
+
img = dlib.load_rgb_image(filepath)
|
39 |
+
else:
|
40 |
+
img = filepath
|
41 |
+
dets = detector(img, 1)
|
42 |
+
|
43 |
+
if len(dets) == 0:
|
44 |
+
print('Error: no face detected!')
|
45 |
+
return None
|
46 |
+
|
47 |
+
shape = None
|
48 |
+
for k, d in enumerate(dets):
|
49 |
+
shape = predictor(img, d)
|
50 |
+
|
51 |
+
if shape is None:
|
52 |
+
print('Error: No face detected! If you are sure there are faces in your input, you may rerun the code several times until the face is detected. Sometimes the detector is unstable.')
|
53 |
+
t = list(shape.parts())
|
54 |
+
a = []
|
55 |
+
for tt in t:
|
56 |
+
a.append([tt.x, tt.y])
|
57 |
+
lm = np.array(a)
|
58 |
+
return lm
|
59 |
+
|
60 |
+
|
61 |
+
def align_face(filepath, predictor):
|
62 |
+
"""
|
63 |
+
:param filepath: str
|
64 |
+
:return: PIL Image
|
65 |
+
"""
|
66 |
+
|
67 |
+
lm = get_landmark(filepath, predictor)
|
68 |
+
if lm is None:
|
69 |
+
return None
|
70 |
+
|
71 |
+
lm_chin = lm[0: 17] # left-right
|
72 |
+
lm_eyebrow_left = lm[17: 22] # left-right
|
73 |
+
lm_eyebrow_right = lm[22: 27] # left-right
|
74 |
+
lm_nose = lm[27: 31] # top-down
|
75 |
+
lm_nostrils = lm[31: 36] # top-down
|
76 |
+
lm_eye_left = lm[36: 42] # left-clockwise
|
77 |
+
lm_eye_right = lm[42: 48] # left-clockwise
|
78 |
+
lm_mouth_outer = lm[48: 60] # left-clockwise
|
79 |
+
lm_mouth_inner = lm[60: 68] # left-clockwise
|
80 |
+
|
81 |
+
# Calculate auxiliary vectors.
|
82 |
+
eye_left = np.mean(lm_eye_left, axis=0)
|
83 |
+
eye_right = np.mean(lm_eye_right, axis=0)
|
84 |
+
eye_avg = (eye_left + eye_right) * 0.5
|
85 |
+
eye_to_eye = eye_right - eye_left
|
86 |
+
mouth_left = lm_mouth_outer[0]
|
87 |
+
mouth_right = lm_mouth_outer[6]
|
88 |
+
mouth_avg = (mouth_left + mouth_right) * 0.5
|
89 |
+
eye_to_mouth = mouth_avg - eye_avg
|
90 |
+
|
91 |
+
# Choose oriented crop rectangle.
|
92 |
+
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
|
93 |
+
x /= np.hypot(*x)
|
94 |
+
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
|
95 |
+
y = np.flipud(x) * [-1, 1]
|
96 |
+
c = eye_avg + eye_to_mouth * 0.1
|
97 |
+
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
|
98 |
+
qsize = np.hypot(*x) * 2
|
99 |
+
|
100 |
+
# read image
|
101 |
+
if type(filepath) == str:
|
102 |
+
img = PIL.Image.open(filepath)
|
103 |
+
else:
|
104 |
+
img = PIL.Image.fromarray(filepath)
|
105 |
+
|
106 |
+
output_size = 256
|
107 |
+
transform_size = 256
|
108 |
+
enable_padding = True
|
109 |
+
|
110 |
+
# Shrink.
|
111 |
+
shrink = int(np.floor(qsize / output_size * 0.5))
|
112 |
+
if shrink > 1:
|
113 |
+
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
|
114 |
+
img = img.resize(rsize, PIL.Image.ANTIALIAS)
|
115 |
+
quad /= shrink
|
116 |
+
qsize /= shrink
|
117 |
+
|
118 |
+
# Crop.
|
119 |
+
border = max(int(np.rint(qsize * 0.1)), 3)
|
120 |
+
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
121 |
+
int(np.ceil(max(quad[:, 1]))))
|
122 |
+
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
|
123 |
+
min(crop[3] + border, img.size[1]))
|
124 |
+
if crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]:
|
125 |
+
img = img.crop(crop)
|
126 |
+
quad -= crop[0:2]
|
127 |
+
|
128 |
+
# Pad.
|
129 |
+
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
|
130 |
+
int(np.ceil(max(quad[:, 1]))))
|
131 |
+
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
|
132 |
+
max(pad[3] - img.size[1] + border, 0))
|
133 |
+
if enable_padding and max(pad) > border - 4:
|
134 |
+
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
|
135 |
+
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
|
136 |
+
h, w, _ = img.shape
|
137 |
+
y, x, _ = np.ogrid[:h, :w, :1]
|
138 |
+
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
|
139 |
+
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
|
140 |
+
blur = qsize * 0.02
|
141 |
+
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
|
142 |
+
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
|
143 |
+
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
|
144 |
+
quad += pad[:2]
|
145 |
+
|
146 |
+
# Transform.
|
147 |
+
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
|
148 |
+
if output_size < transform_size:
|
149 |
+
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
|
150 |
+
|
151 |
+
# Save aligned image.
|
152 |
+
return img
|
153 |
+
|
154 |
+
|
155 |
+
def chunks(lst, n):
|
156 |
+
"""Yield successive n-sized chunks from lst."""
|
157 |
+
for i in range(0, len(lst), n):
|
158 |
+
yield lst[i:i + n]
|
159 |
+
|
160 |
+
|
161 |
+
def extract_on_paths(file_paths):
|
162 |
+
predictor = dlib.shape_predictor(SHAPE_PREDICTOR_PATH)
|
163 |
+
pid = mp.current_process().name
|
164 |
+
print('\t{} is starting to extract on #{} images'.format(pid, len(file_paths)))
|
165 |
+
tot_count = len(file_paths)
|
166 |
+
count = 0
|
167 |
+
for file_path, res_path in file_paths:
|
168 |
+
count += 1
|
169 |
+
if count % 100 == 0:
|
170 |
+
print('{} done with {}/{}'.format(pid, count, tot_count))
|
171 |
+
try:
|
172 |
+
res = align_face(file_path, predictor)
|
173 |
+
res = res.convert('RGB')
|
174 |
+
os.makedirs(os.path.dirname(res_path), exist_ok=True)
|
175 |
+
res.save(res_path)
|
176 |
+
except Exception:
|
177 |
+
continue
|
178 |
+
print('\tDone!')
|
179 |
+
|
180 |
+
|
181 |
+
def parse_args():
|
182 |
+
parser = ArgumentParser(add_help=False)
|
183 |
+
parser.add_argument('--num_threads', type=int, default=1)
|
184 |
+
parser.add_argument('--root_path', type=str, default='')
|
185 |
+
args = parser.parse_args()
|
186 |
+
return args
|
187 |
+
|
188 |
+
|
189 |
+
def run(args):
|
190 |
+
root_path = args.root_path
|
191 |
+
out_crops_path = root_path + '_crops'
|
192 |
+
if not os.path.exists(out_crops_path):
|
193 |
+
os.makedirs(out_crops_path, exist_ok=True)
|
194 |
+
|
195 |
+
file_paths = []
|
196 |
+
for root, dirs, files in os.walk(root_path):
|
197 |
+
for file in files:
|
198 |
+
file_path = os.path.join(root, file)
|
199 |
+
fname = os.path.join(out_crops_path, os.path.relpath(file_path, root_path))
|
200 |
+
res_path = '{}.jpg'.format(os.path.splitext(fname)[0])
|
201 |
+
if os.path.splitext(file_path)[1] == '.txt' or os.path.exists(res_path):
|
202 |
+
continue
|
203 |
+
file_paths.append((file_path, res_path))
|
204 |
+
|
205 |
+
file_chunks = list(chunks(file_paths, int(math.ceil(len(file_paths) / args.num_threads))))
|
206 |
+
print(len(file_chunks))
|
207 |
+
pool = mp.Pool(args.num_threads)
|
208 |
+
print('Running on {} paths\nHere we goooo'.format(len(file_paths)))
|
209 |
+
tic = time.time()
|
210 |
+
pool.map(extract_on_paths, file_chunks)
|
211 |
+
toc = time.time()
|
212 |
+
print('Mischief managed in {}s'.format(toc - tic))
|
213 |
+
|
214 |
+
|
215 |
+
if __name__ == '__main__':
|
216 |
+
args = parse_args()
|
217 |
+
run(args)
|
vtoonify/model/encoder/criteria/id_loss.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
from model.encoder.encoders.model_irse import Backbone
|
4 |
+
|
5 |
+
|
6 |
+
class IDLoss(nn.Module):
|
7 |
+
def __init__(self, model_paths):
|
8 |
+
super(IDLoss, self).__init__()
|
9 |
+
print('Loading ResNet ArcFace')
|
10 |
+
self.facenet = Backbone(input_size=112, num_layers=50, drop_ratio=0.6, mode='ir_se')
|
11 |
+
self.facenet.load_state_dict(torch.load(model_paths))
|
12 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((112, 112))
|
13 |
+
self.facenet.eval()
|
14 |
+
|
15 |
+
def extract_feats(self, x):
|
16 |
+
x = x[:, :, 35:223, 32:220] # Crop interesting region
|
17 |
+
x = self.face_pool(x)
|
18 |
+
x_feats = self.facenet(x)
|
19 |
+
return x_feats
|
20 |
+
|
21 |
+
def forward(self, y_hat, y):
|
22 |
+
n_samples = y_hat.shape[0]
|
23 |
+
y_feats = self.extract_feats(y) # Otherwise use the feature from there
|
24 |
+
y_hat_feats = self.extract_feats(y_hat)
|
25 |
+
y_feats = y_feats.detach()
|
26 |
+
loss = 0
|
27 |
+
count = 0
|
28 |
+
for i in range(n_samples):
|
29 |
+
diff_target = y_hat_feats[i].dot(y_feats[i])
|
30 |
+
loss += 1 - diff_target
|
31 |
+
count += 1
|
32 |
+
|
33 |
+
return loss / count
|
vtoonify/model/encoder/encoders/__init__.py
ADDED
File without changes
|
vtoonify/model/encoder/encoders/helpers.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import namedtuple
|
2 |
+
import torch
|
3 |
+
from torch.nn import Conv2d, BatchNorm2d, PReLU, ReLU, Sigmoid, MaxPool2d, AdaptiveAvgPool2d, Sequential, Module
|
4 |
+
|
5 |
+
"""
|
6 |
+
ArcFace implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
7 |
+
"""
|
8 |
+
|
9 |
+
|
10 |
+
class Flatten(Module):
|
11 |
+
def forward(self, input):
|
12 |
+
return input.view(input.size(0), -1)
|
13 |
+
|
14 |
+
|
15 |
+
def l2_norm(input, axis=1):
|
16 |
+
norm = torch.norm(input, 2, axis, True)
|
17 |
+
output = torch.div(input, norm)
|
18 |
+
return output
|
19 |
+
|
20 |
+
|
21 |
+
class Bottleneck(namedtuple('Block', ['in_channel', 'depth', 'stride'])):
|
22 |
+
""" A named tuple describing a ResNet block. """
|
23 |
+
|
24 |
+
|
25 |
+
def get_block(in_channel, depth, num_units, stride=2):
|
26 |
+
return [Bottleneck(in_channel, depth, stride)] + [Bottleneck(depth, depth, 1) for i in range(num_units - 1)]
|
27 |
+
|
28 |
+
|
29 |
+
def get_blocks(num_layers):
|
30 |
+
if num_layers == 50:
|
31 |
+
blocks = [
|
32 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
33 |
+
get_block(in_channel=64, depth=128, num_units=4),
|
34 |
+
get_block(in_channel=128, depth=256, num_units=14),
|
35 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
36 |
+
]
|
37 |
+
elif num_layers == 100:
|
38 |
+
blocks = [
|
39 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
40 |
+
get_block(in_channel=64, depth=128, num_units=13),
|
41 |
+
get_block(in_channel=128, depth=256, num_units=30),
|
42 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
43 |
+
]
|
44 |
+
elif num_layers == 152:
|
45 |
+
blocks = [
|
46 |
+
get_block(in_channel=64, depth=64, num_units=3),
|
47 |
+
get_block(in_channel=64, depth=128, num_units=8),
|
48 |
+
get_block(in_channel=128, depth=256, num_units=36),
|
49 |
+
get_block(in_channel=256, depth=512, num_units=3)
|
50 |
+
]
|
51 |
+
else:
|
52 |
+
raise ValueError("Invalid number of layers: {}. Must be one of [50, 100, 152]".format(num_layers))
|
53 |
+
return blocks
|
54 |
+
|
55 |
+
|
56 |
+
class SEModule(Module):
|
57 |
+
def __init__(self, channels, reduction):
|
58 |
+
super(SEModule, self).__init__()
|
59 |
+
self.avg_pool = AdaptiveAvgPool2d(1)
|
60 |
+
self.fc1 = Conv2d(channels, channels // reduction, kernel_size=1, padding=0, bias=False)
|
61 |
+
self.relu = ReLU(inplace=True)
|
62 |
+
self.fc2 = Conv2d(channels // reduction, channels, kernel_size=1, padding=0, bias=False)
|
63 |
+
self.sigmoid = Sigmoid()
|
64 |
+
|
65 |
+
def forward(self, x):
|
66 |
+
module_input = x
|
67 |
+
x = self.avg_pool(x)
|
68 |
+
x = self.fc1(x)
|
69 |
+
x = self.relu(x)
|
70 |
+
x = self.fc2(x)
|
71 |
+
x = self.sigmoid(x)
|
72 |
+
return module_input * x
|
73 |
+
|
74 |
+
|
75 |
+
class bottleneck_IR(Module):
|
76 |
+
def __init__(self, in_channel, depth, stride):
|
77 |
+
super(bottleneck_IR, self).__init__()
|
78 |
+
if in_channel == depth:
|
79 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
80 |
+
else:
|
81 |
+
self.shortcut_layer = Sequential(
|
82 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
83 |
+
BatchNorm2d(depth)
|
84 |
+
)
|
85 |
+
self.res_layer = Sequential(
|
86 |
+
BatchNorm2d(in_channel),
|
87 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), PReLU(depth),
|
88 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False), BatchNorm2d(depth)
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
shortcut = self.shortcut_layer(x)
|
93 |
+
res = self.res_layer(x)
|
94 |
+
return res + shortcut
|
95 |
+
|
96 |
+
|
97 |
+
class bottleneck_IR_SE(Module):
|
98 |
+
def __init__(self, in_channel, depth, stride):
|
99 |
+
super(bottleneck_IR_SE, self).__init__()
|
100 |
+
if in_channel == depth:
|
101 |
+
self.shortcut_layer = MaxPool2d(1, stride)
|
102 |
+
else:
|
103 |
+
self.shortcut_layer = Sequential(
|
104 |
+
Conv2d(in_channel, depth, (1, 1), stride, bias=False),
|
105 |
+
BatchNorm2d(depth)
|
106 |
+
)
|
107 |
+
self.res_layer = Sequential(
|
108 |
+
BatchNorm2d(in_channel),
|
109 |
+
Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False),
|
110 |
+
PReLU(depth),
|
111 |
+
Conv2d(depth, depth, (3, 3), stride, 1, bias=False),
|
112 |
+
BatchNorm2d(depth),
|
113 |
+
SEModule(depth, 16)
|
114 |
+
)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
shortcut = self.shortcut_layer(x)
|
118 |
+
res = self.res_layer(x)
|
119 |
+
return res + shortcut
|
vtoonify/model/encoder/encoders/model_irse.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.nn import Linear, Conv2d, BatchNorm1d, BatchNorm2d, PReLU, Dropout, Sequential, Module
|
2 |
+
from model.encoder.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE, l2_norm
|
3 |
+
|
4 |
+
"""
|
5 |
+
Modified Backbone implementation from [TreB1eN](https://github.com/TreB1eN/InsightFace_Pytorch)
|
6 |
+
"""
|
7 |
+
|
8 |
+
|
9 |
+
class Backbone(Module):
|
10 |
+
def __init__(self, input_size, num_layers, mode='ir', drop_ratio=0.4, affine=True):
|
11 |
+
super(Backbone, self).__init__()
|
12 |
+
assert input_size in [112, 224], "input_size should be 112 or 224"
|
13 |
+
assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152"
|
14 |
+
assert mode in ['ir', 'ir_se'], "mode should be ir or ir_se"
|
15 |
+
blocks = get_blocks(num_layers)
|
16 |
+
if mode == 'ir':
|
17 |
+
unit_module = bottleneck_IR
|
18 |
+
elif mode == 'ir_se':
|
19 |
+
unit_module = bottleneck_IR_SE
|
20 |
+
self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
|
21 |
+
BatchNorm2d(64),
|
22 |
+
PReLU(64))
|
23 |
+
if input_size == 112:
|
24 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
25 |
+
Dropout(drop_ratio),
|
26 |
+
Flatten(),
|
27 |
+
Linear(512 * 7 * 7, 512),
|
28 |
+
BatchNorm1d(512, affine=affine))
|
29 |
+
else:
|
30 |
+
self.output_layer = Sequential(BatchNorm2d(512),
|
31 |
+
Dropout(drop_ratio),
|
32 |
+
Flatten(),
|
33 |
+
Linear(512 * 14 * 14, 512),
|
34 |
+
BatchNorm1d(512, affine=affine))
|
35 |
+
|
36 |
+
modules = []
|
37 |
+
for block in blocks:
|
38 |
+
for bottleneck in block:
|
39 |
+
modules.append(unit_module(bottleneck.in_channel,
|
40 |
+
bottleneck.depth,
|
41 |
+
bottleneck.stride))
|
42 |
+
self.body = Sequential(*modules)
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
x = self.input_layer(x)
|
46 |
+
x = self.body(x)
|
47 |
+
x = self.output_layer(x)
|
48 |
+
return l2_norm(x)
|
49 |
+
|
50 |
+
|
51 |
+
def IR_50(input_size):
|
52 |
+
"""Constructs a ir-50 model."""
|
53 |
+
model = Backbone(input_size, num_layers=50, mode='ir', drop_ratio=0.4, affine=False)
|
54 |
+
return model
|
55 |
+
|
56 |
+
|
57 |
+
def IR_101(input_size):
|
58 |
+
"""Constructs a ir-101 model."""
|
59 |
+
model = Backbone(input_size, num_layers=100, mode='ir', drop_ratio=0.4, affine=False)
|
60 |
+
return model
|
61 |
+
|
62 |
+
|
63 |
+
def IR_152(input_size):
|
64 |
+
"""Constructs a ir-152 model."""
|
65 |
+
model = Backbone(input_size, num_layers=152, mode='ir', drop_ratio=0.4, affine=False)
|
66 |
+
return model
|
67 |
+
|
68 |
+
|
69 |
+
def IR_SE_50(input_size):
|
70 |
+
"""Constructs a ir_se-50 model."""
|
71 |
+
model = Backbone(input_size, num_layers=50, mode='ir_se', drop_ratio=0.4, affine=False)
|
72 |
+
return model
|
73 |
+
|
74 |
+
|
75 |
+
def IR_SE_101(input_size):
|
76 |
+
"""Constructs a ir_se-101 model."""
|
77 |
+
model = Backbone(input_size, num_layers=100, mode='ir_se', drop_ratio=0.4, affine=False)
|
78 |
+
return model
|
79 |
+
|
80 |
+
|
81 |
+
def IR_SE_152(input_size):
|
82 |
+
"""Constructs a ir_se-152 model."""
|
83 |
+
model = Backbone(input_size, num_layers=152, mode='ir_se', drop_ratio=0.4, affine=False)
|
84 |
+
return model
|
vtoonify/model/encoder/encoders/psp_encoders.py
ADDED
@@ -0,0 +1,186 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch import nn
|
5 |
+
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module
|
6 |
+
|
7 |
+
from model.encoder.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE
|
8 |
+
from model.stylegan.model import EqualLinear
|
9 |
+
|
10 |
+
|
11 |
+
class GradualStyleBlock(Module):
|
12 |
+
def __init__(self, in_c, out_c, spatial):
|
13 |
+
super(GradualStyleBlock, self).__init__()
|
14 |
+
self.out_c = out_c
|
15 |
+
self.spatial = spatial
|
16 |
+
num_pools = int(np.log2(spatial))
|
17 |
+
modules = []
|
18 |
+
modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
|
19 |
+
nn.LeakyReLU()]
|
20 |
+
for i in range(num_pools - 1):
|
21 |
+
modules += [
|
22 |
+
Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
|
23 |
+
nn.LeakyReLU()
|
24 |
+
]
|
25 |
+
self.convs = nn.Sequential(*modules)
|
26 |
+
self.linear = EqualLinear(out_c, out_c, lr_mul=1)
|
27 |
+
|
28 |
+
def forward(self, x):
|
29 |
+
x = self.convs(x)
|
30 |
+
x = x.view(-1, self.out_c)
|
31 |
+
x = self.linear(x)
|
32 |
+
return x
|
33 |
+
|
34 |
+
|
35 |
+
class GradualStyleEncoder(Module):
|
36 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
37 |
+
super(GradualStyleEncoder, self).__init__()
|
38 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
39 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
40 |
+
blocks = get_blocks(num_layers)
|
41 |
+
if mode == 'ir':
|
42 |
+
unit_module = bottleneck_IR
|
43 |
+
elif mode == 'ir_se':
|
44 |
+
unit_module = bottleneck_IR_SE
|
45 |
+
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
46 |
+
BatchNorm2d(64),
|
47 |
+
PReLU(64))
|
48 |
+
modules = []
|
49 |
+
for block in blocks:
|
50 |
+
for bottleneck in block:
|
51 |
+
modules.append(unit_module(bottleneck.in_channel,
|
52 |
+
bottleneck.depth,
|
53 |
+
bottleneck.stride))
|
54 |
+
self.body = Sequential(*modules)
|
55 |
+
|
56 |
+
self.styles = nn.ModuleList()
|
57 |
+
self.style_count = opts.n_styles
|
58 |
+
self.coarse_ind = 3
|
59 |
+
self.middle_ind = 7
|
60 |
+
for i in range(self.style_count):
|
61 |
+
if i < self.coarse_ind:
|
62 |
+
style = GradualStyleBlock(512, 512, 16)
|
63 |
+
elif i < self.middle_ind:
|
64 |
+
style = GradualStyleBlock(512, 512, 32)
|
65 |
+
else:
|
66 |
+
style = GradualStyleBlock(512, 512, 64)
|
67 |
+
self.styles.append(style)
|
68 |
+
self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
|
69 |
+
self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
|
70 |
+
|
71 |
+
def _upsample_add(self, x, y):
|
72 |
+
'''Upsample and add two feature maps.
|
73 |
+
Args:
|
74 |
+
x: (Variable) top feature map to be upsampled.
|
75 |
+
y: (Variable) lateral feature map.
|
76 |
+
Returns:
|
77 |
+
(Variable) added feature map.
|
78 |
+
Note in PyTorch, when input size is odd, the upsampled feature map
|
79 |
+
with `F.upsample(..., scale_factor=2, mode='nearest')`
|
80 |
+
maybe not equal to the lateral feature map size.
|
81 |
+
e.g.
|
82 |
+
original input size: [N,_,15,15] ->
|
83 |
+
conv2d feature map size: [N,_,8,8] ->
|
84 |
+
upsampled feature map size: [N,_,16,16]
|
85 |
+
So we choose bilinear upsample which supports arbitrary output sizes.
|
86 |
+
'''
|
87 |
+
_, _, H, W = y.size()
|
88 |
+
return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
x = self.input_layer(x)
|
92 |
+
|
93 |
+
latents = []
|
94 |
+
modulelist = list(self.body._modules.values())
|
95 |
+
for i, l in enumerate(modulelist):
|
96 |
+
x = l(x)
|
97 |
+
if i == 6:
|
98 |
+
c1 = x
|
99 |
+
elif i == 20:
|
100 |
+
c2 = x
|
101 |
+
elif i == 23:
|
102 |
+
c3 = x
|
103 |
+
|
104 |
+
for j in range(self.coarse_ind):
|
105 |
+
latents.append(self.styles[j](c3))
|
106 |
+
|
107 |
+
p2 = self._upsample_add(c3, self.latlayer1(c2))
|
108 |
+
for j in range(self.coarse_ind, self.middle_ind):
|
109 |
+
latents.append(self.styles[j](p2))
|
110 |
+
|
111 |
+
p1 = self._upsample_add(p2, self.latlayer2(c1))
|
112 |
+
for j in range(self.middle_ind, self.style_count):
|
113 |
+
latents.append(self.styles[j](p1))
|
114 |
+
|
115 |
+
out = torch.stack(latents, dim=1)
|
116 |
+
return out
|
117 |
+
|
118 |
+
|
119 |
+
class BackboneEncoderUsingLastLayerIntoW(Module):
|
120 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
121 |
+
super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
|
122 |
+
print('Using BackboneEncoderUsingLastLayerIntoW')
|
123 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
124 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
125 |
+
blocks = get_blocks(num_layers)
|
126 |
+
if mode == 'ir':
|
127 |
+
unit_module = bottleneck_IR
|
128 |
+
elif mode == 'ir_se':
|
129 |
+
unit_module = bottleneck_IR_SE
|
130 |
+
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
131 |
+
BatchNorm2d(64),
|
132 |
+
PReLU(64))
|
133 |
+
self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
|
134 |
+
self.linear = EqualLinear(512, 512, lr_mul=1)
|
135 |
+
modules = []
|
136 |
+
for block in blocks:
|
137 |
+
for bottleneck in block:
|
138 |
+
modules.append(unit_module(bottleneck.in_channel,
|
139 |
+
bottleneck.depth,
|
140 |
+
bottleneck.stride))
|
141 |
+
self.body = Sequential(*modules)
|
142 |
+
|
143 |
+
def forward(self, x):
|
144 |
+
x = self.input_layer(x)
|
145 |
+
x = self.body(x)
|
146 |
+
x = self.output_pool(x)
|
147 |
+
x = x.view(-1, 512)
|
148 |
+
x = self.linear(x)
|
149 |
+
return x
|
150 |
+
|
151 |
+
|
152 |
+
class BackboneEncoderUsingLastLayerIntoWPlus(Module):
|
153 |
+
def __init__(self, num_layers, mode='ir', opts=None):
|
154 |
+
super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__()
|
155 |
+
print('Using BackboneEncoderUsingLastLayerIntoWPlus')
|
156 |
+
assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
|
157 |
+
assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
|
158 |
+
blocks = get_blocks(num_layers)
|
159 |
+
if mode == 'ir':
|
160 |
+
unit_module = bottleneck_IR
|
161 |
+
elif mode == 'ir_se':
|
162 |
+
unit_module = bottleneck_IR_SE
|
163 |
+
self.n_styles = opts.n_styles
|
164 |
+
self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
|
165 |
+
BatchNorm2d(64),
|
166 |
+
PReLU(64))
|
167 |
+
self.output_layer_2 = Sequential(BatchNorm2d(512),
|
168 |
+
torch.nn.AdaptiveAvgPool2d((7, 7)),
|
169 |
+
Flatten(),
|
170 |
+
Linear(512 * 7 * 7, 512))
|
171 |
+
self.linear = EqualLinear(512, 512 * self.n_styles, lr_mul=1)
|
172 |
+
modules = []
|
173 |
+
for block in blocks:
|
174 |
+
for bottleneck in block:
|
175 |
+
modules.append(unit_module(bottleneck.in_channel,
|
176 |
+
bottleneck.depth,
|
177 |
+
bottleneck.stride))
|
178 |
+
self.body = Sequential(*modules)
|
179 |
+
|
180 |
+
def forward(self, x):
|
181 |
+
x = self.input_layer(x)
|
182 |
+
x = self.body(x)
|
183 |
+
x = self.output_layer_2(x)
|
184 |
+
x = self.linear(x)
|
185 |
+
x = x.view(-1, self.n_styles, 512)
|
186 |
+
return x
|
vtoonify/model/encoder/psp.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file defines the core research contribution
|
3 |
+
"""
|
4 |
+
import matplotlib
|
5 |
+
matplotlib.use('Agg')
|
6 |
+
import math
|
7 |
+
|
8 |
+
import torch
|
9 |
+
from torch import nn
|
10 |
+
from model.encoder.encoders import psp_encoders
|
11 |
+
from model.stylegan.model import Generator
|
12 |
+
|
13 |
+
def get_keys(d, name):
|
14 |
+
if 'state_dict' in d:
|
15 |
+
d = d['state_dict']
|
16 |
+
d_filt = {k[len(name) + 1:]: v for k, v in d.items() if k[:len(name)] == name}
|
17 |
+
return d_filt
|
18 |
+
|
19 |
+
|
20 |
+
class pSp(nn.Module):
|
21 |
+
|
22 |
+
def __init__(self, opts):
|
23 |
+
super(pSp, self).__init__()
|
24 |
+
self.set_opts(opts)
|
25 |
+
# compute number of style inputs based on the output resolution
|
26 |
+
self.opts.n_styles = int(math.log(self.opts.output_size, 2)) * 2 - 2
|
27 |
+
# Define architecture
|
28 |
+
self.encoder = self.set_encoder()
|
29 |
+
self.decoder = Generator(self.opts.output_size, 512, 8)
|
30 |
+
self.face_pool = torch.nn.AdaptiveAvgPool2d((256, 256))
|
31 |
+
# Load weights if needed
|
32 |
+
self.load_weights()
|
33 |
+
|
34 |
+
def set_encoder(self):
|
35 |
+
if self.opts.encoder_type == 'GradualStyleEncoder':
|
36 |
+
encoder = psp_encoders.GradualStyleEncoder(50, 'ir_se', self.opts)
|
37 |
+
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoW':
|
38 |
+
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoW(50, 'ir_se', self.opts)
|
39 |
+
elif self.opts.encoder_type == 'BackboneEncoderUsingLastLayerIntoWPlus':
|
40 |
+
encoder = psp_encoders.BackboneEncoderUsingLastLayerIntoWPlus(50, 'ir_se', self.opts)
|
41 |
+
else:
|
42 |
+
raise Exception('{} is not a valid encoders'.format(self.opts.encoder_type))
|
43 |
+
return encoder
|
44 |
+
|
45 |
+
def load_weights(self):
|
46 |
+
if self.opts.checkpoint_path is not None:
|
47 |
+
print('Loading pSp from checkpoint: {}'.format(self.opts.checkpoint_path))
|
48 |
+
ckpt = torch.load(self.opts.checkpoint_path, map_location='cpu')
|
49 |
+
self.encoder.load_state_dict(get_keys(ckpt, 'encoder'), strict=True)
|
50 |
+
self.decoder.load_state_dict(get_keys(ckpt, 'decoder'), strict=True)
|
51 |
+
self.__load_latent_avg(ckpt)
|
52 |
+
else:
|
53 |
+
pass
|
54 |
+
'''print('Loading encoders weights from irse50!')
|
55 |
+
encoder_ckpt = torch.load(model_paths['ir_se50'])
|
56 |
+
# if input to encoder is not an RGB image, do not load the input layer weights
|
57 |
+
if self.opts.label_nc != 0:
|
58 |
+
encoder_ckpt = {k: v for k, v in encoder_ckpt.items() if "input_layer" not in k}
|
59 |
+
self.encoder.load_state_dict(encoder_ckpt, strict=False)
|
60 |
+
print('Loading decoder weights from pretrained!')
|
61 |
+
ckpt = torch.load(self.opts.stylegan_weights)
|
62 |
+
self.decoder.load_state_dict(ckpt['g_ema'], strict=False)
|
63 |
+
if self.opts.learn_in_w:
|
64 |
+
self.__load_latent_avg(ckpt, repeat=1)
|
65 |
+
else:
|
66 |
+
self.__load_latent_avg(ckpt, repeat=self.opts.n_styles)
|
67 |
+
'''
|
68 |
+
|
69 |
+
def forward(self, x, resize=True, latent_mask=None, input_code=False, randomize_noise=True,
|
70 |
+
inject_latent=None, return_latents=False, alpha=None, z_plus_latent=False, return_z_plus_latent=True):
|
71 |
+
if input_code:
|
72 |
+
codes = x
|
73 |
+
else:
|
74 |
+
codes = self.encoder(x)
|
75 |
+
#print(codes.shape)
|
76 |
+
# normalize with respect to the center of an average face
|
77 |
+
if self.opts.start_from_latent_avg:
|
78 |
+
if self.opts.learn_in_w:
|
79 |
+
codes = codes + self.latent_avg.repeat(codes.shape[0], 1)
|
80 |
+
else:
|
81 |
+
codes = codes + self.latent_avg.repeat(codes.shape[0], 1, 1)
|
82 |
+
|
83 |
+
|
84 |
+
if latent_mask is not None:
|
85 |
+
for i in latent_mask:
|
86 |
+
if inject_latent is not None:
|
87 |
+
if alpha is not None:
|
88 |
+
codes[:, i] = alpha * inject_latent[:, i] + (1 - alpha) * codes[:, i]
|
89 |
+
else:
|
90 |
+
codes[:, i] = inject_latent[:, i]
|
91 |
+
else:
|
92 |
+
codes[:, i] = 0
|
93 |
+
|
94 |
+
input_is_latent = not input_code
|
95 |
+
if z_plus_latent:
|
96 |
+
input_is_latent = False
|
97 |
+
images, result_latent = self.decoder([codes],
|
98 |
+
input_is_latent=input_is_latent,
|
99 |
+
randomize_noise=randomize_noise,
|
100 |
+
return_latents=return_latents,
|
101 |
+
z_plus_latent=z_plus_latent)
|
102 |
+
|
103 |
+
if resize:
|
104 |
+
images = self.face_pool(images)
|
105 |
+
|
106 |
+
if return_latents:
|
107 |
+
if z_plus_latent and return_z_plus_latent:
|
108 |
+
return images, codes
|
109 |
+
if z_plus_latent and not return_z_plus_latent:
|
110 |
+
return images, result_latent
|
111 |
+
else:
|
112 |
+
return images, result_latent
|
113 |
+
else:
|
114 |
+
return images
|
115 |
+
|
116 |
+
def set_opts(self, opts):
|
117 |
+
self.opts = opts
|
118 |
+
|
119 |
+
def __load_latent_avg(self, ckpt, repeat=None):
|
120 |
+
if 'latent_avg' in ckpt:
|
121 |
+
self.latent_avg = ckpt['latent_avg'].to(self.opts.device)
|
122 |
+
if repeat is not None:
|
123 |
+
self.latent_avg = self.latent_avg.repeat(repeat, 1)
|
124 |
+
else:
|
125 |
+
self.latent_avg = None
|
vtoonify/model/encoder/readme.md
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Encoding in Style: a StyleGAN Encoder for Image-to-Image Translation
|
2 |
+
|
3 |
+
## Description
|
4 |
+
Official Implementation of pSp paper for both training and evaluation. The pSp method extends the StyleGAN model to
|
5 |
+
allow solving different image-to-image translation problems using its encoder.
|
6 |
+
|
7 |
+
Fork from [https://github.com/eladrich/pixel2style2pixel](https://github.com/eladrich/pixel2style2pixel).
|
8 |
+
|
9 |
+
In VToonify, we modify pSp to accept z+ latent code.
|
vtoonify/model/raft/LICENSE
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
BSD 3-Clause License
|
2 |
+
|
3 |
+
Copyright (c) 2020, princeton-vl
|
4 |
+
All rights reserved.
|
5 |
+
|
6 |
+
Redistribution and use in source and binary forms, with or without
|
7 |
+
modification, are permitted provided that the following conditions are met:
|
8 |
+
|
9 |
+
* Redistributions of source code must retain the above copyright notice, this
|
10 |
+
list of conditions and the following disclaimer.
|
11 |
+
|
12 |
+
* Redistributions in binary form must reproduce the above copyright notice,
|
13 |
+
this list of conditions and the following disclaimer in the documentation
|
14 |
+
and/or other materials provided with the distribution.
|
15 |
+
|
16 |
+
* Neither the name of the copyright holder nor the names of its
|
17 |
+
contributors may be used to endorse or promote products derived from
|
18 |
+
this software without specific prior written permission.
|
19 |
+
|
20 |
+
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
21 |
+
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
22 |
+
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
|
23 |
+
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
|
24 |
+
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
|
25 |
+
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
|
26 |
+
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
|
27 |
+
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
|
28 |
+
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
29 |
+
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
vtoonify/model/raft/RAFT.png
ADDED
![]() |
vtoonify/model/raft/README.md
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# RAFT
|
2 |
+
This repository contains the source code for our paper:
|
3 |
+
|
4 |
+
[RAFT: Recurrent All Pairs Field Transforms for Optical Flow](https://arxiv.org/pdf/2003.12039.pdf)<br/>
|
5 |
+
ECCV 2020 <br/>
|
6 |
+
Zachary Teed and Jia Deng<br/>
|
7 |
+
|
8 |
+
<img src="RAFT.png">
|
9 |
+
|
10 |
+
## Requirements
|
11 |
+
The code has been tested with PyTorch 1.6 and Cuda 10.1.
|
12 |
+
```Shell
|
13 |
+
conda create --name raft
|
14 |
+
conda activate raft
|
15 |
+
conda install pytorch=1.6.0 torchvision=0.7.0 cudatoolkit=10.1 matplotlib tensorboard scipy opencv -c pytorch
|
16 |
+
```
|
17 |
+
|
18 |
+
## Demos
|
19 |
+
Pretrained models can be downloaded by running
|
20 |
+
```Shell
|
21 |
+
./download_models.sh
|
22 |
+
```
|
23 |
+
or downloaded from [google drive](https://drive.google.com/drive/folders/1sWDsfuZ3Up38EUQt7-JDTT1HcGHuJgvT?usp=sharing)
|
24 |
+
|
25 |
+
You can demo a trained model on a sequence of frames
|
26 |
+
```Shell
|
27 |
+
python demo.py --model=models/raft-things.pth --path=demo-frames
|
28 |
+
```
|
29 |
+
|
30 |
+
## Required Data
|
31 |
+
To evaluate/train RAFT, you will need to download the required datasets.
|
32 |
+
* [FlyingChairs](https://lmb.informatik.uni-freiburg.de/resources/datasets/FlyingChairs.en.html#flyingchairs)
|
33 |
+
* [FlyingThings3D](https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html)
|
34 |
+
* [Sintel](http://sintel.is.tue.mpg.de/)
|
35 |
+
* [KITTI](http://www.cvlibs.net/datasets/kitti/eval_scene_flow.php?benchmark=flow)
|
36 |
+
* [HD1K](http://hci-benchmark.iwr.uni-heidelberg.de/) (optional)
|
37 |
+
|
38 |
+
|
39 |
+
By default `datasets.py` will search for the datasets in these locations. You can create symbolic links to wherever the datasets were downloaded in the `datasets` folder
|
40 |
+
|
41 |
+
```Shell
|
42 |
+
├── datasets
|
43 |
+
├── Sintel
|
44 |
+
├── test
|
45 |
+
├── training
|
46 |
+
├── KITTI
|
47 |
+
├── testing
|
48 |
+
├── training
|
49 |
+
├── devkit
|
50 |
+
├── FlyingChairs_release
|
51 |
+
├── data
|
52 |
+
├── FlyingThings3D
|
53 |
+
├── frames_cleanpass
|
54 |
+
├── frames_finalpass
|
55 |
+
├── optical_flow
|
56 |
+
```
|
57 |
+
|
58 |
+
## Evaluation
|
59 |
+
You can evaluate a trained model using `evaluate.py`
|
60 |
+
```Shell
|
61 |
+
python evaluate.py --model=models/raft-things.pth --dataset=sintel --mixed_precision
|
62 |
+
```
|
63 |
+
|
64 |
+
## Training
|
65 |
+
We used the following training schedule in our paper (2 GPUs). Training logs will be written to the `runs` which can be visualized using tensorboard
|
66 |
+
```Shell
|
67 |
+
./train_standard.sh
|
68 |
+
```
|
69 |
+
|
70 |
+
If you have a RTX GPU, training can be accelerated using mixed precision. You can expect similiar results in this setting (1 GPU)
|
71 |
+
```Shell
|
72 |
+
./train_mixed.sh
|
73 |
+
```
|
74 |
+
|
75 |
+
## (Optional) Efficent Implementation
|
76 |
+
You can optionally use our alternate (efficent) implementation by compiling the provided cuda extension
|
77 |
+
```Shell
|
78 |
+
cd alt_cuda_corr && python setup.py install && cd ..
|
79 |
+
```
|
80 |
+
and running `demo.py` and `evaluate.py` with the `--alternate_corr` flag Note, this implementation is somewhat slower than all-pairs, but uses significantly less GPU memory during the forward pass.
|
vtoonify/model/raft/alt_cuda_corr/correlation.cpp
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include <vector>
|
3 |
+
|
4 |
+
// CUDA forward declarations
|
5 |
+
std::vector<torch::Tensor> corr_cuda_forward(
|
6 |
+
torch::Tensor fmap1,
|
7 |
+
torch::Tensor fmap2,
|
8 |
+
torch::Tensor coords,
|
9 |
+
int radius);
|
10 |
+
|
11 |
+
std::vector<torch::Tensor> corr_cuda_backward(
|
12 |
+
torch::Tensor fmap1,
|
13 |
+
torch::Tensor fmap2,
|
14 |
+
torch::Tensor coords,
|
15 |
+
torch::Tensor corr_grad,
|
16 |
+
int radius);
|
17 |
+
|
18 |
+
// C++ interface
|
19 |
+
#define CHECK_CUDA(x) TORCH_CHECK(x.type().is_cuda(), #x " must be a CUDA tensor")
|
20 |
+
#define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous")
|
21 |
+
#define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x)
|
22 |
+
|
23 |
+
std::vector<torch::Tensor> corr_forward(
|
24 |
+
torch::Tensor fmap1,
|
25 |
+
torch::Tensor fmap2,
|
26 |
+
torch::Tensor coords,
|
27 |
+
int radius) {
|
28 |
+
CHECK_INPUT(fmap1);
|
29 |
+
CHECK_INPUT(fmap2);
|
30 |
+
CHECK_INPUT(coords);
|
31 |
+
|
32 |
+
return corr_cuda_forward(fmap1, fmap2, coords, radius);
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
std::vector<torch::Tensor> corr_backward(
|
37 |
+
torch::Tensor fmap1,
|
38 |
+
torch::Tensor fmap2,
|
39 |
+
torch::Tensor coords,
|
40 |
+
torch::Tensor corr_grad,
|
41 |
+
int radius) {
|
42 |
+
CHECK_INPUT(fmap1);
|
43 |
+
CHECK_INPUT(fmap2);
|
44 |
+
CHECK_INPUT(coords);
|
45 |
+
CHECK_INPUT(corr_grad);
|
46 |
+
|
47 |
+
return corr_cuda_backward(fmap1, fmap2, coords, corr_grad, radius);
|
48 |
+
}
|
49 |
+
|
50 |
+
|
51 |
+
PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
|
52 |
+
m.def("forward", &corr_forward, "CORR forward");
|
53 |
+
m.def("backward", &corr_backward, "CORR backward");
|
54 |
+
}
|
vtoonify/model/raft/alt_cuda_corr/correlation_kernel.cu
ADDED
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#include <torch/extension.h>
|
2 |
+
#include <cuda.h>
|
3 |
+
#include <cuda_runtime.h>
|
4 |
+
#include <vector>
|
5 |
+
|
6 |
+
|
7 |
+
#define BLOCK_H 4
|
8 |
+
#define BLOCK_W 8
|
9 |
+
#define BLOCK_HW BLOCK_H * BLOCK_W
|
10 |
+
#define CHANNEL_STRIDE 32
|
11 |
+
|
12 |
+
|
13 |
+
__forceinline__ __device__
|
14 |
+
bool within_bounds(int h, int w, int H, int W) {
|
15 |
+
return h >= 0 && h < H && w >= 0 && w < W;
|
16 |
+
}
|
17 |
+
|
18 |
+
template <typename scalar_t>
|
19 |
+
__global__ void corr_forward_kernel(
|
20 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
21 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
22 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords,
|
23 |
+
torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> corr,
|
24 |
+
int r)
|
25 |
+
{
|
26 |
+
const int b = blockIdx.x;
|
27 |
+
const int h0 = blockIdx.y * blockDim.x;
|
28 |
+
const int w0 = blockIdx.z * blockDim.y;
|
29 |
+
const int tid = threadIdx.x * blockDim.y + threadIdx.y;
|
30 |
+
|
31 |
+
const int H1 = fmap1.size(1);
|
32 |
+
const int W1 = fmap1.size(2);
|
33 |
+
const int H2 = fmap2.size(1);
|
34 |
+
const int W2 = fmap2.size(2);
|
35 |
+
const int N = coords.size(1);
|
36 |
+
const int C = fmap1.size(3);
|
37 |
+
|
38 |
+
__shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1];
|
39 |
+
__shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1];
|
40 |
+
__shared__ scalar_t x2s[BLOCK_HW];
|
41 |
+
__shared__ scalar_t y2s[BLOCK_HW];
|
42 |
+
|
43 |
+
for (int c=0; c<C; c+=CHANNEL_STRIDE) {
|
44 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
45 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
46 |
+
int h1 = h0 + k1 / BLOCK_W;
|
47 |
+
int w1 = w0 + k1 % BLOCK_W;
|
48 |
+
int c1 = tid % CHANNEL_STRIDE;
|
49 |
+
|
50 |
+
auto fptr = fmap1[b][h1][w1];
|
51 |
+
if (within_bounds(h1, w1, H1, W1))
|
52 |
+
f1[c1][k1] = fptr[c+c1];
|
53 |
+
else
|
54 |
+
f1[c1][k1] = 0.0;
|
55 |
+
}
|
56 |
+
|
57 |
+
__syncthreads();
|
58 |
+
|
59 |
+
for (int n=0; n<N; n++) {
|
60 |
+
int h1 = h0 + threadIdx.x;
|
61 |
+
int w1 = w0 + threadIdx.y;
|
62 |
+
if (within_bounds(h1, w1, H1, W1)) {
|
63 |
+
x2s[tid] = coords[b][n][h1][w1][0];
|
64 |
+
y2s[tid] = coords[b][n][h1][w1][1];
|
65 |
+
}
|
66 |
+
|
67 |
+
scalar_t dx = x2s[tid] - floor(x2s[tid]);
|
68 |
+
scalar_t dy = y2s[tid] - floor(y2s[tid]);
|
69 |
+
|
70 |
+
int rd = 2*r + 1;
|
71 |
+
for (int iy=0; iy<rd+1; iy++) {
|
72 |
+
for (int ix=0; ix<rd+1; ix++) {
|
73 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
74 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
75 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
76 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
77 |
+
int c2 = tid % CHANNEL_STRIDE;
|
78 |
+
|
79 |
+
auto fptr = fmap2[b][h2][w2];
|
80 |
+
if (within_bounds(h2, w2, H2, W2))
|
81 |
+
f2[c2][k1] = fptr[c+c2];
|
82 |
+
else
|
83 |
+
f2[c2][k1] = 0.0;
|
84 |
+
}
|
85 |
+
|
86 |
+
__syncthreads();
|
87 |
+
|
88 |
+
scalar_t s = 0.0;
|
89 |
+
for (int k=0; k<CHANNEL_STRIDE; k++)
|
90 |
+
s += f1[k][tid] * f2[k][tid];
|
91 |
+
|
92 |
+
int ix_nw = H1*W1*((iy-1) + rd*(ix-1));
|
93 |
+
int ix_ne = H1*W1*((iy-1) + rd*ix);
|
94 |
+
int ix_sw = H1*W1*(iy + rd*(ix-1));
|
95 |
+
int ix_se = H1*W1*(iy + rd*ix);
|
96 |
+
|
97 |
+
scalar_t nw = s * (dy) * (dx);
|
98 |
+
scalar_t ne = s * (dy) * (1-dx);
|
99 |
+
scalar_t sw = s * (1-dy) * (dx);
|
100 |
+
scalar_t se = s * (1-dy) * (1-dx);
|
101 |
+
|
102 |
+
scalar_t* corr_ptr = &corr[b][n][0][h1][w1];
|
103 |
+
|
104 |
+
if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1))
|
105 |
+
*(corr_ptr + ix_nw) += nw;
|
106 |
+
|
107 |
+
if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1))
|
108 |
+
*(corr_ptr + ix_ne) += ne;
|
109 |
+
|
110 |
+
if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1))
|
111 |
+
*(corr_ptr + ix_sw) += sw;
|
112 |
+
|
113 |
+
if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1))
|
114 |
+
*(corr_ptr + ix_se) += se;
|
115 |
+
}
|
116 |
+
}
|
117 |
+
}
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
template <typename scalar_t>
|
123 |
+
__global__ void corr_backward_kernel(
|
124 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1,
|
125 |
+
const torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2,
|
126 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords,
|
127 |
+
const torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> corr_grad,
|
128 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap1_grad,
|
129 |
+
torch::PackedTensorAccessor32<scalar_t,4,torch::RestrictPtrTraits> fmap2_grad,
|
130 |
+
torch::PackedTensorAccessor32<scalar_t,5,torch::RestrictPtrTraits> coords_grad,
|
131 |
+
int r)
|
132 |
+
{
|
133 |
+
|
134 |
+
const int b = blockIdx.x;
|
135 |
+
const int h0 = blockIdx.y * blockDim.x;
|
136 |
+
const int w0 = blockIdx.z * blockDim.y;
|
137 |
+
const int tid = threadIdx.x * blockDim.y + threadIdx.y;
|
138 |
+
|
139 |
+
const int H1 = fmap1.size(1);
|
140 |
+
const int W1 = fmap1.size(2);
|
141 |
+
const int H2 = fmap2.size(1);
|
142 |
+
const int W2 = fmap2.size(2);
|
143 |
+
const int N = coords.size(1);
|
144 |
+
const int C = fmap1.size(3);
|
145 |
+
|
146 |
+
__shared__ scalar_t f1[CHANNEL_STRIDE][BLOCK_HW+1];
|
147 |
+
__shared__ scalar_t f2[CHANNEL_STRIDE][BLOCK_HW+1];
|
148 |
+
|
149 |
+
__shared__ scalar_t f1_grad[CHANNEL_STRIDE][BLOCK_HW+1];
|
150 |
+
__shared__ scalar_t f2_grad[CHANNEL_STRIDE][BLOCK_HW+1];
|
151 |
+
|
152 |
+
__shared__ scalar_t x2s[BLOCK_HW];
|
153 |
+
__shared__ scalar_t y2s[BLOCK_HW];
|
154 |
+
|
155 |
+
for (int c=0; c<C; c+=CHANNEL_STRIDE) {
|
156 |
+
|
157 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
158 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
159 |
+
int h1 = h0 + k1 / BLOCK_W;
|
160 |
+
int w1 = w0 + k1 % BLOCK_W;
|
161 |
+
int c1 = tid % CHANNEL_STRIDE;
|
162 |
+
|
163 |
+
auto fptr = fmap1[b][h1][w1];
|
164 |
+
if (within_bounds(h1, w1, H1, W1))
|
165 |
+
f1[c1][k1] = fptr[c+c1];
|
166 |
+
else
|
167 |
+
f1[c1][k1] = 0.0;
|
168 |
+
|
169 |
+
f1_grad[c1][k1] = 0.0;
|
170 |
+
}
|
171 |
+
|
172 |
+
__syncthreads();
|
173 |
+
|
174 |
+
int h1 = h0 + threadIdx.x;
|
175 |
+
int w1 = w0 + threadIdx.y;
|
176 |
+
|
177 |
+
for (int n=0; n<N; n++) {
|
178 |
+
x2s[tid] = coords[b][n][h1][w1][0];
|
179 |
+
y2s[tid] = coords[b][n][h1][w1][1];
|
180 |
+
|
181 |
+
scalar_t dx = x2s[tid] - floor(x2s[tid]);
|
182 |
+
scalar_t dy = y2s[tid] - floor(y2s[tid]);
|
183 |
+
|
184 |
+
int rd = 2*r + 1;
|
185 |
+
for (int iy=0; iy<rd+1; iy++) {
|
186 |
+
for (int ix=0; ix<rd+1; ix++) {
|
187 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
188 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
189 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
190 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
191 |
+
int c2 = tid % CHANNEL_STRIDE;
|
192 |
+
|
193 |
+
auto fptr = fmap2[b][h2][w2];
|
194 |
+
if (within_bounds(h2, w2, H2, W2))
|
195 |
+
f2[c2][k1] = fptr[c+c2];
|
196 |
+
else
|
197 |
+
f2[c2][k1] = 0.0;
|
198 |
+
|
199 |
+
f2_grad[c2][k1] = 0.0;
|
200 |
+
}
|
201 |
+
|
202 |
+
__syncthreads();
|
203 |
+
|
204 |
+
const scalar_t* grad_ptr = &corr_grad[b][n][0][h1][w1];
|
205 |
+
scalar_t g = 0.0;
|
206 |
+
|
207 |
+
int ix_nw = H1*W1*((iy-1) + rd*(ix-1));
|
208 |
+
int ix_ne = H1*W1*((iy-1) + rd*ix);
|
209 |
+
int ix_sw = H1*W1*(iy + rd*(ix-1));
|
210 |
+
int ix_se = H1*W1*(iy + rd*ix);
|
211 |
+
|
212 |
+
if (iy > 0 && ix > 0 && within_bounds(h1, w1, H1, W1))
|
213 |
+
g += *(grad_ptr + ix_nw) * dy * dx;
|
214 |
+
|
215 |
+
if (iy > 0 && ix < rd && within_bounds(h1, w1, H1, W1))
|
216 |
+
g += *(grad_ptr + ix_ne) * dy * (1-dx);
|
217 |
+
|
218 |
+
if (iy < rd && ix > 0 && within_bounds(h1, w1, H1, W1))
|
219 |
+
g += *(grad_ptr + ix_sw) * (1-dy) * dx;
|
220 |
+
|
221 |
+
if (iy < rd && ix < rd && within_bounds(h1, w1, H1, W1))
|
222 |
+
g += *(grad_ptr + ix_se) * (1-dy) * (1-dx);
|
223 |
+
|
224 |
+
for (int k=0; k<CHANNEL_STRIDE; k++) {
|
225 |
+
f1_grad[k][tid] += g * f2[k][tid];
|
226 |
+
f2_grad[k][tid] += g * f1[k][tid];
|
227 |
+
}
|
228 |
+
|
229 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
230 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
231 |
+
int h2 = static_cast<int>(floor(y2s[k1]))-r+iy;
|
232 |
+
int w2 = static_cast<int>(floor(x2s[k1]))-r+ix;
|
233 |
+
int c2 = tid % CHANNEL_STRIDE;
|
234 |
+
|
235 |
+
scalar_t* fptr = &fmap2_grad[b][h2][w2][0];
|
236 |
+
if (within_bounds(h2, w2, H2, W2))
|
237 |
+
atomicAdd(fptr+c+c2, f2_grad[c2][k1]);
|
238 |
+
}
|
239 |
+
}
|
240 |
+
}
|
241 |
+
}
|
242 |
+
__syncthreads();
|
243 |
+
|
244 |
+
|
245 |
+
for (int k=0; k<BLOCK_HW; k+=BLOCK_HW/CHANNEL_STRIDE) {
|
246 |
+
int k1 = k + tid / CHANNEL_STRIDE;
|
247 |
+
int h1 = h0 + k1 / BLOCK_W;
|
248 |
+
int w1 = w0 + k1 % BLOCK_W;
|
249 |
+
int c1 = tid % CHANNEL_STRIDE;
|
250 |
+
|
251 |
+
scalar_t* fptr = &fmap1_grad[b][h1][w1][0];
|
252 |
+
if (within_bounds(h1, w1, H1, W1))
|
253 |
+
fptr[c+c1] += f1_grad[c1][k1];
|
254 |
+
}
|
255 |
+
}
|
256 |
+
}
|
257 |
+
|
258 |
+
|
259 |
+
|
260 |
+
std::vector<torch::Tensor> corr_cuda_forward(
|
261 |
+
torch::Tensor fmap1,
|
262 |
+
torch::Tensor fmap2,
|
263 |
+
torch::Tensor coords,
|
264 |
+
int radius)
|
265 |
+
{
|
266 |
+
const auto B = coords.size(0);
|
267 |
+
const auto N = coords.size(1);
|
268 |
+
const auto H = coords.size(2);
|
269 |
+
const auto W = coords.size(3);
|
270 |
+
|
271 |
+
const auto rd = 2 * radius + 1;
|
272 |
+
auto opts = fmap1.options();
|
273 |
+
auto corr = torch::zeros({B, N, rd*rd, H, W}, opts);
|
274 |
+
|
275 |
+
const dim3 blocks(B, (H+BLOCK_H-1)/BLOCK_H, (W+BLOCK_W-1)/BLOCK_W);
|
276 |
+
const dim3 threads(BLOCK_H, BLOCK_W);
|
277 |
+
|
278 |
+
corr_forward_kernel<float><<<blocks, threads>>>(
|
279 |
+
fmap1.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
280 |
+
fmap2.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
281 |
+
coords.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
282 |
+
corr.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
283 |
+
radius);
|
284 |
+
|
285 |
+
return {corr};
|
286 |
+
}
|
287 |
+
|
288 |
+
std::vector<torch::Tensor> corr_cuda_backward(
|
289 |
+
torch::Tensor fmap1,
|
290 |
+
torch::Tensor fmap2,
|
291 |
+
torch::Tensor coords,
|
292 |
+
torch::Tensor corr_grad,
|
293 |
+
int radius)
|
294 |
+
{
|
295 |
+
const auto B = coords.size(0);
|
296 |
+
const auto N = coords.size(1);
|
297 |
+
|
298 |
+
const auto H1 = fmap1.size(1);
|
299 |
+
const auto W1 = fmap1.size(2);
|
300 |
+
const auto H2 = fmap2.size(1);
|
301 |
+
const auto W2 = fmap2.size(2);
|
302 |
+
const auto C = fmap1.size(3);
|
303 |
+
|
304 |
+
auto opts = fmap1.options();
|
305 |
+
auto fmap1_grad = torch::zeros({B, H1, W1, C}, opts);
|
306 |
+
auto fmap2_grad = torch::zeros({B, H2, W2, C}, opts);
|
307 |
+
auto coords_grad = torch::zeros({B, N, H1, W1, 2}, opts);
|
308 |
+
|
309 |
+
const dim3 blocks(B, (H1+BLOCK_H-1)/BLOCK_H, (W1+BLOCK_W-1)/BLOCK_W);
|
310 |
+
const dim3 threads(BLOCK_H, BLOCK_W);
|
311 |
+
|
312 |
+
|
313 |
+
corr_backward_kernel<float><<<blocks, threads>>>(
|
314 |
+
fmap1.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
315 |
+
fmap2.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
316 |
+
coords.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
317 |
+
corr_grad.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
318 |
+
fmap1_grad.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
319 |
+
fmap2_grad.packed_accessor32<float,4,torch::RestrictPtrTraits>(),
|
320 |
+
coords_grad.packed_accessor32<float,5,torch::RestrictPtrTraits>(),
|
321 |
+
radius);
|
322 |
+
|
323 |
+
return {fmap1_grad, fmap2_grad, coords_grad};
|
324 |
+
}
|
vtoonify/model/raft/alt_cuda_corr/setup.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from setuptools import setup
|
2 |
+
from torch.utils.cpp_extension import BuildExtension, CUDAExtension
|
3 |
+
|
4 |
+
|
5 |
+
setup(
|
6 |
+
name='correlation',
|
7 |
+
ext_modules=[
|
8 |
+
CUDAExtension('alt_cuda_corr',
|
9 |
+
sources=['correlation.cpp', 'correlation_kernel.cu'],
|
10 |
+
extra_compile_args={'cxx': [], 'nvcc': ['-O3']}),
|
11 |
+
],
|
12 |
+
cmdclass={
|
13 |
+
'build_ext': BuildExtension
|
14 |
+
})
|
15 |
+
|
vtoonify/model/raft/chairs_split.txt
ADDED
@@ -0,0 +1,22872 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
1
|
2 |
+
1
|
3 |
+
1
|
4 |
+
1
|
5 |
+
1
|
6 |
+
2
|
7 |
+
1
|
8 |
+
1
|
9 |
+
1
|
10 |
+
1
|
11 |
+
1
|
12 |
+
1
|
13 |
+
1
|
14 |
+
1
|
15 |
+
1
|
16 |
+
1
|
17 |
+
1
|
18 |
+
2
|
19 |
+
1
|
20 |
+
1
|
21 |
+
1
|
22 |
+
1
|
23 |
+
1
|
24 |
+
1
|
25 |
+
1
|
26 |
+
1
|
27 |
+
1
|
28 |
+
1
|
29 |
+
1
|
30 |
+
1
|
31 |
+
1
|
32 |
+
1
|
33 |
+
1
|
34 |
+
1
|
35 |
+
1
|
36 |
+
1
|
37 |
+
1
|
38 |
+
1
|
39 |
+
1
|
40 |
+
1
|
41 |
+
1
|
42 |
+
1
|
43 |
+
2
|
44 |
+
1
|
45 |
+
1
|
46 |
+
2
|
47 |
+
1
|
48 |
+
1
|
49 |
+
1
|
50 |
+
1
|
51 |
+
1
|
52 |
+
1
|
53 |
+
1
|
54 |
+
1
|
55 |
+
1
|
56 |
+
1
|
57 |
+
1
|
58 |
+
1
|
59 |
+
2
|
60 |
+
1
|
61 |
+
1
|
62 |
+
1
|
63 |
+
2
|
64 |
+
1
|
65 |
+
1
|
66 |
+
1
|
67 |
+
1
|
68 |
+
1
|
69 |
+
1
|
70 |
+
1
|
71 |
+
1
|
72 |
+
1
|
73 |
+
1
|
74 |
+
1
|
75 |
+
1
|
76 |
+
1
|
77 |
+
1
|
78 |
+
1
|
79 |
+
1
|
80 |
+
1
|
81 |
+
1
|
82 |
+
1
|
83 |
+
1
|
84 |
+
1
|
85 |
+
1
|
86 |
+
1
|
87 |
+
1
|
88 |
+
1
|
89 |
+
1
|
90 |
+
1
|
91 |
+
1
|
92 |
+
1
|
93 |
+
1
|
94 |
+
1
|
95 |
+
1
|
96 |
+
1
|
97 |
+
2
|
98 |
+
1
|
99 |
+
1
|
100 |
+
1
|
101 |
+
1
|
102 |
+
1
|
103 |
+
1
|
104 |
+
1
|
105 |
+
1
|
106 |
+
1
|
107 |
+
1
|
108 |
+
1
|
109 |
+
1
|
110 |
+
1
|
111 |
+
1
|
112 |
+
2
|
113 |
+
1
|
114 |
+
1
|
115 |
+
1
|
116 |
+
1
|
117 |
+
1
|
118 |
+
2
|
119 |
+
1
|
120 |
+
1
|
121 |
+
2
|
122 |
+
2
|
123 |
+
1
|
124 |
+
1
|
125 |
+
1
|
126 |
+
1
|
127 |
+
1
|
128 |
+
1
|
129 |
+
1
|
130 |
+
1
|
131 |
+
1
|
132 |
+
2
|
133 |
+
2
|
134 |
+
1
|
135 |
+
1
|
136 |
+
1
|
137 |
+
1
|
138 |
+
1
|
139 |
+
1
|
140 |
+
1
|
141 |
+
1
|
142 |
+
1
|
143 |
+
1
|
144 |
+
1
|
145 |
+
1
|
146 |
+
1
|
147 |
+
1
|
148 |
+
1
|
149 |
+
1
|
150 |
+
1
|
151 |
+
1
|
152 |
+
1
|
153 |
+
2
|
154 |
+
1
|
155 |
+
1
|
156 |
+
1
|
157 |
+
1
|
158 |
+
1
|
159 |
+
1
|
160 |
+
1
|
161 |
+
2
|
162 |
+
1
|
163 |
+
1
|
164 |
+
1
|
165 |
+
1
|
166 |
+
1
|
167 |
+
1
|
168 |
+
1
|
169 |
+
1
|
170 |
+
1
|
171 |
+
1
|
172 |
+
1
|
173 |
+
1
|
174 |
+
1
|
175 |
+
1
|
176 |
+
1
|
177 |
+
1
|
178 |
+
1
|
179 |
+
1
|
180 |
+
1
|
181 |
+
1
|
182 |
+
1
|
183 |
+
1
|
184 |
+
1
|
185 |
+
1
|
186 |
+
1
|
187 |
+
1
|
188 |
+
1
|
189 |
+
1
|
190 |
+
1
|
191 |
+
1
|
192 |
+
1
|
193 |
+
1
|
194 |
+
1
|
195 |
+
1
|
196 |
+
1
|
197 |
+
1
|
198 |
+
1
|
199 |
+
1
|
200 |
+
1
|
201 |
+
1
|
202 |
+
1
|
203 |
+
1
|
204 |
+
1
|
205 |
+
1
|
206 |
+
1
|
207 |
+
1
|
208 |
+
1
|
209 |
+
1
|
210 |
+
1
|
211 |
+
1
|
212 |
+
1
|
213 |
+
1
|
214 |
+
1
|
215 |
+
1
|
216 |
+
1
|
217 |
+
1
|
218 |
+
1
|
219 |
+
1
|
220 |
+
1
|
221 |
+
1
|
222 |
+
1
|
223 |
+
1
|
224 |
+
1
|
225 |
+
1
|
226 |
+
1
|
227 |
+
1
|
228 |
+
1
|
229 |
+
1
|
230 |
+
1
|
231 |
+
1
|
232 |
+
1
|
233 |
+
1
|
234 |
+
1
|
235 |
+
1
|
236 |
+
1
|
237 |
+
1
|
238 |
+
1
|
239 |
+
1
|
240 |
+
1
|
241 |
+
1
|
242 |
+
1
|
243 |
+
1
|
244 |
+
1
|
245 |
+
1
|
246 |
+
1
|
247 |
+
1
|
248 |
+
1
|
249 |
+
2
|
250 |
+
1
|
251 |
+
1
|
252 |
+
1
|
253 |
+
1
|
254 |
+
1
|
255 |
+
1
|
256 |
+
1
|
257 |
+
1
|
258 |
+
1
|
259 |
+
1
|
260 |
+
1
|
261 |
+
1
|
262 |
+
1
|
263 |
+
1
|
264 |
+
2
|
265 |
+
2
|
266 |
+
1
|
267 |
+
1
|
268 |
+
1
|
269 |
+
1
|
270 |
+
1
|
271 |
+
1
|
272 |
+
1
|
273 |
+
1
|
274 |
+
1
|
275 |
+
1
|
276 |
+
1
|
277 |
+
1
|
278 |
+
1
|
279 |
+
1
|
280 |
+
1
|
281 |
+
1
|
282 |
+
1
|
283 |
+
1
|
284 |
+
1
|
285 |
+
1
|
286 |
+
1
|
287 |
+
1
|
288 |
+
1
|
289 |
+
1
|
290 |
+
1
|
291 |
+
1
|
292 |
+
2
|
293 |
+
1
|
294 |
+
2
|
295 |
+
1
|
296 |
+
2
|
297 |
+
1
|
298 |
+
1
|
299 |
+
1
|
300 |
+
2
|
301 |
+
1
|
302 |
+
1
|
303 |
+
1
|
304 |
+
1
|
305 |
+
1
|
306 |
+
1
|
307 |
+
1
|
308 |
+
1
|
309 |
+
1
|
310 |
+
1
|
311 |
+
1
|
312 |
+
1
|
313 |
+
1
|
314 |
+
1
|
315 |
+
1
|
316 |
+
1
|
317 |
+
2
|
318 |
+
1
|
319 |
+
1
|
320 |
+
1
|
321 |
+
2
|
322 |
+
1
|
323 |
+
1
|
324 |
+
1
|
325 |
+
1
|
326 |
+
1
|
327 |
+
1
|
328 |
+
1
|
329 |
+
1
|
330 |
+
1
|
331 |
+
1
|
332 |
+
1
|
333 |
+
1
|
334 |
+
1
|
335 |
+
1
|
336 |
+
1
|
337 |
+
2
|
338 |
+
2
|
339 |
+
1
|
340 |
+
1
|
341 |
+
1
|
342 |
+
1
|
343 |
+
1
|
344 |
+
2
|
345 |
+
1
|
346 |
+
1
|
347 |
+
1
|
348 |
+
1
|
349 |
+
1
|
350 |
+
1
|
351 |
+
1
|
352 |
+
1
|
353 |
+
1
|
354 |
+
1
|
355 |
+
1
|
356 |
+
1
|
357 |
+
1
|
358 |
+
1
|
359 |
+
2
|
360 |
+
1
|
361 |
+
1
|
362 |
+
1
|
363 |
+
1
|
364 |
+
1
|
365 |
+
1
|
366 |
+
1
|
367 |
+
1
|
368 |
+
1
|
369 |
+
1
|
370 |
+
1
|
371 |
+
1
|
372 |
+
1
|
373 |
+
1
|
374 |
+
1
|
375 |
+
1
|
376 |
+
1
|
377 |
+
1
|
378 |
+
1
|
379 |
+
1
|
380 |
+
1
|
381 |
+
1
|
382 |
+
1
|
383 |
+
1
|
384 |
+
1
|
385 |
+
1
|
386 |
+
1
|
387 |
+
1
|
388 |
+
1
|
389 |
+
1
|
390 |
+
1
|
391 |
+
1
|
392 |
+
1
|
393 |
+
1
|
394 |
+
1
|
395 |
+
1
|
396 |
+
1
|
397 |
+
1
|
398 |
+
1
|
399 |
+
1
|
400 |
+
2
|
401 |
+
1
|
402 |
+
2
|
403 |
+
1
|
404 |
+
1
|
405 |
+
1
|
406 |
+
1
|
407 |
+
1
|
408 |
+
1
|
409 |
+
1
|
410 |
+
1
|
411 |
+
1
|
412 |
+
1
|
413 |
+
1
|
414 |
+
1
|
415 |
+
1
|
416 |
+
1
|
417 |
+
1
|
418 |
+
1
|
419 |
+
1
|
420 |
+
1
|
421 |
+
1
|
422 |
+
1
|
423 |
+
1
|
424 |
+
1
|
425 |
+
1
|
426 |
+
1
|
427 |
+
1
|
428 |
+
1
|
429 |
+
1
|
430 |
+
2
|
431 |
+
1
|
432 |
+
1
|
433 |
+
1
|
434 |
+
1
|
435 |
+
1
|
436 |
+
1
|
437 |
+
1
|
438 |
+
1
|
439 |
+
2
|
440 |
+
1
|
441 |
+
1
|
442 |
+
1
|
443 |
+
1
|
444 |
+
1
|
445 |
+
1
|
446 |
+
1
|
447 |
+
1
|
448 |
+
1
|
449 |
+
1
|
450 |
+
1
|
451 |
+
1
|
452 |
+
1
|
453 |
+
1
|
454 |
+
1
|
455 |
+
1
|
456 |
+
1
|
457 |
+
1
|
458 |
+
1
|
459 |
+
1
|
460 |
+
1
|
461 |
+
1
|
462 |
+
1
|
463 |
+
1
|
464 |
+
1
|
465 |
+
1
|
466 |
+
1
|
467 |
+
1
|
468 |
+
1
|
469 |
+
2
|
470 |
+
1
|
471 |
+
1
|
472 |
+
1
|
473 |
+
1
|
474 |
+
1
|
475 |
+
1
|
476 |
+
1
|
477 |
+
2
|
478 |
+
1
|
479 |
+
1
|
480 |
+
1
|
481 |
+
1
|
482 |
+
1
|
483 |
+
1
|
484 |
+
1
|
485 |
+
1
|
486 |
+
1
|
487 |
+
1
|
488 |
+
1
|
489 |
+
1
|
490 |
+
1
|
491 |
+
1
|
492 |
+
1
|
493 |
+
1
|
494 |
+
1
|
495 |
+
2
|
496 |
+
1
|
497 |
+
1
|
498 |
+
1
|
499 |
+
1
|
500 |
+
1
|
501 |
+
1
|
502 |
+
1
|
503 |
+
1
|
504 |
+
1
|
505 |
+
1
|
506 |
+
1
|
507 |
+
1
|
508 |
+
1
|
509 |
+
1
|
510 |
+
2
|
511 |
+
1
|
512 |
+
1
|
513 |
+
1
|
514 |
+
1
|
515 |
+
1
|
516 |
+
1
|
517 |
+
1
|
518 |
+
1
|
519 |
+
1
|
520 |
+
1
|
521 |
+
1
|
522 |
+
1
|
523 |
+
1
|
524 |
+
1
|
525 |
+
1
|
526 |
+
1
|
527 |
+
1
|
528 |
+
1
|
529 |
+
2
|
530 |
+
1
|
531 |
+
1
|
532 |
+
2
|
533 |
+
1
|
534 |
+
1
|
535 |
+
1
|
536 |
+
1
|
537 |
+
1
|
538 |
+
1
|
539 |
+
1
|
540 |
+
1
|
541 |
+
1
|
542 |
+
1
|
543 |
+
1
|
544 |
+
1
|
545 |
+
1
|
546 |
+
1
|
547 |
+
1
|
548 |
+
1
|
549 |
+
1
|
550 |
+
1
|
551 |
+
1
|
552 |
+
1
|
553 |
+
1
|
554 |
+
1
|
555 |
+
1
|
556 |
+
1
|
557 |
+
1
|
558 |
+
1
|
559 |
+
1
|
560 |
+
1
|
561 |
+
1
|
562 |
+
1
|
563 |
+
1
|
564 |
+
1
|
565 |
+
1
|
566 |
+
1
|
567 |
+
1
|
568 |
+
1
|
569 |
+
1
|
570 |
+
1
|
571 |
+
1
|
572 |
+
1
|
573 |
+
2
|
574 |
+
1
|
575 |
+
1
|
576 |
+
1
|
577 |
+
1
|
578 |
+
1
|
579 |
+
1
|
580 |
+
1
|
581 |
+
1
|
582 |
+
2
|
583 |
+
1
|
584 |
+
2
|
585 |
+
1
|
586 |
+
1
|
587 |
+
1
|
588 |
+
1
|
589 |
+
2
|
590 |
+
1
|
591 |
+
1
|
592 |
+
1
|
593 |
+
1
|
594 |
+
2
|
595 |
+
1
|
596 |
+
1
|
597 |
+
1
|
598 |
+
1
|
599 |
+
1
|
600 |
+
1
|
601 |
+
1
|
602 |
+
1
|
603 |
+
1
|
604 |
+
1
|
605 |
+
1
|
606 |
+
1
|
607 |
+
1
|
608 |
+
1
|
609 |
+
1
|
610 |
+
1
|
611 |
+
1
|
612 |
+
1
|
613 |
+
1
|
614 |
+
1
|
615 |
+
1
|
616 |
+
1
|
617 |
+
1
|
618 |
+
1
|
619 |
+
1
|
620 |
+
1
|
621 |
+
1
|
622 |
+
1
|
623 |
+
1
|
624 |
+
1
|
625 |
+
1
|
626 |
+
1
|
627 |
+
1
|
628 |
+
1
|
629 |
+
1
|
630 |
+
1
|
631 |
+
1
|
632 |
+
1
|
633 |
+
1
|
634 |
+
1
|
635 |
+
1
|
636 |
+
1
|
637 |
+
1
|
638 |
+
1
|
639 |
+
1
|
640 |
+
1
|
641 |
+
1
|
642 |
+
1
|
643 |
+
1
|
644 |
+
1
|
645 |
+
1
|
646 |
+
1
|
647 |
+
1
|
648 |
+
1
|
649 |
+
1
|
650 |
+
1
|
651 |
+
1
|
652 |
+
1
|
653 |
+
1
|
654 |
+
1
|
655 |
+
1
|
656 |
+
1
|
657 |
+
1
|
658 |
+
1
|
659 |
+
1
|
660 |
+
1
|
661 |
+
1
|
662 |
+
1
|
663 |
+
1
|
664 |
+
1
|
665 |
+
1
|
666 |
+
1
|
667 |
+
1
|
668 |
+
1
|
669 |
+
1
|
670 |
+
1
|
671 |
+
1
|
672 |
+
1
|
673 |
+
1
|
674 |
+
1
|
675 |
+
1
|
676 |
+
1
|
677 |
+
1
|
678 |
+
1
|
679 |
+
1
|
680 |
+
1
|
681 |
+
1
|
682 |
+
2
|
683 |
+
1
|
684 |
+
1
|
685 |
+
1
|
686 |
+
1
|
687 |
+
1
|
688 |
+
1
|
689 |
+
2
|
690 |
+
1
|
691 |
+
1
|
692 |
+
1
|
693 |
+
1
|
694 |
+
1
|
695 |
+
1
|
696 |
+
1
|
697 |
+
2
|
698 |
+
1
|
699 |
+
1
|
700 |
+
1
|
701 |
+
1
|
702 |
+
1
|
703 |
+
1
|
704 |
+
1
|
705 |
+
1
|
706 |
+
1
|
707 |
+
1
|
708 |
+
1
|
709 |
+
1
|
710 |
+
1
|
711 |
+
1
|
712 |
+
1
|
713 |
+
1
|
714 |
+
1
|
715 |
+
2
|
716 |
+
1
|
717 |
+
1
|
718 |
+
1
|
719 |
+
1
|
720 |
+
1
|
721 |
+
1
|
722 |
+
1
|
723 |
+
1
|
724 |
+
1
|
725 |
+
1
|
726 |
+
1
|
727 |
+
1
|
728 |
+
1
|
729 |
+
1
|
730 |
+
1
|
731 |
+
1
|
732 |
+
1
|
733 |
+
1
|
734 |
+
1
|
735 |
+
1
|
736 |
+
1
|
737 |
+
1
|
738 |
+
1
|
739 |
+
1
|
740 |
+
1
|
741 |
+
1
|
742 |
+
1
|
743 |
+
1
|
744 |
+
1
|
745 |
+
1
|
746 |
+
1
|
747 |
+
1
|
748 |
+
1
|
749 |
+
1
|
750 |
+
1
|
751 |
+
1
|
752 |
+
1
|
753 |
+
1
|
754 |
+
1
|
755 |
+
1
|
756 |
+
1
|
757 |
+
1
|
758 |
+
1
|
759 |
+
1
|
760 |
+
1
|
761 |
+
1
|
762 |
+
1
|
763 |
+
1
|
764 |
+
1
|
765 |
+
1
|
766 |
+
1
|
767 |
+
1
|
768 |
+
2
|
769 |
+
1
|
770 |
+
1
|
771 |
+
1
|
772 |
+
1
|
773 |
+
1
|
774 |
+
1
|
775 |
+
1
|
776 |
+
1
|
777 |
+
1
|
778 |
+
1
|
779 |
+
1
|
780 |
+
1
|
781 |
+
1
|
782 |
+
1
|
783 |
+
1
|
784 |
+
1
|
785 |
+
1
|
786 |
+
1
|
787 |
+
2
|
788 |
+
1
|
789 |
+
1
|
790 |
+
1
|
791 |
+
1
|
792 |
+
1
|
793 |
+
1
|
794 |
+
1
|
795 |
+
1
|
796 |
+
1
|
797 |
+
1
|
798 |
+
1
|
799 |
+
1
|
800 |
+
1
|
801 |
+
1
|
802 |
+
1
|
803 |
+
1
|
804 |
+
1
|
805 |
+
1
|
806 |
+
1
|
807 |
+
1
|
808 |
+
1
|
809 |
+
1
|
810 |
+
1
|
811 |
+
2
|
812 |
+
1
|
813 |
+
1
|
814 |
+
1
|
815 |
+
1
|
816 |
+
1
|
817 |
+
1
|
818 |
+
1
|
819 |
+
1
|
820 |
+
1
|
821 |
+
1
|
822 |
+
1
|
823 |
+
1
|
824 |
+
1
|
825 |
+
1
|
826 |
+
2
|
827 |
+
1
|
828 |
+
1
|
829 |
+
1
|
830 |
+
1
|
831 |
+
1
|
832 |
+
1
|
833 |
+
1
|
834 |
+
1
|
835 |
+
1
|
836 |
+
1
|
837 |
+
2
|
838 |
+
1
|
839 |
+
1
|
840 |
+
1
|
841 |
+
1
|
842 |
+
2
|
843 |
+
1
|
844 |
+
1
|
845 |
+
1
|
846 |
+
1
|
847 |
+
1
|
848 |
+
1
|
849 |
+
1
|
850 |
+
1
|
851 |
+
1
|
852 |
+
1
|
853 |
+
1
|
854 |
+
1
|
855 |
+
1
|
856 |
+
1
|
857 |
+
1
|
858 |
+
1
|
859 |
+
1
|
860 |
+
1
|
861 |
+
1
|
862 |
+
1
|
863 |
+
1
|
864 |
+
1
|
865 |
+
1
|
866 |
+
1
|
867 |
+
1
|
868 |
+
1
|
869 |
+
1
|
870 |
+
1
|
871 |
+
1
|
872 |
+
1
|
873 |
+
1
|
874 |
+
1
|
875 |
+
1
|
876 |
+
1
|
877 |
+
1
|
878 |
+
1
|
879 |
+
1
|
880 |
+
1
|
881 |
+
1
|
882 |
+
1
|
883 |
+
1
|
884 |
+
2
|
885 |
+
1
|
886 |
+
1
|
887 |
+
1
|
888 |
+
1
|
889 |
+
1
|
890 |
+
1
|
891 |
+
1
|
892 |
+
1
|
893 |
+
1
|
894 |
+
1
|
895 |
+
1
|
896 |
+
1
|
897 |
+
1
|
898 |
+
1
|
899 |
+
1
|
900 |
+
1
|
901 |
+
1
|
902 |
+
1
|
903 |
+
1
|
904 |
+
1
|
905 |
+
1
|
906 |
+
1
|
907 |
+
1
|
908 |
+
1
|
909 |
+
1
|
910 |
+
1
|
911 |
+
1
|
912 |
+
1
|
913 |
+
1
|
914 |
+
1
|
915 |
+
1
|
916 |
+
1
|
917 |
+
1
|
918 |
+
2
|
919 |
+
1
|
920 |
+
1
|
921 |
+
1
|
922 |
+
1
|
923 |
+
1
|
924 |
+
1
|
925 |
+
1
|
926 |
+
1
|
927 |
+
1
|
928 |
+
1
|
929 |
+
1
|
930 |
+
1
|
931 |
+
1
|
932 |
+
1
|
933 |
+
1
|
934 |
+
1
|
935 |
+
1
|
936 |
+
1
|
937 |
+
1
|
938 |
+
2
|
939 |
+
1
|
940 |
+
1
|
941 |
+
1
|
942 |
+
1
|
943 |
+
2
|
944 |
+
1
|
945 |
+
1
|
946 |
+
1
|
947 |
+
1
|
948 |
+
1
|
949 |
+
1
|
950 |
+
1
|
951 |
+
1
|
952 |
+
1
|
953 |
+
1
|
954 |
+
1
|
955 |
+
1
|
956 |
+
1
|
957 |
+
1
|
958 |
+
1
|
959 |
+
1
|
960 |
+
1
|
961 |
+
1
|
962 |
+
1
|
963 |
+
1
|
964 |
+
1
|
965 |
+
1
|
966 |
+
1
|
967 |
+
1
|
968 |
+
1
|
969 |
+
1
|
970 |
+
1
|
971 |
+
2
|
972 |
+
1
|
973 |
+
1
|
974 |
+
1
|
975 |
+
2
|
976 |
+
1
|
977 |
+
1
|
978 |
+
1
|
979 |
+
1
|
980 |
+
1
|
981 |
+
2
|
982 |
+
1
|
983 |
+
1
|
984 |
+
1
|
985 |
+
1
|
986 |
+
1
|
987 |
+
1
|
988 |
+
1
|
989 |
+
1
|
990 |
+
1
|
991 |
+
1
|
992 |
+
1
|
993 |
+
1
|
994 |
+
1
|
995 |
+
1
|
996 |
+
1
|
997 |
+
1
|
998 |
+
1
|
999 |
+
1
|
1000 |
+
1
|
1001 |
+
1
|
1002 |
+
1
|
1003 |
+
1
|
1004 |
+
1
|
1005 |
+
1
|
1006 |
+
1
|
1007 |
+
1
|
1008 |
+
1
|
1009 |
+
1
|
1010 |
+
1
|
1011 |
+
1
|
1012 |
+
1
|
1013 |
+
1
|
1014 |
+
1
|
1015 |
+
1
|
1016 |
+
1
|
1017 |
+
2
|
1018 |
+
1
|
1019 |
+
1
|
1020 |
+
1
|
1021 |
+
1
|
1022 |
+
1
|
1023 |
+
1
|
1024 |
+
1
|
1025 |
+
1
|
1026 |
+
1
|
1027 |
+
1
|
1028 |
+
1
|
1029 |
+
1
|
1030 |
+
1
|
1031 |
+
1
|
1032 |
+
1
|
1033 |
+
1
|
1034 |
+
1
|
1035 |
+
1
|
1036 |
+
1
|
1037 |
+
1
|
1038 |
+
1
|
1039 |
+
1
|
1040 |
+
1
|
1041 |
+
1
|
1042 |
+
1
|
1043 |
+
1
|
1044 |
+
2
|
1045 |
+
1
|
1046 |
+
1
|
1047 |
+
1
|
1048 |
+
1
|
1049 |
+
1
|
1050 |
+
1
|
1051 |
+
1
|
1052 |
+
1
|
1053 |
+
1
|
1054 |
+
1
|
1055 |
+
1
|
1056 |
+
1
|
1057 |
+
1
|
1058 |
+
1
|
1059 |
+
1
|
1060 |
+
1
|
1061 |
+
1
|
1062 |
+
1
|
1063 |
+
1
|
1064 |
+
1
|
1065 |
+
2
|
1066 |
+
1
|
1067 |
+
1
|
1068 |
+
1
|
1069 |
+
1
|
1070 |
+
1
|
1071 |
+
1
|
1072 |
+
1
|
1073 |
+
1
|
1074 |
+
1
|
1075 |
+
1
|
1076 |
+
1
|
1077 |
+
1
|
1078 |
+
1
|
1079 |
+
1
|
1080 |
+
1
|
1081 |
+
1
|
1082 |
+
1
|
1083 |
+
1
|
1084 |
+
1
|
1085 |
+
1
|
1086 |
+
1
|
1087 |
+
1
|
1088 |
+
1
|
1089 |
+
1
|
1090 |
+
1
|
1091 |
+
1
|
1092 |
+
1
|
1093 |
+
1
|
1094 |
+
1
|
1095 |
+
1
|
1096 |
+
1
|
1097 |
+
1
|
1098 |
+
1
|
1099 |
+
1
|
1100 |
+
1
|
1101 |
+
1
|
1102 |
+
1
|
1103 |
+
1
|
1104 |
+
1
|
1105 |
+
1
|
1106 |
+
1
|
1107 |
+
1
|
1108 |
+
1
|
1109 |
+
1
|
1110 |
+
1
|
1111 |
+
1
|
1112 |
+
1
|
1113 |
+
1
|
1114 |
+
1
|
1115 |
+
1
|
1116 |
+
1
|
1117 |
+
1
|
1118 |
+
1
|
1119 |
+
2
|
1120 |
+
1
|
1121 |
+
1
|
1122 |
+
2
|
1123 |
+
1
|
1124 |
+
1
|
1125 |
+
1
|
1126 |
+
1
|
1127 |
+
1
|
1128 |
+
1
|
1129 |
+
1
|
1130 |
+
1
|
1131 |
+
1
|
1132 |
+
1
|
1133 |
+
1
|
1134 |
+
2
|
1135 |
+
1
|
1136 |
+
1
|
1137 |
+
1
|
1138 |
+
1
|
1139 |
+
1
|
1140 |
+
1
|
1141 |
+
1
|
1142 |
+
1
|
1143 |
+
1
|
1144 |
+
1
|
1145 |
+
1
|
1146 |
+
1
|
1147 |
+
1
|
1148 |
+
1
|
1149 |
+
1
|
1150 |
+
1
|
1151 |
+
1
|
1152 |
+
1
|
1153 |
+
1
|
1154 |
+
2
|
1155 |
+
1
|
1156 |
+
2
|
1157 |
+
1
|
1158 |
+
1
|
1159 |
+
2
|
1160 |
+
2
|
1161 |
+
1
|
1162 |
+
1
|
1163 |
+
1
|
1164 |
+
1
|
1165 |
+
1
|
1166 |
+
1
|
1167 |
+
1
|
1168 |
+
1
|
1169 |
+
1
|
1170 |
+
1
|
1171 |
+
1
|
1172 |
+
1
|
1173 |
+
1
|
1174 |
+
2
|
1175 |
+
1
|
1176 |
+
1
|
1177 |
+
1
|
1178 |
+
1
|
1179 |
+
1
|
1180 |
+
1
|
1181 |
+
1
|
1182 |
+
1
|
1183 |
+
1
|
1184 |
+
1
|
1185 |
+
1
|
1186 |
+
1
|
1187 |
+
1
|
1188 |
+
2
|
1189 |
+
1
|
1190 |
+
1
|
1191 |
+
1
|
1192 |
+
1
|
1193 |
+
1
|
1194 |
+
1
|
1195 |
+
1
|
1196 |
+
1
|
1197 |
+
1
|
1198 |
+
1
|
1199 |
+
1
|
1200 |
+
1
|
1201 |
+
1
|
1202 |
+
1
|
1203 |
+
1
|
1204 |
+
1
|
1205 |
+
1
|
1206 |
+
1
|
1207 |
+
1
|
1208 |
+
1
|
1209 |
+
1
|
1210 |
+
1
|
1211 |
+
1
|
1212 |
+
1
|
1213 |
+
1
|
1214 |
+
1
|
1215 |
+
1
|
1216 |
+
1
|
1217 |
+
1
|
1218 |
+
1
|
1219 |
+
1
|
1220 |
+
2
|
1221 |
+
1
|
1222 |
+
1
|
1223 |
+
1
|
1224 |
+
1
|
1225 |
+
1
|
1226 |
+
1
|
1227 |
+
1
|
1228 |
+
1
|
1229 |
+
1
|
1230 |
+
1
|
1231 |
+
1
|
1232 |
+
1
|
1233 |
+
1
|
1234 |
+
1
|
1235 |
+
1
|
1236 |
+
1
|
1237 |
+
1
|
1238 |
+
2
|
1239 |
+
2
|
1240 |
+
1
|
1241 |
+
1
|
1242 |
+
1
|
1243 |
+
1
|
1244 |
+
1
|
1245 |
+
1
|
1246 |
+
1
|
1247 |
+
1
|
1248 |
+
1
|
1249 |
+
1
|
1250 |
+
1
|
1251 |
+
1
|
1252 |
+
1
|
1253 |
+
1
|
1254 |
+
1
|
1255 |
+
1
|
1256 |
+
1
|
1257 |
+
1
|
1258 |
+
1
|
1259 |
+
1
|
1260 |
+
2
|
1261 |
+
1
|
1262 |
+
1
|
1263 |
+
1
|
1264 |
+
1
|
1265 |
+
1
|
1266 |
+
1
|
1267 |
+
2
|
1268 |
+
1
|
1269 |
+
1
|
1270 |
+
1
|
1271 |
+
1
|
1272 |
+
1
|
1273 |
+
1
|
1274 |
+
1
|
1275 |
+
1
|
1276 |
+
1
|
1277 |
+
1
|
1278 |
+
1
|
1279 |
+
2
|
1280 |
+
1
|
1281 |
+
1
|
1282 |
+
1
|
1283 |
+
1
|
1284 |
+
1
|
1285 |
+
1
|
1286 |
+
1
|
1287 |
+
1
|
1288 |
+
1
|
1289 |
+
1
|
1290 |
+
1
|
1291 |
+
1
|
1292 |
+
1
|
1293 |
+
1
|
1294 |
+
1
|
1295 |
+
1
|
1296 |
+
1
|
1297 |
+
2
|
1298 |
+
1
|
1299 |
+
1
|
1300 |
+
1
|
1301 |
+
1
|
1302 |
+
1
|
1303 |
+
1
|
1304 |
+
1
|
1305 |
+
1
|
1306 |
+
1
|
1307 |
+
1
|
1308 |
+
1
|
1309 |
+
1
|
1310 |
+
1
|
1311 |
+
1
|
1312 |
+
1
|
1313 |
+
1
|
1314 |
+
1
|
1315 |
+
1
|
1316 |
+
1
|
1317 |
+
1
|
1318 |
+
1
|
1319 |
+
1
|
1320 |
+
1
|
1321 |
+
1
|
1322 |
+
1
|
1323 |
+
1
|
1324 |
+
1
|
1325 |
+
1
|
1326 |
+
1
|
1327 |
+
1
|
1328 |
+
1
|
1329 |
+
1
|
1330 |
+
1
|
1331 |
+
1
|
1332 |
+
1
|
1333 |
+
1
|
1334 |
+
1
|
1335 |
+
1
|
1336 |
+
1
|
1337 |
+
1
|
1338 |
+
1
|
1339 |
+
1
|
1340 |
+
1
|
1341 |
+
1
|
1342 |
+
1
|
1343 |
+
1
|
1344 |
+
1
|
1345 |
+
1
|
1346 |
+
1
|
1347 |
+
1
|
1348 |
+
1
|
1349 |
+
1
|
1350 |
+
1
|
1351 |
+
1
|
1352 |
+
1
|
1353 |
+
1
|
1354 |
+
1
|
1355 |
+
2
|
1356 |
+
1
|
1357 |
+
1
|
1358 |
+
1
|
1359 |
+
1
|
1360 |
+
1
|
1361 |
+
1
|
1362 |
+
1
|
1363 |
+
1
|
1364 |
+
1
|
1365 |
+
1
|
1366 |
+
1
|
1367 |
+
1
|
1368 |
+
1
|
1369 |
+
1
|
1370 |
+
1
|
1371 |
+
1
|
1372 |
+
1
|
1373 |
+
1
|
1374 |
+
1
|
1375 |
+
1
|
1376 |
+
1
|
1377 |
+
1
|
1378 |
+
1
|
1379 |
+
2
|
1380 |
+
1
|
1381 |
+
1
|
1382 |
+
1
|
1383 |
+
1
|
1384 |
+
1
|
1385 |
+
1
|
1386 |
+
1
|
1387 |
+
1
|
1388 |
+
2
|
1389 |
+
1
|
1390 |
+
1
|
1391 |
+
1
|
1392 |
+
1
|
1393 |
+
1
|
1394 |
+
1
|
1395 |
+
1
|
1396 |
+
1
|
1397 |
+
1
|
1398 |
+
1
|
1399 |
+
1
|
1400 |
+
1
|
1401 |
+
1
|
1402 |
+
1
|
1403 |
+
1
|
1404 |
+
1
|
1405 |
+
1
|
1406 |
+
1
|
1407 |
+
1
|
1408 |
+
1
|
1409 |
+
1
|
1410 |
+
1
|
1411 |
+
1
|
1412 |
+
1
|
1413 |
+
1
|
1414 |
+
1
|
1415 |
+
1
|
1416 |
+
1
|
1417 |
+
1
|
1418 |
+
1
|
1419 |
+
1
|
1420 |
+
1
|
1421 |
+
1
|
1422 |
+
1
|
1423 |
+
1
|
1424 |
+
1
|
1425 |
+
1
|
1426 |
+
1
|
1427 |
+
1
|
1428 |
+
1
|
1429 |
+
1
|
1430 |
+
1
|
1431 |
+
1
|
1432 |
+
1
|
1433 |
+
1
|
1434 |
+
1
|
1435 |
+
1
|
1436 |
+
1
|
1437 |
+
1
|
1438 |
+
1
|
1439 |
+
1
|
1440 |
+
1
|
1441 |
+
1
|
1442 |
+
1
|
1443 |
+
1
|
1444 |
+
1
|
1445 |
+
1
|
1446 |
+
1
|
1447 |
+
1
|
1448 |
+
1
|
1449 |
+
1
|
1450 |
+
1
|
1451 |
+
1
|
1452 |
+
1
|
1453 |
+
1
|
1454 |
+
1
|
1455 |
+
1
|
1456 |
+
1
|
1457 |
+
1
|
1458 |
+
1
|
1459 |
+
1
|
1460 |
+
1
|
1461 |
+
1
|
1462 |
+
1
|
1463 |
+
1
|
1464 |
+
1
|
1465 |
+
1
|
1466 |
+
1
|
1467 |
+
1
|
1468 |
+
1
|
1469 |
+
1
|
1470 |
+
1
|
1471 |
+
1
|
1472 |
+
1
|
1473 |
+
1
|
1474 |
+
1
|
1475 |
+
1
|
1476 |
+
1
|
1477 |
+
1
|
1478 |
+
1
|
1479 |
+
1
|
1480 |
+
1
|
1481 |
+
1
|
1482 |
+
1
|
1483 |
+
1
|
1484 |
+
1
|
1485 |
+
1
|
1486 |
+
1
|
1487 |
+
1
|
1488 |
+
1
|
1489 |
+
1
|
1490 |
+
1
|
1491 |
+
1
|
1492 |
+
1
|
1493 |
+
1
|
1494 |
+
1
|
1495 |
+
2
|
1496 |
+
1
|
1497 |
+
1
|
1498 |
+
1
|
1499 |
+
1
|
1500 |
+
1
|
1501 |
+
1
|
1502 |
+
1
|
1503 |
+
1
|
1504 |
+
1
|
1505 |
+
1
|
1506 |
+
1
|
1507 |
+
1
|
1508 |
+
1
|
1509 |
+
2
|
1510 |
+
1
|
1511 |
+
1
|
1512 |
+
1
|
1513 |
+
1
|
1514 |
+
1
|
1515 |
+
1
|
1516 |
+
1
|
1517 |
+
1
|
1518 |
+
1
|
1519 |
+
2
|
1520 |
+
1
|
1521 |
+
1
|
1522 |
+
1
|
1523 |
+
1
|
1524 |
+
1
|
1525 |
+
1
|
1526 |
+
1
|
1527 |
+
1
|
1528 |
+
1
|
1529 |
+
1
|
1530 |
+
1
|
1531 |
+
1
|
1532 |
+
1
|
1533 |
+
1
|
1534 |
+
1
|
1535 |
+
1
|
1536 |
+
1
|
1537 |
+
1
|
1538 |
+
1
|
1539 |
+
1
|
1540 |
+
1
|
1541 |
+
1
|
1542 |
+
1
|
1543 |
+
1
|
1544 |
+
1
|
1545 |
+
1
|
1546 |
+
1
|
1547 |
+
1
|
1548 |
+
1
|
1549 |
+
1
|
1550 |
+
1
|
1551 |
+
1
|
1552 |
+
1
|
1553 |
+
1
|
1554 |
+
1
|
1555 |
+
1
|
1556 |
+
1
|
1557 |
+
1
|
1558 |
+
1
|
1559 |
+
1
|
1560 |
+
1
|
1561 |
+
1
|
1562 |
+
1
|
1563 |
+
1
|
1564 |
+
1
|
1565 |
+
1
|
1566 |
+
1
|
1567 |
+
1
|
1568 |
+
1
|
1569 |
+
1
|
1570 |
+
1
|
1571 |
+
1
|
1572 |
+
1
|
1573 |
+
1
|
1574 |
+
1
|
1575 |
+
2
|
1576 |
+
1
|
1577 |
+
1
|
1578 |
+
1
|
1579 |
+
1
|
1580 |
+
1
|
1581 |
+
1
|
1582 |
+
1
|
1583 |
+
1
|
1584 |
+
1
|
1585 |
+
1
|
1586 |
+
1
|
1587 |
+
1
|
1588 |
+
1
|
1589 |
+
1
|
1590 |
+
1
|
1591 |
+
1
|
1592 |
+
1
|
1593 |
+
1
|
1594 |
+
1
|
1595 |
+
1
|
1596 |
+
1
|
1597 |
+
1
|
1598 |
+
1
|
1599 |
+
1
|
1600 |
+
1
|
1601 |
+
1
|
1602 |
+
2
|
1603 |
+
1
|
1604 |
+
1
|
1605 |
+
1
|
1606 |
+
1
|
1607 |
+
1
|
1608 |
+
1
|
1609 |
+
1
|
1610 |
+
1
|
1611 |
+
1
|
1612 |
+
1
|
1613 |
+
1
|
1614 |
+
1
|
1615 |
+
2
|
1616 |
+
1
|
1617 |
+
1
|
1618 |
+
1
|
1619 |
+
1
|
1620 |
+
1
|
1621 |
+
1
|
1622 |
+
1
|
1623 |
+
1
|
1624 |
+
1
|
1625 |
+
1
|
1626 |
+
1
|
1627 |
+
1
|
1628 |
+
1
|
1629 |
+
1
|
1630 |
+
1
|
1631 |
+
1
|
1632 |
+
1
|
1633 |
+
1
|
1634 |
+
1
|
1635 |
+
1
|
1636 |
+
1
|
1637 |
+
1
|
1638 |
+
1
|
1639 |
+
1
|
1640 |
+
1
|
1641 |
+
1
|
1642 |
+
1
|
1643 |
+
1
|
1644 |
+
1
|
1645 |
+
1
|
1646 |
+
1
|
1647 |
+
1
|
1648 |
+
1
|
1649 |
+
1
|
1650 |
+
1
|
1651 |
+
1
|
1652 |
+
1
|
1653 |
+
1
|
1654 |
+
1
|
1655 |
+
1
|
1656 |
+
1
|
1657 |
+
1
|
1658 |
+
1
|
1659 |
+
1
|
1660 |
+
1
|
1661 |
+
1
|
1662 |
+
1
|
1663 |
+
1
|
1664 |
+
1
|
1665 |
+
1
|
1666 |
+
1
|
1667 |
+
1
|
1668 |
+
1
|
1669 |
+
2
|
1670 |
+
1
|
1671 |
+
1
|
1672 |
+
1
|
1673 |
+
1
|
1674 |
+
2
|
1675 |
+
1
|
1676 |
+
1
|
1677 |
+
1
|
1678 |
+
1
|
1679 |
+
1
|
1680 |
+
1
|
1681 |
+
1
|
1682 |
+
1
|
1683 |
+
1
|
1684 |
+
1
|
1685 |
+
1
|
1686 |
+
1
|
1687 |
+
1
|
1688 |
+
1
|
1689 |
+
1
|
1690 |
+
1
|
1691 |
+
1
|
1692 |
+
1
|
1693 |
+
1
|
1694 |
+
1
|
1695 |
+
1
|
1696 |
+
1
|
1697 |
+
1
|
1698 |
+
1
|
1699 |
+
1
|
1700 |
+
2
|
1701 |
+
1
|
1702 |
+
1
|
1703 |
+
1
|
1704 |
+
1
|
1705 |
+
1
|
1706 |
+
1
|
1707 |
+
1
|
1708 |
+
1
|
1709 |
+
1
|
1710 |
+
1
|
1711 |
+
1
|
1712 |
+
1
|
1713 |
+
2
|
1714 |
+
1
|
1715 |
+
2
|
1716 |
+
1
|
1717 |
+
1
|
1718 |
+
1
|
1719 |
+
1
|
1720 |
+
1
|
1721 |
+
1
|
1722 |
+
1
|
1723 |
+
1
|
1724 |
+
1
|
1725 |
+
1
|
1726 |
+
1
|
1727 |
+
1
|
1728 |
+
1
|
1729 |
+
1
|
1730 |
+
1
|
1731 |
+
1
|
1732 |
+
1
|
1733 |
+
1
|
1734 |
+
1
|
1735 |
+
1
|
1736 |
+
1
|
1737 |
+
1
|
1738 |
+
2
|
1739 |
+
1
|
1740 |
+
1
|
1741 |
+
1
|
1742 |
+
1
|
1743 |
+
1
|
1744 |
+
1
|
1745 |
+
1
|
1746 |
+
1
|
1747 |
+
1
|
1748 |
+
1
|
1749 |
+
1
|
1750 |
+
1
|
1751 |
+
1
|
1752 |
+
1
|
1753 |
+
1
|
1754 |
+
1
|
1755 |
+
1
|
1756 |
+
1
|
1757 |
+
1
|
1758 |
+
1
|
1759 |
+
1
|
1760 |
+
1
|
1761 |
+
1
|
1762 |
+
1
|
1763 |
+
1
|
1764 |
+
1
|
1765 |
+
1
|
1766 |
+
1
|
1767 |
+
1
|
1768 |
+
1
|
1769 |
+
1
|
1770 |
+
1
|
1771 |
+
1
|
1772 |
+
1
|
1773 |
+
1
|
1774 |
+
1
|
1775 |
+
1
|
1776 |
+
1
|
1777 |
+
1
|
1778 |
+
1
|
1779 |
+
1
|
1780 |
+
1
|
1781 |
+
1
|
1782 |
+
1
|
1783 |
+
1
|
1784 |
+
1
|
1785 |
+
1
|
1786 |
+
1
|
1787 |
+
1
|
1788 |
+
1
|
1789 |
+
1
|
1790 |
+
1
|
1791 |
+
1
|
1792 |
+
1
|
1793 |
+
1
|
1794 |
+
1
|
1795 |
+
1
|
1796 |
+
1
|
1797 |
+
1
|
1798 |
+
1
|
1799 |
+
1
|
1800 |
+
1
|
1801 |
+
1
|
1802 |
+
1
|
1803 |
+
1
|
1804 |
+
1
|
1805 |
+
1
|
1806 |
+
1
|
1807 |
+
1
|
1808 |
+
1
|
1809 |
+
1
|
1810 |
+
1
|
1811 |
+
1
|
1812 |
+
1
|
1813 |
+
1
|
1814 |
+
1
|
1815 |
+
1
|
1816 |
+
1
|
1817 |
+
1
|
1818 |
+
1
|
1819 |
+
1
|
1820 |
+
1
|
1821 |
+
1
|
1822 |
+
1
|
1823 |
+
1
|
1824 |
+
1
|
1825 |
+
1
|
1826 |
+
1
|
1827 |
+
1
|
1828 |
+
1
|
1829 |
+
1
|
1830 |
+
1
|
1831 |
+
1
|
1832 |
+
1
|
1833 |
+
1
|
1834 |
+
1
|
1835 |
+
1
|
1836 |
+
1
|
1837 |
+
1
|
1838 |
+
1
|
1839 |
+
1
|
1840 |
+
1
|
1841 |
+
1
|
1842 |
+
2
|
1843 |
+
1
|
1844 |
+
1
|
1845 |
+
1
|
1846 |
+
1
|
1847 |
+
1
|
1848 |
+
1
|
1849 |
+
1
|
1850 |
+
1
|
1851 |
+
1
|
1852 |
+
1
|
1853 |
+
1
|
1854 |
+
1
|
1855 |
+
1
|
1856 |
+
1
|
1857 |
+
1
|
1858 |
+
1
|
1859 |
+
1
|
1860 |
+
1
|
1861 |
+
1
|
1862 |
+
1
|
1863 |
+
1
|
1864 |
+
1
|
1865 |
+
1
|
1866 |
+
1
|
1867 |
+
1
|
1868 |
+
1
|
1869 |
+
1
|
1870 |
+
1
|
1871 |
+
1
|
1872 |
+
1
|
1873 |
+
2
|
1874 |
+
1
|
1875 |
+
1
|
1876 |
+
1
|
1877 |
+
1
|
1878 |
+
1
|
1879 |
+
1
|
1880 |
+
2
|
1881 |
+
1
|
1882 |
+
1
|
1883 |
+
1
|
1884 |
+
1
|
1885 |
+
1
|
1886 |
+
1
|
1887 |
+
1
|
1888 |
+
1
|
1889 |
+
1
|
1890 |
+
1
|
1891 |
+
1
|
1892 |
+
1
|
1893 |
+
1
|
1894 |
+
1
|
1895 |
+
1
|
1896 |
+
1
|
1897 |
+
1
|
1898 |
+
1
|
1899 |
+
1
|
1900 |
+
1
|
1901 |
+
1
|
1902 |
+
2
|
1903 |
+
1
|
1904 |
+
1
|
1905 |
+
1
|
1906 |
+
1
|
1907 |
+
1
|
1908 |
+
1
|
1909 |
+
1
|
1910 |
+
1
|
1911 |
+
1
|
1912 |
+
1
|
1913 |
+
1
|
1914 |
+
1
|
1915 |
+
1
|
1916 |
+
1
|
1917 |
+
1
|
1918 |
+
1
|
1919 |
+
1
|
1920 |
+
1
|
1921 |
+
1
|
1922 |
+
2
|
1923 |
+
1
|
1924 |
+
1
|
1925 |
+
1
|
1926 |
+
1
|
1927 |
+
1
|
1928 |
+
1
|
1929 |
+
1
|
1930 |
+
1
|
1931 |
+
1
|
1932 |
+
1
|
1933 |
+
1
|
1934 |
+
1
|
1935 |
+
2
|
1936 |
+
1
|
1937 |
+
1
|
1938 |
+
1
|
1939 |
+
1
|
1940 |
+
1
|
1941 |
+
1
|
1942 |
+
1
|
1943 |
+
1
|
1944 |
+
1
|
1945 |
+
1
|
1946 |
+
1
|
1947 |
+
1
|
1948 |
+
1
|
1949 |
+
1
|
1950 |
+
1
|
1951 |
+
1
|
1952 |
+
1
|
1953 |
+
1
|
1954 |
+
1
|
1955 |
+
1
|
1956 |
+
1
|
1957 |
+
1
|
1958 |
+
1
|
1959 |
+
1
|
1960 |
+
1
|
1961 |
+
1
|
1962 |
+
2
|
1963 |
+
1
|
1964 |
+
1
|
1965 |
+
1
|
1966 |
+
1
|
1967 |
+
1
|
1968 |
+
2
|
1969 |
+
1
|
1970 |
+
1
|
1971 |
+
1
|
1972 |
+
1
|
1973 |
+
1
|
1974 |
+
1
|
1975 |
+
1
|
1976 |
+
1
|
1977 |
+
1
|
1978 |
+
1
|
1979 |
+
2
|
1980 |
+
1
|
1981 |
+
1
|
1982 |
+
1
|
1983 |
+
1
|
1984 |
+
1
|
1985 |
+
1
|
1986 |
+
1
|
1987 |
+
1
|
1988 |
+
1
|
1989 |
+
1
|
1990 |
+
1
|
1991 |
+
1
|
1992 |
+
1
|
1993 |
+
1
|
1994 |
+
1
|
1995 |
+
1
|
1996 |
+
1
|
1997 |
+
1
|
1998 |
+
1
|
1999 |
+
1
|
2000 |
+
1
|
2001 |
+
1
|
2002 |
+
1
|
2003 |
+
1
|
2004 |
+
1
|
2005 |
+
1
|
2006 |
+
1
|
2007 |
+
1
|
2008 |
+
1
|
2009 |
+
1
|
2010 |
+
1
|
2011 |
+
1
|
2012 |
+
1
|
2013 |
+
1
|
2014 |
+
1
|
2015 |
+
1
|
2016 |
+
1
|
2017 |
+
1
|
2018 |
+
1
|
2019 |
+
2
|
2020 |
+
1
|
2021 |
+
1
|
2022 |
+
1
|
2023 |
+
1
|
2024 |
+
1
|
2025 |
+
1
|
2026 |
+
1
|
2027 |
+
1
|
2028 |
+
1
|
2029 |
+
1
|
2030 |
+
1
|
2031 |
+
2
|
2032 |
+
1
|
2033 |
+
1
|
2034 |
+
1
|
2035 |
+
1
|
2036 |
+
1
|
2037 |
+
1
|
2038 |
+
1
|
2039 |
+
1
|
2040 |
+
2
|
2041 |
+
1
|
2042 |
+
1
|
2043 |
+
1
|
2044 |
+
2
|
2045 |
+
1
|
2046 |
+
1
|
2047 |
+
1
|
2048 |
+
1
|
2049 |
+
1
|
2050 |
+
1
|
2051 |
+
1
|
2052 |
+
1
|
2053 |
+
1
|
2054 |
+
1
|
2055 |
+
1
|
2056 |
+
1
|
2057 |
+
1
|
2058 |
+
1
|
2059 |
+
1
|
2060 |
+
1
|
2061 |
+
1
|
2062 |
+
2
|
2063 |
+
1
|
2064 |
+
1
|
2065 |
+
1
|
2066 |
+
1
|
2067 |
+
1
|
2068 |
+
1
|
2069 |
+
1
|
2070 |
+
1
|
2071 |
+
1
|
2072 |
+
1
|
2073 |
+
1
|
2074 |
+
1
|
2075 |
+
1
|
2076 |
+
1
|
2077 |
+
1
|
2078 |
+
1
|
2079 |
+
1
|
2080 |
+
1
|
2081 |
+
1
|
2082 |
+
1
|
2083 |
+
1
|
2084 |
+
1
|
2085 |
+
1
|
2086 |
+
1
|
2087 |
+
1
|
2088 |
+
1
|
2089 |
+
1
|
2090 |
+
1
|
2091 |
+
1
|
2092 |
+
1
|
2093 |
+
1
|
2094 |
+
1
|
2095 |
+
1
|
2096 |
+
1
|
2097 |
+
1
|
2098 |
+
1
|
2099 |
+
1
|
2100 |
+
1
|
2101 |
+
1
|
2102 |
+
1
|
2103 |
+
1
|
2104 |
+
1
|
2105 |
+
1
|
2106 |
+
1
|
2107 |
+
1
|
2108 |
+
1
|
2109 |
+
1
|
2110 |
+
1
|
2111 |
+
1
|
2112 |
+
1
|
2113 |
+
1
|
2114 |
+
2
|
2115 |
+
1
|
2116 |
+
1
|
2117 |
+
1
|
2118 |
+
1
|
2119 |
+
1
|
2120 |
+
1
|
2121 |
+
1
|
2122 |
+
1
|
2123 |
+
1
|
2124 |
+
1
|
2125 |
+
1
|
2126 |
+
1
|
2127 |
+
1
|
2128 |
+
1
|
2129 |
+
1
|
2130 |
+
1
|
2131 |
+
1
|
2132 |
+
1
|
2133 |
+
1
|
2134 |
+
1
|
2135 |
+
1
|
2136 |
+
1
|
2137 |
+
1
|
2138 |
+
1
|
2139 |
+
1
|
2140 |
+
1
|
2141 |
+
1
|
2142 |
+
1
|
2143 |
+
1
|
2144 |
+
1
|
2145 |
+
1
|
2146 |
+
1
|
2147 |
+
1
|
2148 |
+
1
|
2149 |
+
1
|
2150 |
+
1
|
2151 |
+
1
|
2152 |
+
1
|
2153 |
+
1
|
2154 |
+
1
|
2155 |
+
1
|
2156 |
+
1
|
2157 |
+
1
|
2158 |
+
1
|
2159 |
+
1
|
2160 |
+
1
|
2161 |
+
1
|
2162 |
+
1
|
2163 |
+
1
|
2164 |
+
1
|
2165 |
+
1
|
2166 |
+
1
|
2167 |
+
1
|
2168 |
+
1
|
2169 |
+
1
|
2170 |
+
1
|
2171 |
+
1
|
2172 |
+
1
|
2173 |
+
1
|
2174 |
+
1
|
2175 |
+
1
|
2176 |
+
1
|
2177 |
+
1
|
2178 |
+
1
|
2179 |
+
1
|
2180 |
+
1
|
2181 |
+
1
|
2182 |
+
1
|
2183 |
+
1
|
2184 |
+
1
|
2185 |
+
1
|
2186 |
+
1
|
2187 |
+
1
|
2188 |
+
1
|
2189 |
+
1
|
2190 |
+
1
|
2191 |
+
1
|
2192 |
+
1
|
2193 |
+
1
|
2194 |
+
1
|
2195 |
+
1
|
2196 |
+
1
|
2197 |
+
1
|
2198 |
+
1
|
2199 |
+
1
|
2200 |
+
1
|
2201 |
+
1
|
2202 |
+
1
|
2203 |
+
1
|
2204 |
+
1
|
2205 |
+
2
|
2206 |
+
1
|
2207 |
+
1
|
2208 |
+
1
|
2209 |
+
1
|
2210 |
+
1
|
2211 |
+
1
|
2212 |
+
1
|
2213 |
+
1
|
2214 |
+
1
|
2215 |
+
1
|
2216 |
+
1
|
2217 |
+
2
|
2218 |
+
1
|
2219 |
+
1
|
2220 |
+
1
|
2221 |
+
1
|
2222 |
+
1
|
2223 |
+
1
|
2224 |
+
1
|
2225 |
+
1
|
2226 |
+
1
|
2227 |
+
1
|
2228 |
+
1
|
2229 |
+
1
|
2230 |
+
1
|
2231 |
+
1
|
2232 |
+
1
|
2233 |
+
1
|
2234 |
+
1
|
2235 |
+
1
|
2236 |
+
1
|
2237 |
+
2
|
2238 |
+
1
|
2239 |
+
1
|
2240 |
+
1
|
2241 |
+
1
|
2242 |
+
1
|
2243 |
+
1
|
2244 |
+
1
|
2245 |
+
1
|
2246 |
+
1
|
2247 |
+
1
|
2248 |
+
1
|
2249 |
+
1
|
2250 |
+
1
|
2251 |
+
2
|
2252 |
+
1
|
2253 |
+
1
|
2254 |
+
1
|
2255 |
+
1
|
2256 |
+
1
|
2257 |
+
1
|
2258 |
+
1
|
2259 |
+
1
|
2260 |
+
1
|
2261 |
+
1
|
2262 |
+
1
|
2263 |
+
1
|
2264 |
+
1
|
2265 |
+
1
|
2266 |
+
1
|
2267 |
+
1
|
2268 |
+
1
|
2269 |
+
1
|
2270 |
+
1
|
2271 |
+
1
|
2272 |
+
1
|
2273 |
+
1
|
2274 |
+
1
|
2275 |
+
2
|
2276 |
+
1
|
2277 |
+
1
|
2278 |
+
1
|
2279 |
+
1
|
2280 |
+
1
|
2281 |
+
1
|
2282 |
+
1
|
2283 |
+
1
|
2284 |
+
1
|
2285 |
+
1
|
2286 |
+
1
|
2287 |
+
1
|
2288 |
+
1
|
2289 |
+
1
|
2290 |
+
1
|
2291 |
+
1
|
2292 |
+
1
|
2293 |
+
2
|
2294 |
+
1
|
2295 |
+
1
|
2296 |
+
1
|
2297 |
+
1
|
2298 |
+
1
|
2299 |
+
1
|
2300 |
+
1
|
2301 |
+
1
|
2302 |
+
1
|
2303 |
+
1
|
2304 |
+
1
|
2305 |
+
1
|
2306 |
+
1
|
2307 |
+
1
|
2308 |
+
1
|
2309 |
+
1
|
2310 |
+
1
|
2311 |
+
2
|
2312 |
+
1
|
2313 |
+
1
|
2314 |
+
1
|
2315 |
+
1
|
2316 |
+
1
|
2317 |
+
1
|
2318 |
+
1
|
2319 |
+
1
|
2320 |
+
1
|
2321 |
+
1
|
2322 |
+
1
|
2323 |
+
1
|
2324 |
+
1
|
2325 |
+
1
|
2326 |
+
1
|
2327 |
+
1
|
2328 |
+
1
|
2329 |
+
1
|
2330 |
+
1
|
2331 |
+
1
|
2332 |
+
1
|
2333 |
+
1
|
2334 |
+
1
|
2335 |
+
1
|
2336 |
+
1
|
2337 |
+
1
|
2338 |
+
1
|
2339 |
+
1
|
2340 |
+
1
|
2341 |
+
1
|
2342 |
+
1
|
2343 |
+
2
|
2344 |
+
1
|
2345 |
+
1
|
2346 |
+
1
|
2347 |
+
1
|
2348 |
+
1
|
2349 |
+
1
|
2350 |
+
1
|
2351 |
+
1
|
2352 |
+
1
|
2353 |
+
1
|
2354 |
+
1
|
2355 |
+
1
|
2356 |
+
1
|
2357 |
+
1
|
2358 |
+
1
|
2359 |
+
1
|
2360 |
+
2
|
2361 |
+
1
|
2362 |
+
1
|
2363 |
+
1
|
2364 |
+
1
|
2365 |
+
1
|
2366 |
+
1
|
2367 |
+
1
|
2368 |
+
1
|
2369 |
+
1
|
2370 |
+
1
|
2371 |
+
1
|
2372 |
+
1
|
2373 |
+
1
|
2374 |
+
1
|
2375 |
+
2
|
2376 |
+
1
|
2377 |
+
1
|
2378 |
+
1
|
2379 |
+
1
|
2380 |
+
1
|
2381 |
+
1
|
2382 |
+
1
|
2383 |
+
2
|
2384 |
+
1
|
2385 |
+
1
|
2386 |
+
1
|
2387 |
+
1
|
2388 |
+
1
|
2389 |
+
1
|
2390 |
+
1
|
2391 |
+
1
|
2392 |
+
1
|
2393 |
+
1
|
2394 |
+
1
|
2395 |
+
1
|
2396 |
+
1
|
2397 |
+
1
|
2398 |
+
1
|
2399 |
+
1
|
2400 |
+
2
|
2401 |
+
1
|
2402 |
+
1
|
2403 |
+
1
|
2404 |
+
1
|
2405 |
+
1
|
2406 |
+
1
|
2407 |
+
1
|
2408 |
+
1
|
2409 |
+
1
|
2410 |
+
1
|
2411 |
+
1
|
2412 |
+
1
|
2413 |
+
1
|
2414 |
+
1
|
2415 |
+
1
|
2416 |
+
2
|
2417 |
+
1
|
2418 |
+
1
|
2419 |
+
1
|
2420 |
+
2
|
2421 |
+
1
|
2422 |
+
1
|
2423 |
+
1
|
2424 |
+
1
|
2425 |
+
1
|
2426 |
+
1
|
2427 |
+
1
|
2428 |
+
1
|
2429 |
+
1
|
2430 |
+
1
|
2431 |
+
1
|
2432 |
+
1
|
2433 |
+
1
|
2434 |
+
1
|
2435 |
+
1
|
2436 |
+
1
|
2437 |
+
1
|
2438 |
+
1
|
2439 |
+
1
|
2440 |
+
1
|
2441 |
+
1
|
2442 |
+
1
|
2443 |
+
1
|
2444 |
+
1
|
2445 |
+
1
|
2446 |
+
1
|
2447 |
+
1
|
2448 |
+
1
|
2449 |
+
1
|
2450 |
+
1
|
2451 |
+
1
|
2452 |
+
1
|
2453 |
+
1
|
2454 |
+
1
|
2455 |
+
1
|
2456 |
+
1
|
2457 |
+
1
|
2458 |
+
1
|
2459 |
+
1
|
2460 |
+
1
|
2461 |
+
1
|
2462 |
+
1
|
2463 |
+
1
|
2464 |
+
1
|
2465 |
+
1
|
2466 |
+
1
|
2467 |
+
1
|
2468 |
+
1
|
2469 |
+
1
|
2470 |
+
1
|
2471 |
+
1
|
2472 |
+
1
|
2473 |
+
1
|
2474 |
+
1
|
2475 |
+
1
|
2476 |
+
1
|
2477 |
+
1
|
2478 |
+
1
|
2479 |
+
1
|
2480 |
+
1
|
2481 |
+
1
|
2482 |
+
1
|
2483 |
+
1
|
2484 |
+
2
|
2485 |
+
1
|
2486 |
+
1
|
2487 |
+
1
|
2488 |
+
1
|
2489 |
+
1
|
2490 |
+
1
|
2491 |
+
1
|
2492 |
+
1
|
2493 |
+
1
|
2494 |
+
1
|
2495 |
+
1
|
2496 |
+
1
|
2497 |
+
1
|
2498 |
+
1
|
2499 |
+
1
|
2500 |
+
1
|
2501 |
+
1
|
2502 |
+
1
|
2503 |
+
2
|
2504 |
+
1
|
2505 |
+
2
|
2506 |
+
1
|
2507 |
+
1
|
2508 |
+
1
|
2509 |
+
1
|
2510 |
+
1
|
2511 |
+
1
|
2512 |
+
1
|
2513 |
+
1
|
2514 |
+
1
|
2515 |
+
1
|
2516 |
+
1
|
2517 |
+
1
|
2518 |
+
1
|
2519 |
+
1
|
2520 |
+
1
|
2521 |
+
1
|
2522 |
+
1
|
2523 |
+
1
|
2524 |
+
1
|
2525 |
+
1
|
2526 |
+
1
|
2527 |
+
1
|
2528 |
+
1
|
2529 |
+
1
|
2530 |
+
1
|
2531 |
+
1
|
2532 |
+
1
|
2533 |
+
1
|
2534 |
+
1
|
2535 |
+
1
|
2536 |
+
1
|
2537 |
+
1
|
2538 |
+
1
|
2539 |
+
1
|
2540 |
+
1
|
2541 |
+
1
|
2542 |
+
1
|
2543 |
+
1
|
2544 |
+
1
|
2545 |
+
1
|
2546 |
+
1
|
2547 |
+
1
|
2548 |
+
1
|
2549 |
+
1
|
2550 |
+
1
|
2551 |
+
1
|
2552 |
+
1
|
2553 |
+
1
|
2554 |
+
1
|
2555 |
+
1
|
2556 |
+
1
|
2557 |
+
1
|
2558 |
+
1
|
2559 |
+
1
|
2560 |
+
1
|
2561 |
+
1
|
2562 |
+
1
|
2563 |
+
1
|
2564 |
+
1
|
2565 |
+
1
|
2566 |
+
1
|
2567 |
+
1
|
2568 |
+
1
|
2569 |
+
1
|
2570 |
+
1
|
2571 |
+
1
|
2572 |
+
1
|
2573 |
+
1
|
2574 |
+
1
|
2575 |
+
1
|
2576 |
+
1
|
2577 |
+
2
|
2578 |
+
1
|
2579 |
+
1
|
2580 |
+
1
|
2581 |
+
1
|
2582 |
+
1
|
2583 |
+
1
|
2584 |
+
1
|
2585 |
+
1
|
2586 |
+
1
|
2587 |
+
1
|
2588 |
+
1
|
2589 |
+
1
|
2590 |
+
2
|
2591 |
+
2
|
2592 |
+
1
|
2593 |
+
1
|
2594 |
+
1
|
2595 |
+
1
|
2596 |
+
1
|
2597 |
+
1
|
2598 |
+
1
|
2599 |
+
1
|
2600 |
+
1
|
2601 |
+
1
|
2602 |
+
1
|
2603 |
+
1
|
2604 |
+
1
|
2605 |
+
1
|
2606 |
+
1
|
2607 |
+
1
|
2608 |
+
1
|
2609 |
+
1
|
2610 |
+
1
|
2611 |
+
1
|
2612 |
+
1
|
2613 |
+
1
|
2614 |
+
1
|
2615 |
+
1
|
2616 |
+
1
|
2617 |
+
1
|
2618 |
+
1
|
2619 |
+
1
|
2620 |
+
1
|
2621 |
+
1
|
2622 |
+
1
|
2623 |
+
2
|
2624 |
+
1
|
2625 |
+
2
|
2626 |
+
1
|
2627 |
+
1
|
2628 |
+
1
|
2629 |
+
1
|
2630 |
+
1
|
2631 |
+
1
|
2632 |
+
1
|
2633 |
+
1
|
2634 |
+
1
|
2635 |
+
1
|
2636 |
+
1
|
2637 |
+
2
|
2638 |
+
1
|
2639 |
+
1
|
2640 |
+
1
|
2641 |
+
1
|
2642 |
+
1
|
2643 |
+
1
|
2644 |
+
1
|
2645 |
+
1
|
2646 |
+
1
|
2647 |
+
1
|
2648 |
+
1
|
2649 |
+
1
|
2650 |
+
1
|
2651 |
+
1
|
2652 |
+
2
|
2653 |
+
1
|
2654 |
+
1
|
2655 |
+
1
|
2656 |
+
2
|
2657 |
+
1
|
2658 |
+
1
|
2659 |
+
2
|
2660 |
+
2
|
2661 |
+
1
|
2662 |
+
1
|
2663 |
+
1
|
2664 |
+
1
|
2665 |
+
2
|
2666 |
+
1
|
2667 |
+
1
|
2668 |
+
1
|
2669 |
+
1
|
2670 |
+
1
|
2671 |
+
1
|
2672 |
+
1
|
2673 |
+
2
|
2674 |
+
1
|
2675 |
+
1
|
2676 |
+
1
|
2677 |
+
1
|
2678 |
+
1
|
2679 |
+
1
|
2680 |
+
1
|
2681 |
+
1
|
2682 |
+
1
|
2683 |
+
1
|
2684 |
+
1
|
2685 |
+
1
|
2686 |
+
1
|
2687 |
+
1
|
2688 |
+
1
|
2689 |
+
1
|
2690 |
+
1
|
2691 |
+
1
|
2692 |
+
1
|
2693 |
+
1
|
2694 |
+
1
|
2695 |
+
1
|
2696 |
+
1
|
2697 |
+
1
|
2698 |
+
1
|
2699 |
+
1
|
2700 |
+
1
|
2701 |
+
1
|
2702 |
+
1
|
2703 |
+
1
|
2704 |
+
1
|
2705 |
+
1
|
2706 |
+
1
|
2707 |
+
2
|
2708 |
+
2
|
2709 |
+
1
|
2710 |
+
2
|
2711 |
+
1
|
2712 |
+
1
|
2713 |
+
1
|
2714 |
+
1
|
2715 |
+
1
|
2716 |
+
1
|
2717 |
+
1
|
2718 |
+
1
|
2719 |
+
1
|
2720 |
+
1
|
2721 |
+
1
|
2722 |
+
1
|
2723 |
+
1
|
2724 |
+
1
|
2725 |
+
1
|
2726 |
+
2
|
2727 |
+
1
|
2728 |
+
1
|
2729 |
+
1
|
2730 |
+
1
|
2731 |
+
1
|
2732 |
+
1
|
2733 |
+
2
|
2734 |
+
1
|
2735 |
+
1
|
2736 |
+
1
|
2737 |
+
1
|
2738 |
+
1
|
2739 |
+
1
|
2740 |
+
1
|
2741 |
+
1
|
2742 |
+
1
|
2743 |
+
1
|
2744 |
+
1
|
2745 |
+
1
|
2746 |
+
1
|
2747 |
+
1
|
2748 |
+
1
|
2749 |
+
1
|
2750 |
+
1
|
2751 |
+
1
|
2752 |
+
1
|
2753 |
+
1
|
2754 |
+
1
|
2755 |
+
1
|
2756 |
+
1
|
2757 |
+
1
|
2758 |
+
1
|
2759 |
+
1
|
2760 |
+
1
|
2761 |
+
1
|
2762 |
+
2
|
2763 |
+
1
|
2764 |
+
1
|
2765 |
+
1
|
2766 |
+
1
|
2767 |
+
1
|
2768 |
+
1
|
2769 |
+
1
|
2770 |
+
1
|
2771 |
+
1
|
2772 |
+
1
|
2773 |
+
1
|
2774 |
+
1
|
2775 |
+
1
|
2776 |
+
1
|
2777 |
+
1
|
2778 |
+
1
|
2779 |
+
1
|
2780 |
+
1
|
2781 |
+
1
|
2782 |
+
1
|
2783 |
+
1
|
2784 |
+
1
|
2785 |
+
1
|
2786 |
+
1
|
2787 |
+
1
|
2788 |
+
1
|
2789 |
+
1
|
2790 |
+
1
|
2791 |
+
1
|
2792 |
+
1
|
2793 |
+
1
|
2794 |
+
1
|
2795 |
+
1
|
2796 |
+
1
|
2797 |
+
1
|
2798 |
+
1
|
2799 |
+
1
|
2800 |
+
1
|
2801 |
+
1
|
2802 |
+
1
|
2803 |
+
1
|
2804 |
+
1
|
2805 |
+
1
|
2806 |
+
1
|
2807 |
+
1
|
2808 |
+
1
|
2809 |
+
1
|
2810 |
+
1
|
2811 |
+
1
|
2812 |
+
1
|
2813 |
+
1
|
2814 |
+
1
|
2815 |
+
1
|
2816 |
+
1
|
2817 |
+
1
|
2818 |
+
1
|
2819 |
+
1
|
2820 |
+
1
|
2821 |
+
1
|
2822 |
+
1
|
2823 |
+
1
|
2824 |
+
1
|
2825 |
+
1
|
2826 |
+
1
|
2827 |
+
1
|
2828 |
+
2
|
2829 |
+
1
|
2830 |
+
1
|
2831 |
+
1
|
2832 |
+
1
|
2833 |
+
1
|
2834 |
+
1
|
2835 |
+
1
|
2836 |
+
1
|
2837 |
+
1
|
2838 |
+
1
|
2839 |
+
1
|
2840 |
+
1
|
2841 |
+
1
|
2842 |
+
1
|
2843 |
+
1
|
2844 |
+
1
|
2845 |
+
1
|
2846 |
+
1
|
2847 |
+
1
|
2848 |
+
1
|
2849 |
+
1
|
2850 |
+
1
|
2851 |
+
1
|
2852 |
+
1
|
2853 |
+
1
|
2854 |
+
1
|
2855 |
+
1
|
2856 |
+
1
|
2857 |
+
1
|
2858 |
+
1
|
2859 |
+
1
|
2860 |
+
1
|
2861 |
+
1
|
2862 |
+
1
|
2863 |
+
1
|
2864 |
+
1
|
2865 |
+
2
|
2866 |
+
1
|
2867 |
+
2
|
2868 |
+
1
|
2869 |
+
1
|
2870 |
+
1
|
2871 |
+
1
|
2872 |
+
1
|
2873 |
+
1
|
2874 |
+
1
|
2875 |
+
1
|
2876 |
+
1
|
2877 |
+
1
|
2878 |
+
1
|
2879 |
+
1
|
2880 |
+
1
|
2881 |
+
1
|
2882 |
+
1
|
2883 |
+
1
|
2884 |
+
1
|
2885 |
+
1
|
2886 |
+
1
|
2887 |
+
1
|
2888 |
+
1
|
2889 |
+
1
|
2890 |
+
1
|
2891 |
+
1
|
2892 |
+
1
|
2893 |
+
1
|
2894 |
+
1
|
2895 |
+
1
|
2896 |
+
1
|
2897 |
+
1
|
2898 |
+
1
|
2899 |
+
1
|
2900 |
+
1
|
2901 |
+
1
|
2902 |
+
1
|
2903 |
+
1
|
2904 |
+
1
|
2905 |
+
1
|
2906 |
+
2
|
2907 |
+
1
|
2908 |
+
1
|
2909 |
+
1
|
2910 |
+
1
|
2911 |
+
1
|
2912 |
+
1
|
2913 |
+
1
|
2914 |
+
1
|
2915 |
+
1
|
2916 |
+
1
|
2917 |
+
1
|
2918 |
+
1
|
2919 |
+
1
|
2920 |
+
1
|
2921 |
+
1
|
2922 |
+
1
|
2923 |
+
2
|
2924 |
+
1
|
2925 |
+
1
|
2926 |
+
1
|
2927 |
+
1
|
2928 |
+
1
|
2929 |
+
1
|
2930 |
+
2
|
2931 |
+
1
|
2932 |
+
1
|
2933 |
+
1
|
2934 |
+
1
|
2935 |
+
1
|
2936 |
+
1
|
2937 |
+
1
|
2938 |
+
1
|
2939 |
+
1
|
2940 |
+
1
|
2941 |
+
1
|
2942 |
+
1
|
2943 |
+
1
|
2944 |
+
1
|
2945 |
+
1
|
2946 |
+
1
|
2947 |
+
1
|
2948 |
+
1
|
2949 |
+
1
|
2950 |
+
1
|
2951 |
+
1
|
2952 |
+
1
|
2953 |
+
1
|
2954 |
+
1
|
2955 |
+
1
|
2956 |
+
1
|
2957 |
+
1
|
2958 |
+
1
|
2959 |
+
1
|
2960 |
+
1
|
2961 |
+
1
|
2962 |
+
1
|
2963 |
+
1
|
2964 |
+
1
|
2965 |
+
1
|
2966 |
+
1
|
2967 |
+
2
|
2968 |
+
1
|
2969 |
+
1
|
2970 |
+
1
|
2971 |
+
1
|
2972 |
+
1
|
2973 |
+
2
|
2974 |
+
1
|
2975 |
+
1
|
2976 |
+
1
|
2977 |
+
1
|
2978 |
+
1
|
2979 |
+
1
|
2980 |
+
1
|
2981 |
+
1
|
2982 |
+
1
|
2983 |
+
1
|
2984 |
+
1
|
2985 |
+
1
|
2986 |
+
1
|
2987 |
+
1
|
2988 |
+
1
|
2989 |
+
1
|
2990 |
+
1
|
2991 |
+
1
|
2992 |
+
1
|
2993 |
+
1
|
2994 |
+
2
|
2995 |
+
1
|
2996 |
+
1
|
2997 |
+
1
|
2998 |
+
1
|
2999 |
+
1
|
3000 |
+
1
|
3001 |
+
1
|
3002 |
+
1
|
3003 |
+
1
|
3004 |
+
1
|
3005 |
+
1
|
3006 |
+
1
|
3007 |
+
1
|
3008 |
+
1
|
3009 |
+
1
|
3010 |
+
1
|
3011 |
+
2
|
3012 |
+
1
|
3013 |
+
1
|
3014 |
+
1
|
3015 |
+
1
|
3016 |
+
1
|
3017 |
+
1
|
3018 |
+
1
|
3019 |
+
1
|
3020 |
+
1
|
3021 |
+
1
|
3022 |
+
1
|
3023 |
+
1
|
3024 |
+
1
|
3025 |
+
1
|
3026 |
+
2
|
3027 |
+
1
|
3028 |
+
1
|
3029 |
+
1
|
3030 |
+
1
|
3031 |
+
1
|
3032 |
+
2
|
3033 |
+
1
|
3034 |
+
1
|
3035 |
+
1
|
3036 |
+
1
|
3037 |
+
1
|
3038 |
+
1
|
3039 |
+
1
|
3040 |
+
1
|
3041 |
+
2
|
3042 |
+
2
|
3043 |
+
1
|
3044 |
+
1
|
3045 |
+
1
|
3046 |
+
1
|
3047 |
+
1
|
3048 |
+
1
|
3049 |
+
1
|
3050 |
+
1
|
3051 |
+
1
|
3052 |
+
1
|
3053 |
+
1
|
3054 |
+
1
|
3055 |
+
1
|
3056 |
+
1
|
3057 |
+
1
|
3058 |
+
1
|
3059 |
+
1
|
3060 |
+
1
|
3061 |
+
1
|
3062 |
+
1
|
3063 |
+
1
|
3064 |
+
1
|
3065 |
+
1
|
3066 |
+
1
|
3067 |
+
1
|
3068 |
+
1
|
3069 |
+
1
|
3070 |
+
1
|
3071 |
+
2
|
3072 |
+
1
|
3073 |
+
1
|
3074 |
+
1
|
3075 |
+
1
|
3076 |
+
1
|
3077 |
+
1
|
3078 |
+
1
|
3079 |
+
1
|
3080 |
+
1
|
3081 |
+
1
|
3082 |
+
1
|
3083 |
+
1
|
3084 |
+
1
|
3085 |
+
1
|
3086 |
+
1
|
3087 |
+
1
|
3088 |
+
1
|
3089 |
+
1
|
3090 |
+
1
|
3091 |
+
1
|
3092 |
+
1
|
3093 |
+
1
|
3094 |
+
1
|
3095 |
+
1
|
3096 |
+
1
|
3097 |
+
1
|
3098 |
+
1
|
3099 |
+
1
|
3100 |
+
1
|
3101 |
+
1
|
3102 |
+
1
|
3103 |
+
1
|
3104 |
+
1
|
3105 |
+
1
|
3106 |
+
1
|
3107 |
+
1
|
3108 |
+
1
|
3109 |
+
1
|
3110 |
+
1
|
3111 |
+
1
|
3112 |
+
1
|
3113 |
+
1
|
3114 |
+
2
|
3115 |
+
1
|
3116 |
+
1
|
3117 |
+
1
|
3118 |
+
1
|
3119 |
+
1
|
3120 |
+
1
|
3121 |
+
1
|
3122 |
+
1
|
3123 |
+
1
|
3124 |
+
1
|
3125 |
+
2
|
3126 |
+
1
|
3127 |
+
1
|
3128 |
+
1
|
3129 |
+
1
|
3130 |
+
2
|
3131 |
+
1
|
3132 |
+
1
|
3133 |
+
1
|
3134 |
+
1
|
3135 |
+
1
|
3136 |
+
1
|
3137 |
+
1
|
3138 |
+
2
|
3139 |
+
1
|
3140 |
+
1
|
3141 |
+
1
|
3142 |
+
2
|
3143 |
+
1
|
3144 |
+
1
|
3145 |
+
1
|
3146 |
+
1
|
3147 |
+
1
|
3148 |
+
1
|
3149 |
+
1
|
3150 |
+
1
|
3151 |
+
1
|
3152 |
+
1
|
3153 |
+
1
|
3154 |
+
1
|
3155 |
+
1
|
3156 |
+
1
|
3157 |
+
1
|
3158 |
+
2
|
3159 |
+
1
|
3160 |
+
1
|
3161 |
+
1
|
3162 |
+
1
|
3163 |
+
1
|
3164 |
+
1
|
3165 |
+
1
|
3166 |
+
1
|
3167 |
+
1
|
3168 |
+
1
|
3169 |
+
1
|
3170 |
+
1
|
3171 |
+
1
|
3172 |
+
1
|
3173 |
+
1
|
3174 |
+
1
|
3175 |
+
1
|
3176 |
+
1
|
3177 |
+
1
|
3178 |
+
1
|
3179 |
+
1
|
3180 |
+
1
|
3181 |
+
1
|
3182 |
+
1
|
3183 |
+
1
|
3184 |
+
2
|
3185 |
+
1
|
3186 |
+
1
|
3187 |
+
1
|
3188 |
+
1
|
3189 |
+
1
|
3190 |
+
1
|
3191 |
+
1
|
3192 |
+
1
|
3193 |
+
1
|
3194 |
+
1
|
3195 |
+
1
|
3196 |
+
1
|
3197 |
+
1
|
3198 |
+
1
|
3199 |
+
1
|
3200 |
+
1
|
3201 |
+
1
|
3202 |
+
1
|
3203 |
+
1
|
3204 |
+
1
|
3205 |
+
1
|
3206 |
+
1
|
3207 |
+
2
|
3208 |
+
1
|
3209 |
+
1
|
3210 |
+
1
|
3211 |
+
1
|
3212 |
+
1
|
3213 |
+
1
|
3214 |
+
1
|
3215 |
+
1
|
3216 |
+
1
|
3217 |
+
1
|
3218 |
+
1
|
3219 |
+
1
|
3220 |
+
2
|
3221 |
+
1
|
3222 |
+
1
|
3223 |
+
1
|
3224 |
+
1
|
3225 |
+
1
|
3226 |
+
1
|
3227 |
+
1
|
3228 |
+
1
|
3229 |
+
1
|
3230 |
+
1
|
3231 |
+
1
|
3232 |
+
1
|
3233 |
+
1
|
3234 |
+
1
|
3235 |
+
1
|
3236 |
+
1
|
3237 |
+
1
|
3238 |
+
1
|
3239 |
+
1
|
3240 |
+
1
|
3241 |
+
1
|
3242 |
+
1
|
3243 |
+
1
|
3244 |
+
1
|
3245 |
+
1
|
3246 |
+
1
|
3247 |
+
1
|
3248 |
+
2
|
3249 |
+
1
|
3250 |
+
1
|
3251 |
+
1
|
3252 |
+
1
|
3253 |
+
1
|
3254 |
+
2
|
3255 |
+
1
|
3256 |
+
1
|
3257 |
+
1
|
3258 |
+
1
|
3259 |
+
1
|
3260 |
+
1
|
3261 |
+
1
|
3262 |
+
1
|
3263 |
+
1
|
3264 |
+
1
|
3265 |
+
1
|
3266 |
+
1
|
3267 |
+
1
|
3268 |
+
1
|
3269 |
+
1
|
3270 |
+
1
|
3271 |
+
1
|
3272 |
+
1
|
3273 |
+
2
|
3274 |
+
1
|
3275 |
+
1
|
3276 |
+
1
|
3277 |
+
2
|
3278 |
+
1
|
3279 |
+
1
|
3280 |
+
1
|
3281 |
+
1
|
3282 |
+
1
|
3283 |
+
1
|
3284 |
+
1
|
3285 |
+
1
|
3286 |
+
1
|
3287 |
+
1
|
3288 |
+
1
|
3289 |
+
1
|
3290 |
+
1
|
3291 |
+
1
|
3292 |
+
1
|
3293 |
+
1
|
3294 |
+
1
|
3295 |
+
1
|
3296 |
+
1
|
3297 |
+
1
|
3298 |
+
1
|
3299 |
+
1
|
3300 |
+
1
|
3301 |
+
1
|
3302 |
+
1
|
3303 |
+
1
|
3304 |
+
1
|
3305 |
+
1
|
3306 |
+
1
|
3307 |
+
1
|
3308 |
+
1
|
3309 |
+
1
|
3310 |
+
1
|
3311 |
+
1
|
3312 |
+
1
|
3313 |
+
1
|
3314 |
+
1
|
3315 |
+
1
|
3316 |
+
1
|
3317 |
+
1
|
3318 |
+
1
|
3319 |
+
1
|
3320 |
+
1
|
3321 |
+
1
|
3322 |
+
2
|
3323 |
+
1
|
3324 |
+
1
|
3325 |
+
1
|
3326 |
+
1
|
3327 |
+
1
|
3328 |
+
1
|
3329 |
+
2
|
3330 |
+
1
|
3331 |
+
1
|
3332 |
+
1
|
3333 |
+
1
|
3334 |
+
2
|
3335 |
+
1
|
3336 |
+
1
|
3337 |
+
1
|
3338 |
+
1
|
3339 |
+
2
|
3340 |
+
1
|
3341 |
+
1
|
3342 |
+
2
|
3343 |
+
1
|
3344 |
+
1
|
3345 |
+
1
|
3346 |
+
1
|
3347 |
+
2
|
3348 |
+
1
|
3349 |
+
1
|
3350 |
+
1
|
3351 |
+
1
|
3352 |
+
2
|
3353 |
+
1
|
3354 |
+
1
|
3355 |
+
1
|
3356 |
+
1
|
3357 |
+
1
|
3358 |
+
1
|
3359 |
+
1
|
3360 |
+
1
|
3361 |
+
1
|
3362 |
+
1
|
3363 |
+
1
|
3364 |
+
1
|
3365 |
+
1
|
3366 |
+
1
|
3367 |
+
1
|
3368 |
+
1
|
3369 |
+
1
|
3370 |
+
1
|
3371 |
+
1
|
3372 |
+
1
|
3373 |
+
1
|
3374 |
+
1
|
3375 |
+
1
|
3376 |
+
1
|
3377 |
+
1
|
3378 |
+
1
|
3379 |
+
1
|
3380 |
+
1
|
3381 |
+
1
|
3382 |
+
1
|
3383 |
+
1
|
3384 |
+
1
|
3385 |
+
1
|
3386 |
+
1
|
3387 |
+
1
|
3388 |
+
1
|
3389 |
+
1
|
3390 |
+
1
|
3391 |
+
1
|
3392 |
+
1
|
3393 |
+
1
|
3394 |
+
1
|
3395 |
+
1
|
3396 |
+
1
|
3397 |
+
2
|
3398 |
+
1
|
3399 |
+
1
|
3400 |
+
1
|
3401 |
+
1
|
3402 |
+
1
|
3403 |
+
1
|
3404 |
+
1
|
3405 |
+
1
|
3406 |
+
1
|
3407 |
+
1
|
3408 |
+
1
|
3409 |
+
1
|
3410 |
+
1
|
3411 |
+
1
|
3412 |
+
1
|
3413 |
+
1
|
3414 |
+
1
|
3415 |
+
1
|
3416 |
+
1
|
3417 |
+
1
|
3418 |
+
1
|
3419 |
+
1
|
3420 |
+
2
|
3421 |
+
1
|
3422 |
+
1
|
3423 |
+
1
|
3424 |
+
1
|
3425 |
+
1
|
3426 |
+
1
|
3427 |
+
1
|
3428 |
+
1
|
3429 |
+
1
|
3430 |
+
1
|
3431 |
+
2
|
3432 |
+
1
|
3433 |
+
1
|
3434 |
+
2
|
3435 |
+
1
|
3436 |
+
1
|
3437 |
+
1
|
3438 |
+
1
|
3439 |
+
1
|
3440 |
+
1
|
3441 |
+
1
|
3442 |
+
1
|
3443 |
+
1
|
3444 |
+
1
|
3445 |
+
1
|
3446 |
+
1
|
3447 |
+
1
|
3448 |
+
1
|
3449 |
+
2
|
3450 |
+
1
|
3451 |
+
1
|
3452 |
+
1
|
3453 |
+
1
|
3454 |
+
1
|
3455 |
+
1
|
3456 |
+
2
|
3457 |
+
1
|
3458 |
+
1
|
3459 |
+
1
|
3460 |
+
1
|
3461 |
+
1
|
3462 |
+
1
|
3463 |
+
1
|
3464 |
+
2
|
3465 |
+
1
|
3466 |
+
1
|
3467 |
+
1
|
3468 |
+
1
|
3469 |
+
1
|
3470 |
+
1
|
3471 |
+
1
|
3472 |
+
1
|
3473 |
+
1
|
3474 |
+
1
|
3475 |
+
1
|
3476 |
+
1
|
3477 |
+
1
|
3478 |
+
1
|
3479 |
+
1
|
3480 |
+
1
|
3481 |
+
1
|
3482 |
+
1
|
3483 |
+
1
|
3484 |
+
1
|
3485 |
+
1
|
3486 |
+
1
|
3487 |
+
1
|
3488 |
+
1
|
3489 |
+
1
|
3490 |
+
1
|
3491 |
+
1
|
3492 |
+
1
|
3493 |
+
1
|
3494 |
+
1
|
3495 |
+
1
|
3496 |
+
1
|
3497 |
+
1
|
3498 |
+
1
|
3499 |
+
1
|
3500 |
+
1
|
3501 |
+
1
|
3502 |
+
1
|
3503 |
+
1
|
3504 |
+
2
|
3505 |
+
1
|
3506 |
+
1
|
3507 |
+
1
|
3508 |
+
1
|
3509 |
+
1
|
3510 |
+
1
|
3511 |
+
1
|
3512 |
+
1
|
3513 |
+
1
|
3514 |
+
1
|
3515 |
+
1
|
3516 |
+
1
|
3517 |
+
1
|
3518 |
+
1
|
3519 |
+
1
|
3520 |
+
1
|
3521 |
+
1
|
3522 |
+
1
|
3523 |
+
1
|
3524 |
+
1
|
3525 |
+
1
|
3526 |
+
1
|
3527 |
+
2
|
3528 |
+
1
|
3529 |
+
1
|
3530 |
+
2
|
3531 |
+
1
|
3532 |
+
1
|
3533 |
+
1
|
3534 |
+
1
|
3535 |
+
1
|
3536 |
+
1
|
3537 |
+
1
|
3538 |
+
2
|
3539 |
+
1
|
3540 |
+
1
|
3541 |
+
1
|
3542 |
+
1
|
3543 |
+
1
|
3544 |
+
1
|
3545 |
+
1
|
3546 |
+
1
|
3547 |
+
1
|
3548 |
+
1
|
3549 |
+
1
|
3550 |
+
1
|
3551 |
+
1
|
3552 |
+
1
|
3553 |
+
1
|
3554 |
+
1
|
3555 |
+
1
|
3556 |
+
2
|
3557 |
+
1
|
3558 |
+
1
|
3559 |
+
1
|
3560 |
+
1
|
3561 |
+
1
|
3562 |
+
1
|
3563 |
+
1
|
3564 |
+
1
|
3565 |
+
1
|
3566 |
+
1
|
3567 |
+
1
|
3568 |
+
1
|
3569 |
+
1
|
3570 |
+
1
|
3571 |
+
1
|
3572 |
+
1
|
3573 |
+
1
|
3574 |
+
1
|
3575 |
+
1
|
3576 |
+
1
|
3577 |
+
1
|
3578 |
+
2
|
3579 |
+
1
|
3580 |
+
1
|
3581 |
+
1
|
3582 |
+
1
|
3583 |
+
1
|
3584 |
+
1
|
3585 |
+
2
|
3586 |
+
1
|
3587 |
+
1
|
3588 |
+
1
|
3589 |
+
1
|
3590 |
+
1
|
3591 |
+
1
|
3592 |
+
2
|
3593 |
+
1
|
3594 |
+
1
|
3595 |
+
2
|
3596 |
+
1
|
3597 |
+
1
|
3598 |
+
2
|
3599 |
+
1
|
3600 |
+
1
|
3601 |
+
1
|
3602 |
+
1
|
3603 |
+
1
|
3604 |
+
2
|
3605 |
+
1
|
3606 |
+
1
|
3607 |
+
1
|
3608 |
+
1
|
3609 |
+
1
|
3610 |
+
1
|
3611 |
+
1
|
3612 |
+
1
|
3613 |
+
1
|
3614 |
+
2
|
3615 |
+
1
|
3616 |
+
2
|
3617 |
+
1
|
3618 |
+
1
|
3619 |
+
1
|
3620 |
+
1
|
3621 |
+
1
|
3622 |
+
1
|
3623 |
+
1
|
3624 |
+
1
|
3625 |
+
1
|
3626 |
+
1
|
3627 |
+
1
|
3628 |
+
1
|
3629 |
+
1
|
3630 |
+
1
|
3631 |
+
1
|
3632 |
+
1
|
3633 |
+
1
|
3634 |
+
1
|
3635 |
+
1
|
3636 |
+
1
|
3637 |
+
1
|
3638 |
+
1
|
3639 |
+
1
|
3640 |
+
1
|
3641 |
+
1
|
3642 |
+
1
|
3643 |
+
1
|
3644 |
+
1
|
3645 |
+
1
|
3646 |
+
1
|
3647 |
+
1
|
3648 |
+
1
|
3649 |
+
1
|
3650 |
+
1
|
3651 |
+
1
|
3652 |
+
1
|
3653 |
+
1
|
3654 |
+
1
|
3655 |
+
1
|
3656 |
+
1
|
3657 |
+
1
|
3658 |
+
1
|
3659 |
+
1
|
3660 |
+
1
|
3661 |
+
1
|
3662 |
+
1
|
3663 |
+
1
|
3664 |
+
1
|
3665 |
+
1
|
3666 |
+
1
|
3667 |
+
1
|
3668 |
+
1
|
3669 |
+
1
|
3670 |
+
1
|
3671 |
+
2
|
3672 |
+
1
|
3673 |
+
1
|
3674 |
+
1
|
3675 |
+
1
|
3676 |
+
1
|
3677 |
+
2
|
3678 |
+
1
|
3679 |
+
2
|
3680 |
+
1
|
3681 |
+
1
|
3682 |
+
1
|
3683 |
+
1
|
3684 |
+
1
|
3685 |
+
1
|
3686 |
+
1
|
3687 |
+
1
|
3688 |
+
1
|
3689 |
+
1
|
3690 |
+
1
|
3691 |
+
1
|
3692 |
+
1
|
3693 |
+
1
|
3694 |
+
1
|
3695 |
+
1
|
3696 |
+
1
|
3697 |
+
1
|
3698 |
+
2
|
3699 |
+
1
|
3700 |
+
1
|
3701 |
+
1
|
3702 |
+
1
|
3703 |
+
1
|
3704 |
+
1
|
3705 |
+
1
|
3706 |
+
1
|
3707 |
+
1
|
3708 |
+
1
|
3709 |
+
1
|
3710 |
+
1
|
3711 |
+
1
|
3712 |
+
1
|
3713 |
+
1
|
3714 |
+
1
|
3715 |
+
1
|
3716 |
+
1
|
3717 |
+
1
|
3718 |
+
1
|
3719 |
+
1
|
3720 |
+
1
|
3721 |
+
1
|
3722 |
+
1
|
3723 |
+
1
|
3724 |
+
2
|
3725 |
+
1
|
3726 |
+
1
|
3727 |
+
1
|
3728 |
+
1
|
3729 |
+
2
|
3730 |
+
1
|
3731 |
+
1
|
3732 |
+
1
|
3733 |
+
1
|
3734 |
+
1
|
3735 |
+
2
|
3736 |
+
1
|
3737 |
+
1
|
3738 |
+
1
|
3739 |
+
1
|
3740 |
+
1
|
3741 |
+
1
|
3742 |
+
1
|
3743 |
+
1
|
3744 |
+
1
|
3745 |
+
1
|
3746 |
+
2
|
3747 |
+
1
|
3748 |
+
1
|
3749 |
+
1
|
3750 |
+
1
|
3751 |
+
2
|
3752 |
+
1
|
3753 |
+
2
|
3754 |
+
1
|
3755 |
+
1
|
3756 |
+
1
|
3757 |
+
1
|
3758 |
+
1
|
3759 |
+
1
|
3760 |
+
1
|
3761 |
+
1
|
3762 |
+
1
|
3763 |
+
1
|
3764 |
+
1
|
3765 |
+
1
|
3766 |
+
1
|
3767 |
+
1
|
3768 |
+
1
|
3769 |
+
1
|
3770 |
+
1
|
3771 |
+
1
|
3772 |
+
1
|
3773 |
+
1
|
3774 |
+
1
|
3775 |
+
1
|
3776 |
+
1
|
3777 |
+
1
|
3778 |
+
1
|
3779 |
+
1
|
3780 |
+
2
|
3781 |
+
1
|
3782 |
+
1
|
3783 |
+
2
|
3784 |
+
1
|
3785 |
+
1
|
3786 |
+
1
|
3787 |
+
1
|
3788 |
+
1
|
3789 |
+
1
|
3790 |
+
1
|
3791 |
+
1
|
3792 |
+
1
|
3793 |
+
1
|
3794 |
+
1
|
3795 |
+
1
|
3796 |
+
1
|
3797 |
+
1
|
3798 |
+
1
|
3799 |
+
1
|
3800 |
+
1
|
3801 |
+
1
|
3802 |
+
1
|
3803 |
+
1
|
3804 |
+
1
|
3805 |
+
1
|
3806 |
+
1
|
3807 |
+
1
|
3808 |
+
1
|
3809 |
+
1
|
3810 |
+
1
|
3811 |
+
1
|
3812 |
+
1
|
3813 |
+
1
|
3814 |
+
2
|
3815 |
+
1
|
3816 |
+
1
|
3817 |
+
1
|
3818 |
+
2
|
3819 |
+
1
|
3820 |
+
2
|
3821 |
+
1
|
3822 |
+
1
|
3823 |
+
1
|
3824 |
+
1
|
3825 |
+
1
|
3826 |
+
1
|
3827 |
+
1
|
3828 |
+
1
|
3829 |
+
1
|
3830 |
+
1
|
3831 |
+
1
|
3832 |
+
1
|
3833 |
+
1
|
3834 |
+
1
|
3835 |
+
1
|
3836 |
+
1
|
3837 |
+
1
|
3838 |
+
1
|
3839 |
+
1
|
3840 |
+
1
|
3841 |
+
1
|
3842 |
+
1
|
3843 |
+
1
|
3844 |
+
1
|
3845 |
+
1
|
3846 |
+
1
|
3847 |
+
1
|
3848 |
+
1
|
3849 |
+
1
|
3850 |
+
1
|
3851 |
+
1
|
3852 |
+
1
|
3853 |
+
1
|
3854 |
+
1
|
3855 |
+
2
|
3856 |
+
1
|
3857 |
+
1
|
3858 |
+
1
|
3859 |
+
1
|
3860 |
+
1
|
3861 |
+
1
|
3862 |
+
1
|
3863 |
+
1
|
3864 |
+
1
|
3865 |
+
1
|
3866 |
+
1
|
3867 |
+
1
|
3868 |
+
1
|
3869 |
+
1
|
3870 |
+
1
|
3871 |
+
1
|
3872 |
+
1
|
3873 |
+
1
|
3874 |
+
1
|
3875 |
+
1
|
3876 |
+
1
|
3877 |
+
1
|
3878 |
+
1
|
3879 |
+
1
|
3880 |
+
1
|
3881 |
+
1
|
3882 |
+
1
|
3883 |
+
1
|
3884 |
+
1
|
3885 |
+
1
|
3886 |
+
2
|
3887 |
+
1
|
3888 |
+
1
|
3889 |
+
1
|
3890 |
+
1
|
3891 |
+
1
|
3892 |
+
1
|
3893 |
+
1
|
3894 |
+
1
|
3895 |
+
1
|
3896 |
+
1
|
3897 |
+
1
|
3898 |
+
1
|
3899 |
+
1
|
3900 |
+
1
|
3901 |
+
1
|
3902 |
+
1
|
3903 |
+
1
|
3904 |
+
1
|
3905 |
+
1
|
3906 |
+
1
|
3907 |
+
1
|
3908 |
+
1
|
3909 |
+
1
|
3910 |
+
1
|
3911 |
+
1
|
3912 |
+
1
|
3913 |
+
1
|
3914 |
+
1
|
3915 |
+
1
|
3916 |
+
1
|
3917 |
+
1
|
3918 |
+
1
|
3919 |
+
1
|
3920 |
+
1
|
3921 |
+
1
|
3922 |
+
1
|
3923 |
+
1
|
3924 |
+
1
|
3925 |
+
1
|
3926 |
+
1
|
3927 |
+
1
|
3928 |
+
1
|
3929 |
+
1
|
3930 |
+
1
|
3931 |
+
1
|
3932 |
+
1
|
3933 |
+
1
|
3934 |
+
1
|
3935 |
+
1
|
3936 |
+
1
|
3937 |
+
1
|
3938 |
+
1
|
3939 |
+
1
|
3940 |
+
1
|
3941 |
+
1
|
3942 |
+
1
|
3943 |
+
1
|
3944 |
+
1
|
3945 |
+
2
|
3946 |
+
1
|
3947 |
+
1
|
3948 |
+
2
|
3949 |
+
1
|
3950 |
+
1
|
3951 |
+
1
|
3952 |
+
1
|
3953 |
+
1
|
3954 |
+
1
|
3955 |
+
1
|
3956 |
+
1
|
3957 |
+
1
|
3958 |
+
1
|
3959 |
+
1
|
3960 |
+
1
|
3961 |
+
1
|
3962 |
+
1
|
3963 |
+
1
|
3964 |
+
1
|
3965 |
+
1
|
3966 |
+
1
|
3967 |
+
1
|
3968 |
+
1
|
3969 |
+
1
|
3970 |
+
1
|
3971 |
+
2
|
3972 |
+
1
|
3973 |
+
1
|
3974 |
+
1
|
3975 |
+
1
|
3976 |
+
1
|
3977 |
+
1
|
3978 |
+
1
|
3979 |
+
1
|
3980 |
+
1
|
3981 |
+
1
|
3982 |
+
1
|
3983 |
+
1
|
3984 |
+
1
|
3985 |
+
1
|
3986 |
+
2
|
3987 |
+
1
|
3988 |
+
1
|
3989 |
+
1
|
3990 |
+
1
|
3991 |
+
1
|
3992 |
+
1
|
3993 |
+
1
|
3994 |
+
1
|
3995 |
+
1
|
3996 |
+
1
|
3997 |
+
1
|
3998 |
+
1
|
3999 |
+
1
|
4000 |
+
1
|
4001 |
+
1
|
4002 |
+
1
|
4003 |
+
1
|
4004 |
+
1
|
4005 |
+
1
|
4006 |
+
1
|
4007 |
+
1
|
4008 |
+
1
|
4009 |
+
1
|
4010 |
+
1
|
4011 |
+
1
|
4012 |
+
2
|
4013 |
+
1
|
4014 |
+
1
|
4015 |
+
1
|
4016 |
+
1
|
4017 |
+
1
|
4018 |
+
1
|
4019 |
+
1
|
4020 |
+
1
|
4021 |
+
1
|
4022 |
+
1
|
4023 |
+
2
|
4024 |
+
1
|
4025 |
+
1
|
4026 |
+
1
|
4027 |
+
1
|
4028 |
+
1
|
4029 |
+
1
|
4030 |
+
1
|
4031 |
+
1
|
4032 |
+
1
|
4033 |
+
1
|
4034 |
+
1
|
4035 |
+
1
|
4036 |
+
1
|
4037 |
+
1
|
4038 |
+
1
|
4039 |
+
1
|
4040 |
+
1
|
4041 |
+
1
|
4042 |
+
1
|
4043 |
+
1
|
4044 |
+
1
|
4045 |
+
1
|
4046 |
+
1
|
4047 |
+
1
|
4048 |
+
1
|
4049 |
+
1
|
4050 |
+
1
|
4051 |
+
1
|
4052 |
+
1
|
4053 |
+
1
|
4054 |
+
1
|
4055 |
+
1
|
4056 |
+
1
|
4057 |
+
1
|
4058 |
+
1
|
4059 |
+
1
|
4060 |
+
1
|
4061 |
+
1
|
4062 |
+
1
|
4063 |
+
1
|
4064 |
+
1
|
4065 |
+
1
|
4066 |
+
1
|
4067 |
+
1
|
4068 |
+
1
|
4069 |
+
1
|
4070 |
+
1
|
4071 |
+
1
|
4072 |
+
2
|
4073 |
+
1
|
4074 |
+
1
|
4075 |
+
1
|
4076 |
+
2
|
4077 |
+
1
|
4078 |
+
1
|
4079 |
+
1
|
4080 |
+
1
|
4081 |
+
1
|
4082 |
+
1
|
4083 |
+
1
|
4084 |
+
1
|
4085 |
+
1
|
4086 |
+
1
|
4087 |
+
1
|
4088 |
+
1
|
4089 |
+
1
|
4090 |
+
1
|
4091 |
+
1
|
4092 |
+
1
|
4093 |
+
1
|
4094 |
+
1
|
4095 |
+
1
|
4096 |
+
1
|
4097 |
+
1
|
4098 |
+
1
|
4099 |
+
1
|
4100 |
+
1
|
4101 |
+
1
|
4102 |
+
1
|
4103 |
+
1
|
4104 |
+
1
|
4105 |
+
1
|
4106 |
+
1
|
4107 |
+
1
|
4108 |
+
1
|
4109 |
+
1
|
4110 |
+
1
|
4111 |
+
1
|
4112 |
+
1
|
4113 |
+
1
|
4114 |
+
1
|
4115 |
+
1
|
4116 |
+
1
|
4117 |
+
1
|
4118 |
+
1
|
4119 |
+
1
|
4120 |
+
1
|
4121 |
+
1
|
4122 |
+
1
|
4123 |
+
1
|
4124 |
+
1
|
4125 |
+
1
|
4126 |
+
1
|
4127 |
+
1
|
4128 |
+
1
|
4129 |
+
1
|
4130 |
+
1
|
4131 |
+
1
|
4132 |
+
1
|
4133 |
+
2
|
4134 |
+
1
|
4135 |
+
1
|
4136 |
+
1
|
4137 |
+
1
|
4138 |
+
1
|
4139 |
+
1
|
4140 |
+
1
|
4141 |
+
1
|
4142 |
+
1
|
4143 |
+
1
|
4144 |
+
1
|
4145 |
+
1
|
4146 |
+
1
|
4147 |
+
1
|
4148 |
+
1
|
4149 |
+
1
|
4150 |
+
1
|
4151 |
+
1
|
4152 |
+
1
|
4153 |
+
1
|
4154 |
+
1
|
4155 |
+
1
|
4156 |
+
1
|
4157 |
+
1
|
4158 |
+
1
|
4159 |
+
2
|
4160 |
+
1
|
4161 |
+
1
|
4162 |
+
1
|
4163 |
+
1
|
4164 |
+
1
|
4165 |
+
1
|
4166 |
+
1
|
4167 |
+
1
|
4168 |
+
2
|
4169 |
+
1
|
4170 |
+
1
|
4171 |
+
1
|
4172 |
+
1
|
4173 |
+
1
|
4174 |
+
1
|
4175 |
+
1
|
4176 |
+
1
|
4177 |
+
1
|
4178 |
+
1
|
4179 |
+
1
|
4180 |
+
1
|
4181 |
+
1
|
4182 |
+
1
|
4183 |
+
1
|
4184 |
+
1
|
4185 |
+
1
|
4186 |
+
1
|
4187 |
+
1
|
4188 |
+
1
|
4189 |
+
1
|
4190 |
+
1
|
4191 |
+
2
|
4192 |
+
1
|
4193 |
+
1
|
4194 |
+
1
|
4195 |
+
2
|
4196 |
+
1
|
4197 |
+
1
|
4198 |
+
1
|
4199 |
+
1
|
4200 |
+
1
|
4201 |
+
1
|
4202 |
+
1
|
4203 |
+
1
|
4204 |
+
1
|
4205 |
+
1
|
4206 |
+
1
|
4207 |
+
1
|
4208 |
+
2
|
4209 |
+
1
|
4210 |
+
1
|
4211 |
+
1
|
4212 |
+
1
|
4213 |
+
1
|
4214 |
+
1
|
4215 |
+
1
|
4216 |
+
1
|
4217 |
+
1
|
4218 |
+
1
|
4219 |
+
1
|
4220 |
+
1
|
4221 |
+
1
|
4222 |
+
1
|
4223 |
+
1
|
4224 |
+
1
|
4225 |
+
1
|
4226 |
+
1
|
4227 |
+
1
|
4228 |
+
1
|
4229 |
+
1
|
4230 |
+
1
|
4231 |
+
1
|
4232 |
+
1
|
4233 |
+
1
|
4234 |
+
1
|
4235 |
+
1
|
4236 |
+
1
|
4237 |
+
1
|
4238 |
+
1
|
4239 |
+
1
|
4240 |
+
1
|
4241 |
+
1
|
4242 |
+
1
|
4243 |
+
1
|
4244 |
+
1
|
4245 |
+
1
|
4246 |
+
1
|
4247 |
+
2
|
4248 |
+
1
|
4249 |
+
1
|
4250 |
+
2
|
4251 |
+
1
|
4252 |
+
1
|
4253 |
+
1
|
4254 |
+
1
|
4255 |
+
1
|
4256 |
+
1
|
4257 |
+
1
|
4258 |
+
1
|
4259 |
+
1
|
4260 |
+
1
|
4261 |
+
1
|
4262 |
+
1
|
4263 |
+
1
|
4264 |
+
1
|
4265 |
+
1
|
4266 |
+
1
|
4267 |
+
1
|
4268 |
+
1
|
4269 |
+
1
|
4270 |
+
1
|
4271 |
+
1
|
4272 |
+
1
|
4273 |
+
1
|
4274 |
+
1
|
4275 |
+
1
|
4276 |
+
1
|
4277 |
+
1
|
4278 |
+
1
|
4279 |
+
1
|
4280 |
+
1
|
4281 |
+
1
|
4282 |
+
1
|
4283 |
+
1
|
4284 |
+
1
|
4285 |
+
1
|
4286 |
+
1
|
4287 |
+
1
|
4288 |
+
1
|
4289 |
+
1
|
4290 |
+
1
|
4291 |
+
1
|
4292 |
+
1
|
4293 |
+
1
|
4294 |
+
1
|
4295 |
+
1
|
4296 |
+
1
|
4297 |
+
1
|
4298 |
+
1
|
4299 |
+
2
|
4300 |
+
1
|
4301 |
+
1
|
4302 |
+
1
|
4303 |
+
1
|
4304 |
+
1
|
4305 |
+
1
|
4306 |
+
1
|
4307 |
+
1
|
4308 |
+
2
|
4309 |
+
1
|
4310 |
+
1
|
4311 |
+
1
|
4312 |
+
1
|
4313 |
+
1
|
4314 |
+
1
|
4315 |
+
1
|
4316 |
+
1
|
4317 |
+
1
|
4318 |
+
2
|
4319 |
+
2
|
4320 |
+
2
|
4321 |
+
2
|
4322 |
+
1
|
4323 |
+
1
|
4324 |
+
1
|
4325 |
+
1
|
4326 |
+
1
|
4327 |
+
1
|
4328 |
+
1
|
4329 |
+
1
|
4330 |
+
1
|
4331 |
+
1
|
4332 |
+
1
|
4333 |
+
1
|
4334 |
+
1
|
4335 |
+
1
|
4336 |
+
1
|
4337 |
+
1
|
4338 |
+
1
|
4339 |
+
1
|
4340 |
+
1
|
4341 |
+
1
|
4342 |
+
1
|
4343 |
+
1
|
4344 |
+
1
|
4345 |
+
1
|
4346 |
+
1
|
4347 |
+
1
|
4348 |
+
1
|
4349 |
+
1
|
4350 |
+
1
|
4351 |
+
1
|
4352 |
+
1
|
4353 |
+
1
|
4354 |
+
1
|
4355 |
+
1
|
4356 |
+
1
|
4357 |
+
1
|
4358 |
+
1
|
4359 |
+
1
|
4360 |
+
1
|
4361 |
+
1
|
4362 |
+
1
|
4363 |
+
1
|
4364 |
+
1
|
4365 |
+
1
|
4366 |
+
1
|
4367 |
+
1
|
4368 |
+
1
|
4369 |
+
1
|
4370 |
+
1
|
4371 |
+
1
|
4372 |
+
1
|
4373 |
+
1
|
4374 |
+
1
|
4375 |
+
1
|
4376 |
+
1
|
4377 |
+
1
|
4378 |
+
1
|
4379 |
+
1
|
4380 |
+
1
|
4381 |
+
1
|
4382 |
+
1
|
4383 |
+
2
|
4384 |
+
1
|
4385 |
+
1
|
4386 |
+
1
|
4387 |
+
1
|
4388 |
+
1
|
4389 |
+
1
|
4390 |
+
1
|
4391 |
+
1
|
4392 |
+
1
|
4393 |
+
1
|
4394 |
+
1
|
4395 |
+
1
|
4396 |
+
1
|
4397 |
+
1
|
4398 |
+
1
|
4399 |
+
1
|
4400 |
+
2
|
4401 |
+
1
|
4402 |
+
2
|
4403 |
+
1
|
4404 |
+
1
|
4405 |
+
1
|
4406 |
+
1
|
4407 |
+
1
|
4408 |
+
2
|
4409 |
+
1
|
4410 |
+
1
|
4411 |
+
1
|
4412 |
+
1
|
4413 |
+
1
|
4414 |
+
1
|
4415 |
+
1
|
4416 |
+
1
|
4417 |
+
2
|
4418 |
+
1
|
4419 |
+
1
|
4420 |
+
1
|
4421 |
+
1
|
4422 |
+
1
|
4423 |
+
1
|
4424 |
+
2
|
4425 |
+
1
|
4426 |
+
1
|
4427 |
+
1
|
4428 |
+
1
|
4429 |
+
1
|
4430 |
+
1
|
4431 |
+
1
|
4432 |
+
1
|
4433 |
+
1
|
4434 |
+
1
|
4435 |
+
1
|
4436 |
+
1
|
4437 |
+
1
|
4438 |
+
1
|
4439 |
+
1
|
4440 |
+
1
|
4441 |
+
1
|
4442 |
+
1
|
4443 |
+
1
|
4444 |
+
1
|
4445 |
+
1
|
4446 |
+
1
|
4447 |
+
1
|
4448 |
+
1
|
4449 |
+
1
|
4450 |
+
1
|
4451 |
+
1
|
4452 |
+
1
|
4453 |
+
1
|
4454 |
+
1
|
4455 |
+
1
|
4456 |
+
1
|
4457 |
+
1
|
4458 |
+
1
|
4459 |
+
1
|
4460 |
+
1
|
4461 |
+
1
|
4462 |
+
1
|
4463 |
+
1
|
4464 |
+
1
|
4465 |
+
1
|
4466 |
+
1
|
4467 |
+
1
|
4468 |
+
1
|
4469 |
+
1
|
4470 |
+
1
|
4471 |
+
1
|
4472 |
+
1
|
4473 |
+
1
|
4474 |
+
1
|
4475 |
+
1
|
4476 |
+
1
|
4477 |
+
1
|
4478 |
+
1
|
4479 |
+
1
|
4480 |
+
1
|
4481 |
+
1
|
4482 |
+
1
|
4483 |
+
1
|
4484 |
+
1
|
4485 |
+
2
|
4486 |
+
1
|
4487 |
+
1
|
4488 |
+
1
|
4489 |
+
1
|
4490 |
+
1
|
4491 |
+
1
|
4492 |
+
2
|
4493 |
+
1
|
4494 |
+
2
|
4495 |
+
1
|
4496 |
+
1
|
4497 |
+
1
|
4498 |
+
1
|
4499 |
+
1
|
4500 |
+
1
|
4501 |
+
1
|
4502 |
+
1
|
4503 |
+
1
|
4504 |
+
1
|
4505 |
+
1
|
4506 |
+
1
|
4507 |
+
1
|
4508 |
+
1
|
4509 |
+
1
|
4510 |
+
1
|
4511 |
+
1
|
4512 |
+
1
|
4513 |
+
1
|
4514 |
+
1
|
4515 |
+
1
|
4516 |
+
1
|
4517 |
+
1
|
4518 |
+
2
|
4519 |
+
1
|
4520 |
+
1
|
4521 |
+
1
|
4522 |
+
1
|
4523 |
+
1
|
4524 |
+
1
|
4525 |
+
1
|
4526 |
+
2
|
4527 |
+
1
|
4528 |
+
1
|
4529 |
+
1
|
4530 |
+
1
|
4531 |
+
1
|
4532 |
+
1
|
4533 |
+
1
|
4534 |
+
1
|
4535 |
+
1
|
4536 |
+
1
|
4537 |
+
1
|
4538 |
+
1
|
4539 |
+
2
|
4540 |
+
1
|
4541 |
+
1
|
4542 |
+
1
|
4543 |
+
1
|
4544 |
+
1
|
4545 |
+
1
|
4546 |
+
1
|
4547 |
+
1
|
4548 |
+
1
|
4549 |
+
1
|
4550 |
+
1
|
4551 |
+
1
|
4552 |
+
1
|
4553 |
+
1
|
4554 |
+
1
|
4555 |
+
1
|
4556 |
+
1
|
4557 |
+
1
|
4558 |
+
1
|
4559 |
+
1
|
4560 |
+
1
|
4561 |
+
1
|
4562 |
+
1
|
4563 |
+
1
|
4564 |
+
1
|
4565 |
+
1
|
4566 |
+
1
|
4567 |
+
1
|
4568 |
+
1
|
4569 |
+
1
|
4570 |
+
1
|
4571 |
+
1
|
4572 |
+
1
|
4573 |
+
1
|
4574 |
+
1
|
4575 |
+
1
|
4576 |
+
1
|
4577 |
+
1
|
4578 |
+
1
|
4579 |
+
2
|
4580 |
+
1
|
4581 |
+
1
|
4582 |
+
1
|
4583 |
+
1
|
4584 |
+
1
|
4585 |
+
1
|
4586 |
+
1
|
4587 |
+
1
|
4588 |
+
1
|
4589 |
+
1
|
4590 |
+
1
|
4591 |
+
1
|
4592 |
+
1
|
4593 |
+
1
|
4594 |
+
1
|
4595 |
+
1
|
4596 |
+
1
|
4597 |
+
1
|
4598 |
+
1
|
4599 |
+
1
|
4600 |
+
1
|
4601 |
+
1
|
4602 |
+
1
|
4603 |
+
1
|
4604 |
+
1
|
4605 |
+
1
|
4606 |
+
1
|
4607 |
+
2
|
4608 |
+
1
|
4609 |
+
1
|
4610 |
+
2
|
4611 |
+
1
|
4612 |
+
1
|
4613 |
+
1
|
4614 |
+
1
|
4615 |
+
1
|
4616 |
+
1
|
4617 |
+
1
|
4618 |
+
1
|
4619 |
+
1
|
4620 |
+
1
|
4621 |
+
2
|
4622 |
+
1
|
4623 |
+
1
|
4624 |
+
2
|
4625 |
+
1
|
4626 |
+
1
|
4627 |
+
1
|
4628 |
+
1
|
4629 |
+
1
|
4630 |
+
1
|
4631 |
+
1
|
4632 |
+
1
|
4633 |
+
1
|
4634 |
+
1
|
4635 |
+
1
|
4636 |
+
1
|
4637 |
+
1
|
4638 |
+
2
|
4639 |
+
1
|
4640 |
+
1
|
4641 |
+
1
|
4642 |
+
1
|
4643 |
+
1
|
4644 |
+
1
|
4645 |
+
1
|
4646 |
+
1
|
4647 |
+
2
|
4648 |
+
1
|
4649 |
+
1
|
4650 |
+
1
|
4651 |
+
1
|
4652 |
+
1
|
4653 |
+
1
|
4654 |
+
1
|
4655 |
+
1
|
4656 |
+
1
|
4657 |
+
1
|
4658 |
+
1
|
4659 |
+
1
|
4660 |
+
1
|
4661 |
+
1
|
4662 |
+
1
|
4663 |
+
2
|
4664 |
+
1
|
4665 |
+
1
|
4666 |
+
1
|
4667 |
+
1
|
4668 |
+
1
|
4669 |
+
2
|
4670 |
+
1
|
4671 |
+
1
|
4672 |
+
1
|
4673 |
+
1
|
4674 |
+
1
|
4675 |
+
1
|
4676 |
+
1
|
4677 |
+
1
|
4678 |
+
1
|
4679 |
+
1
|
4680 |
+
1
|
4681 |
+
1
|
4682 |
+
1
|
4683 |
+
1
|
4684 |
+
1
|
4685 |
+
1
|
4686 |
+
1
|
4687 |
+
1
|
4688 |
+
1
|
4689 |
+
1
|
4690 |
+
1
|
4691 |
+
1
|
4692 |
+
1
|
4693 |
+
1
|
4694 |
+
1
|
4695 |
+
1
|
4696 |
+
1
|
4697 |
+
1
|
4698 |
+
1
|
4699 |
+
1
|
4700 |
+
1
|
4701 |
+
1
|
4702 |
+
1
|
4703 |
+
1
|
4704 |
+
1
|
4705 |
+
1
|
4706 |
+
1
|
4707 |
+
1
|
4708 |
+
1
|
4709 |
+
1
|
4710 |
+
1
|
4711 |
+
1
|
4712 |
+
1
|
4713 |
+
1
|
4714 |
+
1
|
4715 |
+
1
|
4716 |
+
1
|
4717 |
+
2
|
4718 |
+
1
|
4719 |
+
1
|
4720 |
+
1
|
4721 |
+
1
|
4722 |
+
1
|
4723 |
+
1
|
4724 |
+
1
|
4725 |
+
1
|
4726 |
+
1
|
4727 |
+
1
|
4728 |
+
1
|
4729 |
+
1
|
4730 |
+
1
|
4731 |
+
1
|
4732 |
+
1
|
4733 |
+
1
|
4734 |
+
1
|
4735 |
+
1
|
4736 |
+
1
|
4737 |
+
1
|
4738 |
+
1
|
4739 |
+
1
|
4740 |
+
2
|
4741 |
+
1
|
4742 |
+
1
|
4743 |
+
1
|
4744 |
+
1
|
4745 |
+
1
|
4746 |
+
1
|
4747 |
+
1
|
4748 |
+
2
|
4749 |
+
1
|
4750 |
+
1
|
4751 |
+
1
|
4752 |
+
1
|
4753 |
+
1
|
4754 |
+
1
|
4755 |
+
1
|
4756 |
+
1
|
4757 |
+
1
|
4758 |
+
1
|
4759 |
+
1
|
4760 |
+
1
|
4761 |
+
1
|
4762 |
+
1
|
4763 |
+
1
|
4764 |
+
1
|
4765 |
+
1
|
4766 |
+
1
|
4767 |
+
1
|
4768 |
+
1
|
4769 |
+
1
|
4770 |
+
1
|
4771 |
+
2
|
4772 |
+
1
|
4773 |
+
1
|
4774 |
+
1
|
4775 |
+
2
|
4776 |
+
1
|
4777 |
+
2
|
4778 |
+
1
|
4779 |
+
1
|
4780 |
+
1
|
4781 |
+
1
|
4782 |
+
1
|
4783 |
+
1
|
4784 |
+
1
|
4785 |
+
1
|
4786 |
+
2
|
4787 |
+
1
|
4788 |
+
1
|
4789 |
+
1
|
4790 |
+
1
|
4791 |
+
1
|
4792 |
+
1
|
4793 |
+
1
|
4794 |
+
1
|
4795 |
+
1
|
4796 |
+
1
|
4797 |
+
1
|
4798 |
+
1
|
4799 |
+
1
|
4800 |
+
1
|
4801 |
+
2
|
4802 |
+
1
|
4803 |
+
1
|
4804 |
+
1
|
4805 |
+
1
|
4806 |
+
1
|
4807 |
+
1
|
4808 |
+
1
|
4809 |
+
1
|
4810 |
+
1
|
4811 |
+
1
|
4812 |
+
1
|
4813 |
+
1
|
4814 |
+
1
|
4815 |
+
1
|
4816 |
+
1
|
4817 |
+
1
|
4818 |
+
1
|
4819 |
+
1
|
4820 |
+
1
|
4821 |
+
1
|
4822 |
+
1
|
4823 |
+
1
|
4824 |
+
1
|
4825 |
+
1
|
4826 |
+
1
|
4827 |
+
1
|
4828 |
+
1
|
4829 |
+
1
|
4830 |
+
1
|
4831 |
+
1
|
4832 |
+
1
|
4833 |
+
1
|
4834 |
+
1
|
4835 |
+
1
|
4836 |
+
1
|
4837 |
+
1
|
4838 |
+
1
|
4839 |
+
1
|
4840 |
+
1
|
4841 |
+
1
|
4842 |
+
1
|
4843 |
+
1
|
4844 |
+
1
|
4845 |
+
1
|
4846 |
+
2
|
4847 |
+
1
|
4848 |
+
1
|
4849 |
+
1
|
4850 |
+
1
|
4851 |
+
1
|
4852 |
+
1
|
4853 |
+
1
|
4854 |
+
1
|
4855 |
+
1
|
4856 |
+
1
|
4857 |
+
1
|
4858 |
+
1
|
4859 |
+
1
|
4860 |
+
1
|
4861 |
+
1
|
4862 |
+
1
|
4863 |
+
1
|
4864 |
+
2
|
4865 |
+
1
|
4866 |
+
1
|
4867 |
+
1
|
4868 |
+
1
|
4869 |
+
1
|
4870 |
+
1
|
4871 |
+
1
|
4872 |
+
1
|
4873 |
+
1
|
4874 |
+
1
|
4875 |
+
1
|
4876 |
+
1
|
4877 |
+
1
|
4878 |
+
1
|
4879 |
+
1
|
4880 |
+
1
|
4881 |
+
1
|
4882 |
+
1
|
4883 |
+
1
|
4884 |
+
1
|
4885 |
+
1
|
4886 |
+
1
|
4887 |
+
1
|
4888 |
+
1
|
4889 |
+
1
|
4890 |
+
1
|
4891 |
+
1
|
4892 |
+
2
|
4893 |
+
1
|
4894 |
+
1
|
4895 |
+
1
|
4896 |
+
1
|
4897 |
+
1
|
4898 |
+
1
|
4899 |
+
1
|
4900 |
+
1
|
4901 |
+
1
|
4902 |
+
1
|
4903 |
+
1
|
4904 |
+
1
|
4905 |
+
2
|
4906 |
+
1
|
4907 |
+
1
|
4908 |
+
1
|
4909 |
+
1
|
4910 |
+
1
|
4911 |
+
1
|
4912 |
+
1
|
4913 |
+
1
|
4914 |
+
1
|
4915 |
+
1
|
4916 |
+
1
|
4917 |
+
1
|
4918 |
+
1
|
4919 |
+
1
|
4920 |
+
1
|
4921 |
+
1
|
4922 |
+
1
|
4923 |
+
2
|
4924 |
+
1
|
4925 |
+
1
|
4926 |
+
2
|
4927 |
+
1
|
4928 |
+
1
|
4929 |
+
1
|
4930 |
+
1
|
4931 |
+
1
|
4932 |
+
1
|
4933 |
+
1
|
4934 |
+
1
|
4935 |
+
1
|
4936 |
+
1
|
4937 |
+
1
|
4938 |
+
1
|
4939 |
+
1
|
4940 |
+
1
|
4941 |
+
1
|
4942 |
+
1
|
4943 |
+
1
|
4944 |
+
1
|
4945 |
+
1
|
4946 |
+
1
|
4947 |
+
1
|
4948 |
+
1
|
4949 |
+
1
|
4950 |
+
1
|
4951 |
+
1
|
4952 |
+
1
|
4953 |
+
1
|
4954 |
+
1
|
4955 |
+
1
|
4956 |
+
1
|
4957 |
+
2
|
4958 |
+
1
|
4959 |
+
1
|
4960 |
+
1
|
4961 |
+
1
|
4962 |
+
1
|
4963 |
+
1
|
4964 |
+
2
|
4965 |
+
2
|
4966 |
+
1
|
4967 |
+
1
|
4968 |
+
1
|
4969 |
+
1
|
4970 |
+
1
|
4971 |
+
1
|
4972 |
+
1
|
4973 |
+
1
|
4974 |
+
1
|
4975 |
+
1
|
4976 |
+
1
|
4977 |
+
1
|
4978 |
+
1
|
4979 |
+
1
|
4980 |
+
1
|
4981 |
+
1
|
4982 |
+
1
|
4983 |
+
1
|
4984 |
+
1
|
4985 |
+
1
|
4986 |
+
1
|
4987 |
+
1
|
4988 |
+
1
|
4989 |
+
1
|
4990 |
+
1
|
4991 |
+
1
|
4992 |
+
1
|
4993 |
+
1
|
4994 |
+
1
|
4995 |
+
2
|
4996 |
+
1
|
4997 |
+
1
|
4998 |
+
1
|
4999 |
+
1
|
5000 |
+
1
|
5001 |
+
1
|
5002 |
+
1
|
5003 |
+
1
|
5004 |
+
1
|
5005 |
+
1
|
5006 |
+
1
|
5007 |
+
1
|
5008 |
+
1
|
5009 |
+
1
|
5010 |
+
1
|
5011 |
+
1
|
5012 |
+
2
|
5013 |
+
1
|
5014 |
+
1
|
5015 |
+
1
|
5016 |
+
1
|
5017 |
+
1
|
5018 |
+
1
|
5019 |
+
1
|
5020 |
+
2
|
5021 |
+
1
|
5022 |
+
1
|
5023 |
+
1
|
5024 |
+
1
|
5025 |
+
1
|
5026 |
+
1
|
5027 |
+
1
|
5028 |
+
1
|
5029 |
+
1
|
5030 |
+
1
|
5031 |
+
1
|
5032 |
+
1
|
5033 |
+
1
|
5034 |
+
1
|
5035 |
+
1
|
5036 |
+
1
|
5037 |
+
2
|
5038 |
+
1
|
5039 |
+
2
|
5040 |
+
1
|
5041 |
+
1
|
5042 |
+
2
|
5043 |
+
1
|
5044 |
+
1
|
5045 |
+
1
|
5046 |
+
1
|
5047 |
+
1
|
5048 |
+
1
|
5049 |
+
1
|
5050 |
+
1
|
5051 |
+
1
|
5052 |
+
1
|
5053 |
+
1
|
5054 |
+
1
|
5055 |
+
1
|
5056 |
+
2
|
5057 |
+
1
|
5058 |
+
1
|
5059 |
+
1
|
5060 |
+
1
|
5061 |
+
1
|
5062 |
+
1
|
5063 |
+
1
|
5064 |
+
1
|
5065 |
+
1
|
5066 |
+
1
|
5067 |
+
1
|
5068 |
+
1
|
5069 |
+
1
|
5070 |
+
1
|
5071 |
+
1
|
5072 |
+
1
|
5073 |
+
1
|
5074 |
+
1
|
5075 |
+
1
|
5076 |
+
1
|
5077 |
+
1
|
5078 |
+
1
|
5079 |
+
1
|
5080 |
+
1
|
5081 |
+
1
|
5082 |
+
1
|
5083 |
+
1
|
5084 |
+
1
|
5085 |
+
1
|
5086 |
+
1
|
5087 |
+
1
|
5088 |
+
1
|
5089 |
+
1
|
5090 |
+
1
|
5091 |
+
1
|
5092 |
+
1
|
5093 |
+
1
|
5094 |
+
1
|
5095 |
+
1
|
5096 |
+
1
|
5097 |
+
1
|
5098 |
+
1
|
5099 |
+
1
|
5100 |
+
1
|
5101 |
+
1
|
5102 |
+
1
|
5103 |
+
1
|
5104 |
+
1
|
5105 |
+
1
|
5106 |
+
1
|
5107 |
+
1
|
5108 |
+
1
|
5109 |
+
1
|
5110 |
+
1
|
5111 |
+
1
|
5112 |
+
1
|
5113 |
+
1
|
5114 |
+
1
|
5115 |
+
1
|
5116 |
+
1
|
5117 |
+
1
|
5118 |
+
1
|
5119 |
+
2
|
5120 |
+
1
|
5121 |
+
1
|
5122 |
+
1
|
5123 |
+
2
|
5124 |
+
1
|
5125 |
+
1
|
5126 |
+
1
|
5127 |
+
1
|
5128 |
+
1
|
5129 |
+
1
|
5130 |
+
1
|
5131 |
+
2
|
5132 |
+
1
|
5133 |
+
1
|
5134 |
+
1
|
5135 |
+
1
|
5136 |
+
1
|
5137 |
+
1
|
5138 |
+
1
|
5139 |
+
1
|
5140 |
+
1
|
5141 |
+
1
|
5142 |
+
1
|
5143 |
+
1
|
5144 |
+
1
|
5145 |
+
1
|
5146 |
+
1
|
5147 |
+
1
|
5148 |
+
1
|
5149 |
+
1
|
5150 |
+
1
|
5151 |
+
1
|
5152 |
+
1
|
5153 |
+
1
|
5154 |
+
1
|
5155 |
+
1
|
5156 |
+
1
|
5157 |
+
1
|
5158 |
+
1
|
5159 |
+
1
|
5160 |
+
1
|
5161 |
+
1
|
5162 |
+
1
|
5163 |
+
2
|
5164 |
+
1
|
5165 |
+
2
|
5166 |
+
1
|
5167 |
+
1
|
5168 |
+
1
|
5169 |
+
1
|
5170 |
+
1
|
5171 |
+
1
|
5172 |
+
1
|
5173 |
+
1
|
5174 |
+
1
|
5175 |
+
1
|
5176 |
+
1
|
5177 |
+
1
|
5178 |
+
1
|
5179 |
+
2
|
5180 |
+
1
|
5181 |
+
1
|
5182 |
+
1
|
5183 |
+
1
|
5184 |
+
1
|
5185 |
+
1
|
5186 |
+
1
|
5187 |
+
1
|
5188 |
+
1
|
5189 |
+
1
|
5190 |
+
1
|
5191 |
+
1
|
5192 |
+
1
|
5193 |
+
1
|
5194 |
+
1
|
5195 |
+
1
|
5196 |
+
1
|
5197 |
+
2
|
5198 |
+
1
|
5199 |
+
1
|
5200 |
+
1
|
5201 |
+
1
|
5202 |
+
1
|
5203 |
+
1
|
5204 |
+
1
|
5205 |
+
1
|
5206 |
+
1
|
5207 |
+
1
|
5208 |
+
1
|
5209 |
+
1
|
5210 |
+
1
|
5211 |
+
1
|
5212 |
+
1
|
5213 |
+
1
|
5214 |
+
1
|
5215 |
+
1
|
5216 |
+
1
|
5217 |
+
1
|
5218 |
+
1
|
5219 |
+
1
|
5220 |
+
1
|
5221 |
+
1
|
5222 |
+
1
|
5223 |
+
1
|
5224 |
+
1
|
5225 |
+
1
|
5226 |
+
1
|
5227 |
+
1
|
5228 |
+
2
|
5229 |
+
1
|
5230 |
+
1
|
5231 |
+
1
|
5232 |
+
1
|
5233 |
+
1
|
5234 |
+
1
|
5235 |
+
1
|
5236 |
+
1
|
5237 |
+
1
|
5238 |
+
1
|
5239 |
+
1
|
5240 |
+
1
|
5241 |
+
1
|
5242 |
+
1
|
5243 |
+
1
|
5244 |
+
1
|
5245 |
+
1
|
5246 |
+
1
|
5247 |
+
1
|
5248 |
+
1
|
5249 |
+
1
|
5250 |
+
1
|
5251 |
+
1
|
5252 |
+
1
|
5253 |
+
1
|
5254 |
+
1
|
5255 |
+
1
|
5256 |
+
1
|
5257 |
+
1
|
5258 |
+
1
|
5259 |
+
1
|
5260 |
+
1
|
5261 |
+
1
|
5262 |
+
1
|
5263 |
+
1
|
5264 |
+
1
|
5265 |
+
1
|
5266 |
+
1
|
5267 |
+
2
|
5268 |
+
1
|
5269 |
+
1
|
5270 |
+
1
|
5271 |
+
2
|
5272 |
+
1
|
5273 |
+
1
|
5274 |
+
2
|
5275 |
+
1
|
5276 |
+
1
|
5277 |
+
1
|
5278 |
+
1
|
5279 |
+
1
|
5280 |
+
2
|
5281 |
+
1
|
5282 |
+
1
|
5283 |
+
1
|
5284 |
+
1
|
5285 |
+
1
|
5286 |
+
1
|
5287 |
+
1
|
5288 |
+
1
|
5289 |
+
1
|
5290 |
+
1
|
5291 |
+
1
|
5292 |
+
1
|
5293 |
+
1
|
5294 |
+
1
|
5295 |
+
1
|
5296 |
+
1
|
5297 |
+
1
|
5298 |
+
1
|
5299 |
+
1
|
5300 |
+
2
|
5301 |
+
1
|
5302 |
+
1
|
5303 |
+
1
|
5304 |
+
1
|
5305 |
+
1
|
5306 |
+
1
|
5307 |
+
1
|
5308 |
+
1
|
5309 |
+
1
|
5310 |
+
1
|
5311 |
+
2
|
5312 |
+
1
|
5313 |
+
1
|
5314 |
+
1
|
5315 |
+
2
|
5316 |
+
1
|
5317 |
+
1
|
5318 |
+
1
|
5319 |
+
1
|
5320 |
+
1
|
5321 |
+
1
|
5322 |
+
1
|
5323 |
+
1
|
5324 |
+
1
|
5325 |
+
1
|
5326 |
+
1
|
5327 |
+
1
|
5328 |
+
1
|
5329 |
+
1
|
5330 |
+
1
|
5331 |
+
1
|
5332 |
+
1
|
5333 |
+
1
|
5334 |
+
1
|
5335 |
+
1
|
5336 |
+
1
|
5337 |
+
1
|
5338 |
+
1
|
5339 |
+
1
|
5340 |
+
1
|
5341 |
+
1
|
5342 |
+
1
|
5343 |
+
1
|
5344 |
+
1
|
5345 |
+
1
|
5346 |
+
1
|
5347 |
+
1
|
5348 |
+
1
|
5349 |
+
1
|
5350 |
+
1
|
5351 |
+
1
|
5352 |
+
1
|
5353 |
+
1
|
5354 |
+
1
|
5355 |
+
1
|
5356 |
+
1
|
5357 |
+
1
|
5358 |
+
1
|
5359 |
+
1
|
5360 |
+
1
|
5361 |
+
1
|
5362 |
+
1
|
5363 |
+
1
|
5364 |
+
2
|
5365 |
+
1
|
5366 |
+
1
|
5367 |
+
1
|
5368 |
+
1
|
5369 |
+
1
|
5370 |
+
1
|
5371 |
+
1
|
5372 |
+
1
|
5373 |
+
1
|
5374 |
+
1
|
5375 |
+
1
|
5376 |
+
2
|
5377 |
+
1
|
5378 |
+
1
|
5379 |
+
1
|
5380 |
+
1
|
5381 |
+
1
|
5382 |
+
1
|
5383 |
+
1
|
5384 |
+
1
|
5385 |
+
2
|
5386 |
+
1
|
5387 |
+
1
|
5388 |
+
1
|
5389 |
+
1
|
5390 |
+
1
|
5391 |
+
1
|
5392 |
+
1
|
5393 |
+
1
|
5394 |
+
2
|
5395 |
+
1
|
5396 |
+
1
|
5397 |
+
1
|
5398 |
+
1
|
5399 |
+
1
|
5400 |
+
1
|
5401 |
+
1
|
5402 |
+
1
|
5403 |
+
1
|
5404 |
+
1
|
5405 |
+
1
|
5406 |
+
1
|
5407 |
+
1
|
5408 |
+
1
|
5409 |
+
1
|
5410 |
+
1
|
5411 |
+
1
|
5412 |
+
1
|
5413 |
+
1
|
5414 |
+
1
|
5415 |
+
2
|
5416 |
+
1
|
5417 |
+
1
|
5418 |
+
2
|
5419 |
+
1
|
5420 |
+
1
|
5421 |
+
1
|
5422 |
+
1
|
5423 |
+
1
|
5424 |
+
1
|
5425 |
+
1
|
5426 |
+
1
|
5427 |
+
1
|
5428 |
+
1
|
5429 |
+
1
|
5430 |
+
1
|
5431 |
+
1
|
5432 |
+
1
|
5433 |
+
1
|
5434 |
+
2
|
5435 |
+
1
|
5436 |
+
1
|
5437 |
+
1
|
5438 |
+
1
|
5439 |
+
1
|
5440 |
+
1
|
5441 |
+
1
|
5442 |
+
1
|
5443 |
+
1
|
5444 |
+
1
|
5445 |
+
1
|
5446 |
+
1
|
5447 |
+
1
|
5448 |
+
1
|
5449 |
+
2
|
5450 |
+
1
|
5451 |
+
1
|
5452 |
+
1
|
5453 |
+
1
|
5454 |
+
1
|
5455 |
+
1
|
5456 |
+
1
|
5457 |
+
1
|
5458 |
+
1
|
5459 |
+
1
|
5460 |
+
1
|
5461 |
+
1
|
5462 |
+
1
|
5463 |
+
1
|
5464 |
+
1
|
5465 |
+
1
|
5466 |
+
1
|
5467 |
+
1
|
5468 |
+
1
|
5469 |
+
1
|
5470 |
+
1
|
5471 |
+
1
|
5472 |
+
1
|
5473 |
+
1
|
5474 |
+
1
|
5475 |
+
1
|
5476 |
+
1
|
5477 |
+
1
|
5478 |
+
1
|
5479 |
+
1
|
5480 |
+
1
|
5481 |
+
1
|
5482 |
+
1
|
5483 |
+
1
|
5484 |
+
1
|
5485 |
+
1
|
5486 |
+
1
|
5487 |
+
1
|
5488 |
+
1
|
5489 |
+
1
|
5490 |
+
1
|
5491 |
+
1
|
5492 |
+
1
|
5493 |
+
1
|
5494 |
+
1
|
5495 |
+
2
|
5496 |
+
1
|
5497 |
+
1
|
5498 |
+
1
|
5499 |
+
1
|
5500 |
+
1
|
5501 |
+
1
|
5502 |
+
1
|
5503 |
+
1
|
5504 |
+
1
|
5505 |
+
1
|
5506 |
+
2
|
5507 |
+
1
|
5508 |
+
1
|
5509 |
+
1
|
5510 |
+
2
|
5511 |
+
1
|
5512 |
+
1
|
5513 |
+
1
|
5514 |
+
1
|
5515 |
+
1
|
5516 |
+
1
|
5517 |
+
1
|
5518 |
+
1
|
5519 |
+
1
|
5520 |
+
1
|
5521 |
+
1
|
5522 |
+
1
|
5523 |
+
1
|
5524 |
+
1
|
5525 |
+
1
|
5526 |
+
2
|
5527 |
+
1
|
5528 |
+
1
|
5529 |
+
1
|
5530 |
+
1
|
5531 |
+
1
|
5532 |
+
1
|
5533 |
+
1
|
5534 |
+
1
|
5535 |
+
1
|
5536 |
+
1
|
5537 |
+
1
|
5538 |
+
1
|
5539 |
+
1
|
5540 |
+
1
|
5541 |
+
1
|
5542 |
+
1
|
5543 |
+
1
|
5544 |
+
1
|
5545 |
+
1
|
5546 |
+
1
|
5547 |
+
1
|
5548 |
+
1
|
5549 |
+
1
|
5550 |
+
1
|
5551 |
+
1
|
5552 |
+
1
|
5553 |
+
1
|
5554 |
+
1
|
5555 |
+
1
|
5556 |
+
1
|
5557 |
+
1
|
5558 |
+
1
|
5559 |
+
1
|
5560 |
+
1
|
5561 |
+
1
|
5562 |
+
1
|
5563 |
+
1
|
5564 |
+
1
|
5565 |
+
1
|
5566 |
+
1
|
5567 |
+
2
|
5568 |
+
1
|
5569 |
+
1
|
5570 |
+
1
|
5571 |
+
1
|
5572 |
+
1
|
5573 |
+
1
|
5574 |
+
1
|
5575 |
+
1
|
5576 |
+
1
|
5577 |
+
1
|
5578 |
+
1
|
5579 |
+
1
|
5580 |
+
1
|
5581 |
+
1
|
5582 |
+
2
|
5583 |
+
1
|
5584 |
+
1
|
5585 |
+
1
|
5586 |
+
1
|
5587 |
+
1
|
5588 |
+
1
|
5589 |
+
1
|
5590 |
+
1
|
5591 |
+
1
|
5592 |
+
1
|
5593 |
+
1
|
5594 |
+
1
|
5595 |
+
1
|
5596 |
+
1
|
5597 |
+
1
|
5598 |
+
1
|
5599 |
+
1
|
5600 |
+
1
|
5601 |
+
1
|
5602 |
+
1
|
5603 |
+
2
|
5604 |
+
1
|
5605 |
+
1
|
5606 |
+
1
|
5607 |
+
1
|
5608 |
+
1
|
5609 |
+
1
|
5610 |
+
2
|
5611 |
+
1
|
5612 |
+
1
|
5613 |
+
1
|
5614 |
+
1
|
5615 |
+
1
|
5616 |
+
1
|
5617 |
+
1
|
5618 |
+
1
|
5619 |
+
1
|
5620 |
+
1
|
5621 |
+
2
|
5622 |
+
1
|
5623 |
+
1
|
5624 |
+
1
|
5625 |
+
1
|
5626 |
+
1
|
5627 |
+
1
|
5628 |
+
1
|
5629 |
+
1
|
5630 |
+
1
|
5631 |
+
1
|
5632 |
+
1
|
5633 |
+
1
|
5634 |
+
1
|
5635 |
+
1
|
5636 |
+
1
|
5637 |
+
1
|
5638 |
+
1
|
5639 |
+
1
|
5640 |
+
1
|
5641 |
+
1
|
5642 |
+
1
|
5643 |
+
1
|
5644 |
+
1
|
5645 |
+
1
|
5646 |
+
1
|
5647 |
+
1
|
5648 |
+
1
|
5649 |
+
1
|
5650 |
+
1
|
5651 |
+
1
|
5652 |
+
1
|
5653 |
+
1
|
5654 |
+
2
|
5655 |
+
1
|
5656 |
+
1
|
5657 |
+
1
|
5658 |
+
1
|
5659 |
+
1
|
5660 |
+
1
|
5661 |
+
1
|
5662 |
+
1
|
5663 |
+
1
|
5664 |
+
1
|
5665 |
+
1
|
5666 |
+
1
|
5667 |
+
1
|
5668 |
+
1
|
5669 |
+
1
|
5670 |
+
1
|
5671 |
+
2
|
5672 |
+
1
|
5673 |
+
1
|
5674 |
+
1
|
5675 |
+
1
|
5676 |
+
1
|
5677 |
+
1
|
5678 |
+
1
|
5679 |
+
2
|
5680 |
+
1
|
5681 |
+
1
|
5682 |
+
1
|
5683 |
+
1
|
5684 |
+
1
|
5685 |
+
1
|
5686 |
+
1
|
5687 |
+
1
|
5688 |
+
1
|
5689 |
+
1
|
5690 |
+
1
|
5691 |
+
2
|
5692 |
+
1
|
5693 |
+
1
|
5694 |
+
1
|
5695 |
+
1
|
5696 |
+
1
|
5697 |
+
1
|
5698 |
+
1
|
5699 |
+
1
|
5700 |
+
1
|
5701 |
+
2
|
5702 |
+
1
|
5703 |
+
1
|
5704 |
+
2
|
5705 |
+
1
|
5706 |
+
1
|
5707 |
+
1
|
5708 |
+
1
|
5709 |
+
1
|
5710 |
+
1
|
5711 |
+
1
|
5712 |
+
1
|
5713 |
+
1
|
5714 |
+
1
|
5715 |
+
1
|
5716 |
+
1
|
5717 |
+
1
|
5718 |
+
1
|
5719 |
+
1
|
5720 |
+
1
|
5721 |
+
1
|
5722 |
+
1
|
5723 |
+
1
|
5724 |
+
1
|
5725 |
+
2
|
5726 |
+
1
|
5727 |
+
1
|
5728 |
+
1
|
5729 |
+
1
|
5730 |
+
1
|
5731 |
+
1
|
5732 |
+
1
|
5733 |
+
1
|
5734 |
+
1
|
5735 |
+
1
|
5736 |
+
1
|
5737 |
+
1
|
5738 |
+
1
|
5739 |
+
1
|
5740 |
+
1
|
5741 |
+
1
|
5742 |
+
1
|
5743 |
+
1
|
5744 |
+
1
|
5745 |
+
1
|
5746 |
+
1
|
5747 |
+
1
|
5748 |
+
1
|
5749 |
+
1
|
5750 |
+
1
|
5751 |
+
1
|
5752 |
+
1
|
5753 |
+
2
|
5754 |
+
1
|
5755 |
+
1
|
5756 |
+
1
|
5757 |
+
1
|
5758 |
+
1
|
5759 |
+
1
|
5760 |
+
1
|
5761 |
+
1
|
5762 |
+
1
|
5763 |
+
1
|
5764 |
+
1
|
5765 |
+
1
|
5766 |
+
2
|
5767 |
+
1
|
5768 |
+
1
|
5769 |
+
1
|
5770 |
+
1
|
5771 |
+
1
|
5772 |
+
1
|
5773 |
+
1
|
5774 |
+
1
|
5775 |
+
1
|
5776 |
+
1
|
5777 |
+
1
|
5778 |
+
1
|
5779 |
+
1
|
5780 |
+
1
|
5781 |
+
1
|
5782 |
+
1
|
5783 |
+
1
|
5784 |
+
1
|
5785 |
+
1
|
5786 |
+
1
|
5787 |
+
1
|
5788 |
+
1
|
5789 |
+
1
|
5790 |
+
1
|
5791 |
+
1
|
5792 |
+
1
|
5793 |
+
1
|
5794 |
+
1
|
5795 |
+
1
|
5796 |
+
1
|
5797 |
+
1
|
5798 |
+
1
|
5799 |
+
1
|
5800 |
+
1
|
5801 |
+
1
|
5802 |
+
1
|
5803 |
+
1
|
5804 |
+
2
|
5805 |
+
1
|
5806 |
+
1
|
5807 |
+
1
|
5808 |
+
1
|
5809 |
+
1
|
5810 |
+
1
|
5811 |
+
1
|
5812 |
+
2
|
5813 |
+
1
|
5814 |
+
1
|
5815 |
+
1
|
5816 |
+
1
|
5817 |
+
1
|
5818 |
+
1
|
5819 |
+
1
|
5820 |
+
1
|
5821 |
+
1
|
5822 |
+
1
|
5823 |
+
1
|
5824 |
+
1
|
5825 |
+
1
|
5826 |
+
1
|
5827 |
+
1
|
5828 |
+
1
|
5829 |
+
1
|
5830 |
+
1
|
5831 |
+
1
|
5832 |
+
1
|
5833 |
+
1
|
5834 |
+
1
|
5835 |
+
1
|
5836 |
+
1
|
5837 |
+
1
|
5838 |
+
1
|
5839 |
+
1
|
5840 |
+
1
|
5841 |
+
1
|
5842 |
+
1
|
5843 |
+
1
|
5844 |
+
1
|
5845 |
+
1
|
5846 |
+
1
|
5847 |
+
1
|
5848 |
+
1
|
5849 |
+
1
|
5850 |
+
1
|
5851 |
+
1
|
5852 |
+
1
|
5853 |
+
1
|
5854 |
+
1
|
5855 |
+
1
|
5856 |
+
1
|
5857 |
+
1
|
5858 |
+
1
|
5859 |
+
1
|
5860 |
+
1
|
5861 |
+
2
|
5862 |
+
1
|
5863 |
+
1
|
5864 |
+
1
|
5865 |
+
1
|
5866 |
+
1
|
5867 |
+
1
|
5868 |
+
1
|
5869 |
+
1
|
5870 |
+
1
|
5871 |
+
1
|
5872 |
+
1
|
5873 |
+
1
|
5874 |
+
1
|
5875 |
+
1
|
5876 |
+
1
|
5877 |
+
1
|
5878 |
+
1
|
5879 |
+
1
|
5880 |
+
1
|
5881 |
+
1
|
5882 |
+
2
|
5883 |
+
1
|
5884 |
+
1
|
5885 |
+
1
|
5886 |
+
1
|
5887 |
+
1
|
5888 |
+
1
|
5889 |
+
1
|
5890 |
+
1
|
5891 |
+
1
|
5892 |
+
1
|
5893 |
+
1
|
5894 |
+
1
|
5895 |
+
1
|
5896 |
+
2
|
5897 |
+
1
|
5898 |
+
1
|
5899 |
+
1
|
5900 |
+
1
|
5901 |
+
1
|
5902 |
+
1
|
5903 |
+
1
|
5904 |
+
1
|
5905 |
+
1
|
5906 |
+
1
|
5907 |
+
1
|
5908 |
+
1
|
5909 |
+
1
|
5910 |
+
1
|
5911 |
+
1
|
5912 |
+
1
|
5913 |
+
2
|
5914 |
+
1
|
5915 |
+
1
|
5916 |
+
2
|
5917 |
+
1
|
5918 |
+
1
|
5919 |
+
1
|
5920 |
+
1
|
5921 |
+
1
|
5922 |
+
1
|
5923 |
+
1
|
5924 |
+
1
|
5925 |
+
1
|
5926 |
+
1
|
5927 |
+
1
|
5928 |
+
1
|
5929 |
+
1
|
5930 |
+
1
|
5931 |
+
1
|
5932 |
+
1
|
5933 |
+
1
|
5934 |
+
1
|
5935 |
+
1
|
5936 |
+
1
|
5937 |
+
1
|
5938 |
+
1
|
5939 |
+
1
|
5940 |
+
1
|
5941 |
+
2
|
5942 |
+
1
|
5943 |
+
1
|
5944 |
+
1
|
5945 |
+
1
|
5946 |
+
1
|
5947 |
+
1
|
5948 |
+
1
|
5949 |
+
1
|
5950 |
+
1
|
5951 |
+
1
|
5952 |
+
1
|
5953 |
+
2
|
5954 |
+
1
|
5955 |
+
1
|
5956 |
+
1
|
5957 |
+
1
|
5958 |
+
1
|
5959 |
+
1
|
5960 |
+
1
|
5961 |
+
1
|
5962 |
+
1
|
5963 |
+
1
|
5964 |
+
1
|
5965 |
+
1
|
5966 |
+
1
|
5967 |
+
2
|
5968 |
+
1
|
5969 |
+
1
|
5970 |
+
1
|
5971 |
+
1
|
5972 |
+
1
|
5973 |
+
1
|
5974 |
+
1
|
5975 |
+
1
|
5976 |
+
1
|
5977 |
+
1
|
5978 |
+
2
|
5979 |
+
1
|
5980 |
+
1
|
5981 |
+
1
|
5982 |
+
1
|
5983 |
+
1
|
5984 |
+
1
|
5985 |
+
1
|
5986 |
+
1
|
5987 |
+
1
|
5988 |
+
1
|
5989 |
+
2
|
5990 |
+
1
|
5991 |
+
1
|
5992 |
+
1
|
5993 |
+
1
|
5994 |
+
1
|
5995 |
+
1
|
5996 |
+
1
|
5997 |
+
1
|
5998 |
+
1
|
5999 |
+
1
|
6000 |
+
1
|
6001 |
+
1
|
6002 |
+
1
|
6003 |
+
1
|
6004 |
+
1
|
6005 |
+
1
|
6006 |
+
1
|
6007 |
+
1
|
6008 |
+
2
|
6009 |
+
1
|
6010 |
+
1
|
6011 |
+
1
|
6012 |
+
1
|
6013 |
+
1
|
6014 |
+
1
|
6015 |
+
1
|
6016 |
+
1
|
6017 |
+
1
|
6018 |
+
1
|
6019 |
+
1
|
6020 |
+
1
|
6021 |
+
1
|
6022 |
+
1
|
6023 |
+
1
|
6024 |
+
1
|
6025 |
+
1
|
6026 |
+
1
|
6027 |
+
1
|
6028 |
+
1
|
6029 |
+
1
|
6030 |
+
1
|
6031 |
+
1
|
6032 |
+
1
|
6033 |
+
1
|
6034 |
+
1
|
6035 |
+
1
|
6036 |
+
1
|
6037 |
+
1
|
6038 |
+
2
|
6039 |
+
1
|
6040 |
+
1
|
6041 |
+
1
|
6042 |
+
1
|
6043 |
+
1
|
6044 |
+
1
|
6045 |
+
1
|
6046 |
+
1
|
6047 |
+
1
|
6048 |
+
1
|
6049 |
+
1
|
6050 |
+
1
|
6051 |
+
1
|
6052 |
+
1
|
6053 |
+
1
|
6054 |
+
1
|
6055 |
+
1
|
6056 |
+
1
|
6057 |
+
1
|
6058 |
+
1
|
6059 |
+
1
|
6060 |
+
1
|
6061 |
+
1
|
6062 |
+
2
|
6063 |
+
1
|
6064 |
+
1
|
6065 |
+
1
|
6066 |
+
1
|
6067 |
+
1
|
6068 |
+
1
|
6069 |
+
1
|
6070 |
+
2
|
6071 |
+
1
|
6072 |
+
1
|
6073 |
+
1
|
6074 |
+
1
|
6075 |
+
1
|
6076 |
+
1
|
6077 |
+
1
|
6078 |
+
1
|
6079 |
+
1
|
6080 |
+
1
|
6081 |
+
2
|
6082 |
+
1
|
6083 |
+
1
|
6084 |
+
1
|
6085 |
+
1
|
6086 |
+
1
|
6087 |
+
1
|
6088 |
+
1
|
6089 |
+
1
|
6090 |
+
1
|
6091 |
+
1
|
6092 |
+
1
|
6093 |
+
1
|
6094 |
+
1
|
6095 |
+
1
|
6096 |
+
1
|
6097 |
+
1
|
6098 |
+
1
|
6099 |
+
1
|
6100 |
+
1
|
6101 |
+
1
|
6102 |
+
1
|
6103 |
+
1
|
6104 |
+
1
|
6105 |
+
1
|
6106 |
+
1
|
6107 |
+
1
|
6108 |
+
1
|
6109 |
+
1
|
6110 |
+
1
|
6111 |
+
1
|
6112 |
+
2
|
6113 |
+
1
|
6114 |
+
1
|
6115 |
+
1
|
6116 |
+
1
|
6117 |
+
1
|
6118 |
+
1
|
6119 |
+
1
|
6120 |
+
1
|
6121 |
+
1
|
6122 |
+
1
|
6123 |
+
1
|
6124 |
+
1
|
6125 |
+
1
|
6126 |
+
1
|
6127 |
+
1
|
6128 |
+
2
|
6129 |
+
1
|
6130 |
+
1
|
6131 |
+
1
|
6132 |
+
1
|
6133 |
+
1
|
6134 |
+
1
|
6135 |
+
1
|
6136 |
+
1
|
6137 |
+
1
|
6138 |
+
1
|
6139 |
+
1
|
6140 |
+
1
|
6141 |
+
1
|
6142 |
+
1
|
6143 |
+
1
|
6144 |
+
1
|
6145 |
+
1
|
6146 |
+
1
|
6147 |
+
2
|
6148 |
+
1
|
6149 |
+
1
|
6150 |
+
1
|
6151 |
+
1
|
6152 |
+
1
|
6153 |
+
1
|
6154 |
+
1
|
6155 |
+
1
|
6156 |
+
1
|
6157 |
+
1
|
6158 |
+
1
|
6159 |
+
1
|
6160 |
+
1
|
6161 |
+
1
|
6162 |
+
2
|
6163 |
+
1
|
6164 |
+
1
|
6165 |
+
1
|
6166 |
+
1
|
6167 |
+
2
|
6168 |
+
1
|
6169 |
+
2
|
6170 |
+
1
|
6171 |
+
1
|
6172 |
+
1
|
6173 |
+
1
|
6174 |
+
1
|
6175 |
+
1
|
6176 |
+
1
|
6177 |
+
1
|
6178 |
+
1
|
6179 |
+
2
|
6180 |
+
1
|
6181 |
+
1
|
6182 |
+
1
|
6183 |
+
2
|
6184 |
+
1
|
6185 |
+
1
|
6186 |
+
1
|
6187 |
+
1
|
6188 |
+
1
|
6189 |
+
1
|
6190 |
+
1
|
6191 |
+
2
|
6192 |
+
1
|
6193 |
+
1
|
6194 |
+
1
|
6195 |
+
1
|
6196 |
+
1
|
6197 |
+
1
|
6198 |
+
1
|
6199 |
+
1
|
6200 |
+
1
|
6201 |
+
1
|
6202 |
+
1
|
6203 |
+
1
|
6204 |
+
1
|
6205 |
+
1
|
6206 |
+
1
|
6207 |
+
1
|
6208 |
+
1
|
6209 |
+
1
|
6210 |
+
1
|
6211 |
+
1
|
6212 |
+
1
|
6213 |
+
1
|
6214 |
+
1
|
6215 |
+
1
|
6216 |
+
1
|
6217 |
+
1
|
6218 |
+
1
|
6219 |
+
1
|
6220 |
+
1
|
6221 |
+
2
|
6222 |
+
1
|
6223 |
+
1
|
6224 |
+
1
|
6225 |
+
1
|
6226 |
+
1
|
6227 |
+
1
|
6228 |
+
1
|
6229 |
+
1
|
6230 |
+
1
|
6231 |
+
1
|
6232 |
+
1
|
6233 |
+
1
|
6234 |
+
1
|
6235 |
+
1
|
6236 |
+
2
|
6237 |
+
1
|
6238 |
+
1
|
6239 |
+
1
|
6240 |
+
1
|
6241 |
+
1
|
6242 |
+
1
|
6243 |
+
1
|
6244 |
+
1
|
6245 |
+
1
|
6246 |
+
1
|
6247 |
+
1
|
6248 |
+
1
|
6249 |
+
1
|
6250 |
+
1
|
6251 |
+
1
|
6252 |
+
1
|
6253 |
+
1
|
6254 |
+
2
|
6255 |
+
1
|
6256 |
+
1
|
6257 |
+
1
|
6258 |
+
1
|
6259 |
+
1
|
6260 |
+
1
|
6261 |
+
1
|
6262 |
+
1
|
6263 |
+
1
|
6264 |
+
1
|
6265 |
+
1
|
6266 |
+
1
|
6267 |
+
1
|
6268 |
+
1
|
6269 |
+
1
|
6270 |
+
1
|
6271 |
+
2
|
6272 |
+
1
|
6273 |
+
1
|
6274 |
+
1
|
6275 |
+
1
|
6276 |
+
1
|
6277 |
+
1
|
6278 |
+
1
|
6279 |
+
1
|
6280 |
+
1
|
6281 |
+
1
|
6282 |
+
1
|
6283 |
+
1
|
6284 |
+
1
|
6285 |
+
1
|
6286 |
+
1
|
6287 |
+
1
|
6288 |
+
1
|
6289 |
+
1
|
6290 |
+
1
|
6291 |
+
1
|
6292 |
+
1
|
6293 |
+
1
|
6294 |
+
1
|
6295 |
+
1
|
6296 |
+
1
|
6297 |
+
1
|
6298 |
+
1
|
6299 |
+
1
|
6300 |
+
1
|
6301 |
+
1
|
6302 |
+
1
|
6303 |
+
1
|
6304 |
+
1
|
6305 |
+
1
|
6306 |
+
1
|
6307 |
+
1
|
6308 |
+
1
|
6309 |
+
1
|
6310 |
+
1
|
6311 |
+
1
|
6312 |
+
1
|
6313 |
+
1
|
6314 |
+
1
|
6315 |
+
1
|
6316 |
+
1
|
6317 |
+
1
|
6318 |
+
1
|
6319 |
+
1
|
6320 |
+
1
|
6321 |
+
1
|
6322 |
+
1
|
6323 |
+
1
|
6324 |
+
1
|
6325 |
+
1
|
6326 |
+
1
|
6327 |
+
1
|
6328 |
+
1
|
6329 |
+
1
|
6330 |
+
1
|
6331 |
+
1
|
6332 |
+
1
|
6333 |
+
1
|
6334 |
+
1
|
6335 |
+
1
|
6336 |
+
1
|
6337 |
+
1
|
6338 |
+
1
|
6339 |
+
1
|
6340 |
+
1
|
6341 |
+
1
|
6342 |
+
1
|
6343 |
+
1
|
6344 |
+
2
|
6345 |
+
1
|
6346 |
+
1
|
6347 |
+
1
|
6348 |
+
1
|
6349 |
+
1
|
6350 |
+
1
|
6351 |
+
1
|
6352 |
+
1
|
6353 |
+
1
|
6354 |
+
1
|
6355 |
+
1
|
6356 |
+
1
|
6357 |
+
1
|
6358 |
+
1
|
6359 |
+
1
|
6360 |
+
1
|
6361 |
+
1
|
6362 |
+
1
|
6363 |
+
1
|
6364 |
+
1
|
6365 |
+
1
|
6366 |
+
1
|
6367 |
+
1
|
6368 |
+
1
|
6369 |
+
1
|
6370 |
+
1
|
6371 |
+
1
|
6372 |
+
1
|
6373 |
+
2
|
6374 |
+
1
|
6375 |
+
1
|
6376 |
+
1
|
6377 |
+
1
|
6378 |
+
1
|
6379 |
+
1
|
6380 |
+
2
|
6381 |
+
1
|
6382 |
+
1
|
6383 |
+
1
|
6384 |
+
1
|
6385 |
+
1
|
6386 |
+
1
|
6387 |
+
1
|
6388 |
+
1
|
6389 |
+
1
|
6390 |
+
1
|
6391 |
+
1
|
6392 |
+
1
|
6393 |
+
1
|
6394 |
+
1
|
6395 |
+
1
|
6396 |
+
1
|
6397 |
+
1
|
6398 |
+
1
|
6399 |
+
1
|
6400 |
+
1
|
6401 |
+
1
|
6402 |
+
1
|
6403 |
+
1
|
6404 |
+
1
|
6405 |
+
1
|
6406 |
+
1
|
6407 |
+
1
|
6408 |
+
1
|
6409 |
+
1
|
6410 |
+
1
|
6411 |
+
2
|
6412 |
+
2
|
6413 |
+
1
|
6414 |
+
1
|
6415 |
+
1
|
6416 |
+
1
|
6417 |
+
1
|
6418 |
+
1
|
6419 |
+
1
|
6420 |
+
1
|
6421 |
+
1
|
6422 |
+
1
|
6423 |
+
1
|
6424 |
+
1
|
6425 |
+
1
|
6426 |
+
1
|
6427 |
+
1
|
6428 |
+
1
|
6429 |
+
1
|
6430 |
+
1
|
6431 |
+
1
|
6432 |
+
1
|
6433 |
+
1
|
6434 |
+
1
|
6435 |
+
1
|
6436 |
+
1
|
6437 |
+
1
|
6438 |
+
1
|
6439 |
+
1
|
6440 |
+
1
|
6441 |
+
1
|
6442 |
+
1
|
6443 |
+
2
|
6444 |
+
1
|
6445 |
+
1
|
6446 |
+
1
|
6447 |
+
1
|
6448 |
+
1
|
6449 |
+
1
|
6450 |
+
1
|
6451 |
+
1
|
6452 |
+
1
|
6453 |
+
1
|
6454 |
+
2
|
6455 |
+
1
|
6456 |
+
1
|
6457 |
+
1
|
6458 |
+
1
|
6459 |
+
1
|
6460 |
+
1
|
6461 |
+
1
|
6462 |
+
1
|
6463 |
+
1
|
6464 |
+
1
|
6465 |
+
1
|
6466 |
+
1
|
6467 |
+
1
|
6468 |
+
1
|
6469 |
+
1
|
6470 |
+
1
|
6471 |
+
1
|
6472 |
+
1
|
6473 |
+
1
|
6474 |
+
1
|
6475 |
+
1
|
6476 |
+
1
|
6477 |
+
1
|
6478 |
+
1
|
6479 |
+
1
|
6480 |
+
1
|
6481 |
+
1
|
6482 |
+
2
|
6483 |
+
1
|
6484 |
+
1
|
6485 |
+
1
|
6486 |
+
1
|
6487 |
+
1
|
6488 |
+
1
|
6489 |
+
1
|
6490 |
+
1
|
6491 |
+
1
|
6492 |
+
1
|
6493 |
+
1
|
6494 |
+
1
|
6495 |
+
1
|
6496 |
+
1
|
6497 |
+
1
|
6498 |
+
1
|
6499 |
+
2
|
6500 |
+
1
|
6501 |
+
2
|
6502 |
+
1
|
6503 |
+
1
|
6504 |
+
1
|
6505 |
+
1
|
6506 |
+
1
|
6507 |
+
1
|
6508 |
+
1
|
6509 |
+
1
|
6510 |
+
2
|
6511 |
+
1
|
6512 |
+
1
|
6513 |
+
1
|
6514 |
+
1
|
6515 |
+
1
|
6516 |
+
1
|
6517 |
+
1
|
6518 |
+
1
|
6519 |
+
1
|
6520 |
+
1
|
6521 |
+
1
|
6522 |
+
1
|
6523 |
+
1
|
6524 |
+
1
|
6525 |
+
1
|
6526 |
+
1
|
6527 |
+
1
|
6528 |
+
1
|
6529 |
+
1
|
6530 |
+
1
|
6531 |
+
1
|
6532 |
+
1
|
6533 |
+
2
|
6534 |
+
1
|
6535 |
+
1
|
6536 |
+
1
|
6537 |
+
1
|
6538 |
+
1
|
6539 |
+
1
|
6540 |
+
1
|
6541 |
+
1
|
6542 |
+
2
|
6543 |
+
1
|
6544 |
+
2
|
6545 |
+
1
|
6546 |
+
1
|
6547 |
+
1
|
6548 |
+
1
|
6549 |
+
1
|
6550 |
+
1
|
6551 |
+
1
|
6552 |
+
1
|
6553 |
+
1
|
6554 |
+
1
|
6555 |
+
1
|
6556 |
+
1
|
6557 |
+
1
|
6558 |
+
1
|
6559 |
+
1
|
6560 |
+
1
|
6561 |
+
2
|
6562 |
+
1
|
6563 |
+
1
|
6564 |
+
1
|
6565 |
+
1
|
6566 |
+
1
|
6567 |
+
1
|
6568 |
+
1
|
6569 |
+
1
|
6570 |
+
1
|
6571 |
+
1
|
6572 |
+
1
|
6573 |
+
1
|
6574 |
+
1
|
6575 |
+
1
|
6576 |
+
1
|
6577 |
+
2
|
6578 |
+
1
|
6579 |
+
1
|
6580 |
+
1
|
6581 |
+
2
|
6582 |
+
1
|
6583 |
+
1
|
6584 |
+
1
|
6585 |
+
1
|
6586 |
+
1
|
6587 |
+
1
|
6588 |
+
1
|
6589 |
+
1
|
6590 |
+
1
|
6591 |
+
1
|
6592 |
+
1
|
6593 |
+
1
|
6594 |
+
1
|
6595 |
+
2
|
6596 |
+
2
|
6597 |
+
1
|
6598 |
+
1
|
6599 |
+
1
|
6600 |
+
1
|
6601 |
+
1
|
6602 |
+
1
|
6603 |
+
1
|
6604 |
+
1
|
6605 |
+
1
|
6606 |
+
1
|
6607 |
+
1
|
6608 |
+
1
|
6609 |
+
1
|
6610 |
+
2
|
6611 |
+
1
|
6612 |
+
1
|
6613 |
+
1
|
6614 |
+
1
|
6615 |
+
1
|
6616 |
+
1
|
6617 |
+
1
|
6618 |
+
1
|
6619 |
+
1
|
6620 |
+
1
|
6621 |
+
1
|
6622 |
+
1
|
6623 |
+
1
|
6624 |
+
1
|
6625 |
+
1
|
6626 |
+
2
|
6627 |
+
1
|
6628 |
+
1
|
6629 |
+
1
|
6630 |
+
2
|
6631 |
+
1
|
6632 |
+
1
|
6633 |
+
1
|
6634 |
+
1
|
6635 |
+
1
|
6636 |
+
1
|
6637 |
+
1
|
6638 |
+
1
|
6639 |
+
1
|
6640 |
+
1
|
6641 |
+
1
|
6642 |
+
1
|
6643 |
+
1
|
6644 |
+
1
|
6645 |
+
2
|
6646 |
+
1
|
6647 |
+
1
|
6648 |
+
1
|
6649 |
+
1
|
6650 |
+
1
|
6651 |
+
1
|
6652 |
+
1
|
6653 |
+
1
|
6654 |
+
1
|
6655 |
+
1
|
6656 |
+
1
|
6657 |
+
1
|
6658 |
+
1
|
6659 |
+
2
|
6660 |
+
1
|
6661 |
+
1
|
6662 |
+
1
|
6663 |
+
1
|
6664 |
+
1
|
6665 |
+
1
|
6666 |
+
1
|
6667 |
+
1
|
6668 |
+
1
|
6669 |
+
1
|
6670 |
+
1
|
6671 |
+
1
|
6672 |
+
1
|
6673 |
+
1
|
6674 |
+
2
|
6675 |
+
1
|
6676 |
+
1
|
6677 |
+
1
|
6678 |
+
1
|
6679 |
+
1
|
6680 |
+
1
|
6681 |
+
2
|
6682 |
+
1
|
6683 |
+
1
|
6684 |
+
1
|
6685 |
+
1
|
6686 |
+
1
|
6687 |
+
1
|
6688 |
+
1
|
6689 |
+
1
|
6690 |
+
1
|
6691 |
+
1
|
6692 |
+
1
|
6693 |
+
1
|
6694 |
+
1
|
6695 |
+
1
|
6696 |
+
1
|
6697 |
+
1
|
6698 |
+
1
|
6699 |
+
2
|
6700 |
+
2
|
6701 |
+
1
|
6702 |
+
1
|
6703 |
+
2
|
6704 |
+
1
|
6705 |
+
1
|
6706 |
+
2
|
6707 |
+
1
|
6708 |
+
1
|
6709 |
+
1
|
6710 |
+
1
|
6711 |
+
1
|
6712 |
+
1
|
6713 |
+
1
|
6714 |
+
1
|
6715 |
+
1
|
6716 |
+
1
|
6717 |
+
1
|
6718 |
+
1
|
6719 |
+
1
|
6720 |
+
1
|
6721 |
+
1
|
6722 |
+
1
|
6723 |
+
1
|
6724 |
+
1
|
6725 |
+
1
|
6726 |
+
1
|
6727 |
+
1
|
6728 |
+
1
|
6729 |
+
1
|
6730 |
+
1
|
6731 |
+
1
|
6732 |
+
1
|
6733 |
+
1
|
6734 |
+
1
|
6735 |
+
1
|
6736 |
+
1
|
6737 |
+
1
|
6738 |
+
1
|
6739 |
+
1
|
6740 |
+
1
|
6741 |
+
1
|
6742 |
+
2
|
6743 |
+
1
|
6744 |
+
1
|
6745 |
+
1
|
6746 |
+
1
|
6747 |
+
1
|
6748 |
+
1
|
6749 |
+
1
|
6750 |
+
1
|
6751 |
+
1
|
6752 |
+
1
|
6753 |
+
1
|
6754 |
+
1
|
6755 |
+
1
|
6756 |
+
1
|
6757 |
+
1
|
6758 |
+
1
|
6759 |
+
1
|
6760 |
+
2
|
6761 |
+
1
|
6762 |
+
1
|
6763 |
+
1
|
6764 |
+
1
|
6765 |
+
1
|
6766 |
+
1
|
6767 |
+
1
|
6768 |
+
1
|
6769 |
+
1
|
6770 |
+
1
|
6771 |
+
1
|
6772 |
+
1
|
6773 |
+
1
|
6774 |
+
1
|
6775 |
+
1
|
6776 |
+
1
|
6777 |
+
1
|
6778 |
+
1
|
6779 |
+
1
|
6780 |
+
1
|
6781 |
+
1
|
6782 |
+
1
|
6783 |
+
1
|
6784 |
+
1
|
6785 |
+
1
|
6786 |
+
2
|
6787 |
+
1
|
6788 |
+
1
|
6789 |
+
1
|
6790 |
+
1
|
6791 |
+
1
|
6792 |
+
1
|
6793 |
+
2
|
6794 |
+
1
|
6795 |
+
2
|
6796 |
+
1
|
6797 |
+
1
|
6798 |
+
1
|
6799 |
+
1
|
6800 |
+
1
|
6801 |
+
1
|
6802 |
+
1
|
6803 |
+
1
|
6804 |
+
1
|
6805 |
+
1
|
6806 |
+
1
|
6807 |
+
1
|
6808 |
+
1
|
6809 |
+
1
|
6810 |
+
2
|
6811 |
+
2
|
6812 |
+
1
|
6813 |
+
1
|
6814 |
+
1
|
6815 |
+
1
|
6816 |
+
1
|
6817 |
+
1
|
6818 |
+
1
|
6819 |
+
1
|
6820 |
+
1
|
6821 |
+
1
|
6822 |
+
1
|
6823 |
+
1
|
6824 |
+
1
|
6825 |
+
1
|
6826 |
+
1
|
6827 |
+
1
|
6828 |
+
1
|
6829 |
+
1
|
6830 |
+
1
|
6831 |
+
2
|
6832 |
+
1
|
6833 |
+
1
|
6834 |
+
1
|
6835 |
+
1
|
6836 |
+
1
|
6837 |
+
1
|
6838 |
+
1
|
6839 |
+
2
|
6840 |
+
1
|
6841 |
+
1
|
6842 |
+
1
|
6843 |
+
1
|
6844 |
+
1
|
6845 |
+
1
|
6846 |
+
1
|
6847 |
+
1
|
6848 |
+
1
|
6849 |
+
1
|
6850 |
+
1
|
6851 |
+
1
|
6852 |
+
1
|
6853 |
+
1
|
6854 |
+
1
|
6855 |
+
1
|
6856 |
+
1
|
6857 |
+
1
|
6858 |
+
1
|
6859 |
+
1
|
6860 |
+
1
|
6861 |
+
1
|
6862 |
+
1
|
6863 |
+
1
|
6864 |
+
1
|
6865 |
+
1
|
6866 |
+
1
|
6867 |
+
1
|
6868 |
+
1
|
6869 |
+
1
|
6870 |
+
2
|
6871 |
+
1
|
6872 |
+
2
|
6873 |
+
1
|
6874 |
+
1
|
6875 |
+
1
|
6876 |
+
1
|
6877 |
+
1
|
6878 |
+
1
|
6879 |
+
1
|
6880 |
+
1
|
6881 |
+
1
|
6882 |
+
1
|
6883 |
+
1
|
6884 |
+
1
|
6885 |
+
1
|
6886 |
+
1
|
6887 |
+
1
|
6888 |
+
1
|
6889 |
+
1
|
6890 |
+
2
|
6891 |
+
1
|
6892 |
+
1
|
6893 |
+
1
|
6894 |
+
1
|
6895 |
+
1
|
6896 |
+
1
|
6897 |
+
1
|
6898 |
+
1
|
6899 |
+
1
|
6900 |
+
1
|
6901 |
+
1
|
6902 |
+
1
|
6903 |
+
1
|
6904 |
+
1
|
6905 |
+
1
|
6906 |
+
1
|
6907 |
+
1
|
6908 |
+
1
|
6909 |
+
1
|
6910 |
+
1
|
6911 |
+
1
|
6912 |
+
1
|
6913 |
+
1
|
6914 |
+
1
|
6915 |
+
1
|
6916 |
+
1
|
6917 |
+
1
|
6918 |
+
1
|
6919 |
+
1
|
6920 |
+
1
|
6921 |
+
1
|
6922 |
+
1
|
6923 |
+
1
|
6924 |
+
1
|
6925 |
+
1
|
6926 |
+
2
|
6927 |
+
1
|
6928 |
+
1
|
6929 |
+
1
|
6930 |
+
1
|
6931 |
+
1
|
6932 |
+
1
|
6933 |
+
1
|
6934 |
+
1
|
6935 |
+
1
|
6936 |
+
1
|
6937 |
+
1
|
6938 |
+
1
|
6939 |
+
1
|
6940 |
+
1
|
6941 |
+
1
|
6942 |
+
1
|
6943 |
+
1
|
6944 |
+
1
|
6945 |
+
1
|
6946 |
+
1
|
6947 |
+
1
|
6948 |
+
1
|
6949 |
+
1
|
6950 |
+
1
|
6951 |
+
1
|
6952 |
+
1
|
6953 |
+
1
|
6954 |
+
1
|
6955 |
+
1
|
6956 |
+
1
|
6957 |
+
1
|
6958 |
+
1
|
6959 |
+
1
|
6960 |
+
1
|
6961 |
+
1
|
6962 |
+
1
|
6963 |
+
1
|
6964 |
+
1
|
6965 |
+
1
|
6966 |
+
1
|
6967 |
+
1
|
6968 |
+
1
|
6969 |
+
1
|
6970 |
+
1
|
6971 |
+
1
|
6972 |
+
1
|
6973 |
+
1
|
6974 |
+
1
|
6975 |
+
1
|
6976 |
+
1
|
6977 |
+
1
|
6978 |
+
1
|
6979 |
+
1
|
6980 |
+
1
|
6981 |
+
1
|
6982 |
+
1
|
6983 |
+
1
|
6984 |
+
1
|
6985 |
+
1
|
6986 |
+
1
|
6987 |
+
1
|
6988 |
+
1
|
6989 |
+
1
|
6990 |
+
1
|
6991 |
+
1
|
6992 |
+
1
|
6993 |
+
1
|
6994 |
+
1
|
6995 |
+
1
|
6996 |
+
2
|
6997 |
+
1
|
6998 |
+
1
|
6999 |
+
1
|
7000 |
+
1
|
7001 |
+
1
|
7002 |
+
1
|
7003 |
+
1
|
7004 |
+
2
|
7005 |
+
1
|
7006 |
+
1
|
7007 |
+
1
|
7008 |
+
1
|
7009 |
+
1
|
7010 |
+
1
|
7011 |
+
1
|
7012 |
+
1
|
7013 |
+
1
|
7014 |
+
1
|
7015 |
+
1
|
7016 |
+
1
|
7017 |
+
1
|
7018 |
+
1
|
7019 |
+
1
|
7020 |
+
1
|
7021 |
+
1
|
7022 |
+
1
|
7023 |
+
1
|
7024 |
+
1
|
7025 |
+
1
|
7026 |
+
1
|
7027 |
+
2
|
7028 |
+
1
|
7029 |
+
1
|
7030 |
+
2
|
7031 |
+
1
|
7032 |
+
1
|
7033 |
+
1
|
7034 |
+
1
|
7035 |
+
1
|
7036 |
+
1
|
7037 |
+
1
|
7038 |
+
1
|
7039 |
+
1
|
7040 |
+
1
|
7041 |
+
1
|
7042 |
+
1
|
7043 |
+
1
|
7044 |
+
1
|
7045 |
+
1
|
7046 |
+
1
|
7047 |
+
1
|
7048 |
+
1
|
7049 |
+
1
|
7050 |
+
1
|
7051 |
+
1
|
7052 |
+
1
|
7053 |
+
1
|
7054 |
+
1
|
7055 |
+
1
|
7056 |
+
1
|
7057 |
+
1
|
7058 |
+
1
|
7059 |
+
1
|
7060 |
+
1
|
7061 |
+
1
|
7062 |
+
1
|
7063 |
+
1
|
7064 |
+
1
|
7065 |
+
1
|
7066 |
+
1
|
7067 |
+
1
|
7068 |
+
1
|
7069 |
+
1
|
7070 |
+
1
|
7071 |
+
1
|
7072 |
+
1
|
7073 |
+
1
|
7074 |
+
1
|
7075 |
+
1
|
7076 |
+
1
|
7077 |
+
1
|
7078 |
+
1
|
7079 |
+
1
|
7080 |
+
1
|
7081 |
+
2
|
7082 |
+
1
|
7083 |
+
2
|
7084 |
+
1
|
7085 |
+
1
|
7086 |
+
1
|
7087 |
+
1
|
7088 |
+
1
|
7089 |
+
1
|
7090 |
+
1
|
7091 |
+
1
|
7092 |
+
1
|
7093 |
+
1
|
7094 |
+
1
|
7095 |
+
1
|
7096 |
+
1
|
7097 |
+
1
|
7098 |
+
2
|
7099 |
+
1
|
7100 |
+
1
|
7101 |
+
1
|
7102 |
+
1
|
7103 |
+
2
|
7104 |
+
1
|
7105 |
+
1
|
7106 |
+
1
|
7107 |
+
1
|
7108 |
+
1
|
7109 |
+
1
|
7110 |
+
1
|
7111 |
+
1
|
7112 |
+
1
|
7113 |
+
1
|
7114 |
+
1
|
7115 |
+
1
|
7116 |
+
1
|
7117 |
+
2
|
7118 |
+
1
|
7119 |
+
1
|
7120 |
+
1
|
7121 |
+
1
|
7122 |
+
1
|
7123 |
+
1
|
7124 |
+
1
|
7125 |
+
1
|
7126 |
+
1
|
7127 |
+
1
|
7128 |
+
1
|
7129 |
+
1
|
7130 |
+
1
|
7131 |
+
1
|
7132 |
+
1
|
7133 |
+
1
|
7134 |
+
1
|
7135 |
+
1
|
7136 |
+
1
|
7137 |
+
1
|
7138 |
+
1
|
7139 |
+
1
|
7140 |
+
1
|
7141 |
+
1
|
7142 |
+
1
|
7143 |
+
1
|
7144 |
+
1
|
7145 |
+
1
|
7146 |
+
1
|
7147 |
+
1
|
7148 |
+
1
|
7149 |
+
1
|
7150 |
+
1
|
7151 |
+
1
|
7152 |
+
1
|
7153 |
+
1
|
7154 |
+
1
|
7155 |
+
1
|
7156 |
+
1
|
7157 |
+
1
|
7158 |
+
1
|
7159 |
+
1
|
7160 |
+
1
|
7161 |
+
1
|
7162 |
+
1
|
7163 |
+
1
|
7164 |
+
1
|
7165 |
+
1
|
7166 |
+
2
|
7167 |
+
1
|
7168 |
+
1
|
7169 |
+
1
|
7170 |
+
1
|
7171 |
+
1
|
7172 |
+
1
|
7173 |
+
1
|
7174 |
+
1
|
7175 |
+
1
|
7176 |
+
1
|
7177 |
+
1
|
7178 |
+
1
|
7179 |
+
1
|
7180 |
+
1
|
7181 |
+
1
|
7182 |
+
1
|
7183 |
+
1
|
7184 |
+
1
|
7185 |
+
1
|
7186 |
+
1
|
7187 |
+
1
|
7188 |
+
1
|
7189 |
+
1
|
7190 |
+
1
|
7191 |
+
1
|
7192 |
+
1
|
7193 |
+
1
|
7194 |
+
1
|
7195 |
+
1
|
7196 |
+
1
|
7197 |
+
1
|
7198 |
+
1
|
7199 |
+
1
|
7200 |
+
1
|
7201 |
+
2
|
7202 |
+
1
|
7203 |
+
1
|
7204 |
+
1
|
7205 |
+
1
|
7206 |
+
1
|
7207 |
+
1
|
7208 |
+
1
|
7209 |
+
1
|
7210 |
+
1
|
7211 |
+
1
|
7212 |
+
1
|
7213 |
+
1
|
7214 |
+
1
|
7215 |
+
1
|
7216 |
+
1
|
7217 |
+
1
|
7218 |
+
1
|
7219 |
+
1
|
7220 |
+
1
|
7221 |
+
1
|
7222 |
+
1
|
7223 |
+
1
|
7224 |
+
1
|
7225 |
+
1
|
7226 |
+
1
|
7227 |
+
1
|
7228 |
+
1
|
7229 |
+
1
|
7230 |
+
1
|
7231 |
+
1
|
7232 |
+
1
|
7233 |
+
2
|
7234 |
+
1
|
7235 |
+
1
|
7236 |
+
1
|
7237 |
+
1
|
7238 |
+
1
|
7239 |
+
1
|
7240 |
+
1
|
7241 |
+
1
|
7242 |
+
1
|
7243 |
+
1
|
7244 |
+
1
|
7245 |
+
1
|
7246 |
+
1
|
7247 |
+
1
|
7248 |
+
1
|
7249 |
+
1
|
7250 |
+
1
|
7251 |
+
1
|
7252 |
+
1
|
7253 |
+
1
|
7254 |
+
1
|
7255 |
+
1
|
7256 |
+
1
|
7257 |
+
1
|
7258 |
+
1
|
7259 |
+
1
|
7260 |
+
1
|
7261 |
+
1
|
7262 |
+
1
|
7263 |
+
1
|
7264 |
+
1
|
7265 |
+
1
|
7266 |
+
1
|
7267 |
+
1
|
7268 |
+
1
|
7269 |
+
1
|
7270 |
+
1
|
7271 |
+
1
|
7272 |
+
2
|
7273 |
+
1
|
7274 |
+
1
|
7275 |
+
1
|
7276 |
+
1
|
7277 |
+
1
|
7278 |
+
1
|
7279 |
+
1
|
7280 |
+
1
|
7281 |
+
1
|
7282 |
+
1
|
7283 |
+
2
|
7284 |
+
1
|
7285 |
+
1
|
7286 |
+
1
|
7287 |
+
1
|
7288 |
+
1
|
7289 |
+
1
|
7290 |
+
1
|
7291 |
+
1
|
7292 |
+
1
|
7293 |
+
1
|
7294 |
+
1
|
7295 |
+
1
|
7296 |
+
1
|
7297 |
+
1
|
7298 |
+
1
|
7299 |
+
1
|
7300 |
+
1
|
7301 |
+
1
|
7302 |
+
1
|
7303 |
+
1
|
7304 |
+
1
|
7305 |
+
1
|
7306 |
+
1
|
7307 |
+
1
|
7308 |
+
1
|
7309 |
+
1
|
7310 |
+
1
|
7311 |
+
1
|
7312 |
+
1
|
7313 |
+
1
|
7314 |
+
1
|
7315 |
+
1
|
7316 |
+
1
|
7317 |
+
1
|
7318 |
+
1
|
7319 |
+
1
|
7320 |
+
1
|
7321 |
+
1
|
7322 |
+
1
|
7323 |
+
1
|
7324 |
+
1
|
7325 |
+
2
|
7326 |
+
1
|
7327 |
+
1
|
7328 |
+
1
|
7329 |
+
1
|
7330 |
+
1
|
7331 |
+
1
|
7332 |
+
1
|
7333 |
+
1
|
7334 |
+
2
|
7335 |
+
1
|
7336 |
+
2
|
7337 |
+
1
|
7338 |
+
1
|
7339 |
+
1
|
7340 |
+
1
|
7341 |
+
1
|
7342 |
+
1
|
7343 |
+
1
|
7344 |
+
1
|
7345 |
+
1
|
7346 |
+
1
|
7347 |
+
1
|
7348 |
+
1
|
7349 |
+
1
|
7350 |
+
1
|
7351 |
+
1
|
7352 |
+
1
|
7353 |
+
1
|
7354 |
+
1
|
7355 |
+
1
|
7356 |
+
1
|
7357 |
+
1
|
7358 |
+
1
|
7359 |
+
1
|
7360 |
+
1
|
7361 |
+
1
|
7362 |
+
1
|
7363 |
+
1
|
7364 |
+
1
|
7365 |
+
1
|
7366 |
+
1
|
7367 |
+
1
|
7368 |
+
1
|
7369 |
+
1
|
7370 |
+
1
|
7371 |
+
1
|
7372 |
+
1
|
7373 |
+
2
|
7374 |
+
1
|
7375 |
+
1
|
7376 |
+
1
|
7377 |
+
1
|
7378 |
+
1
|
7379 |
+
1
|
7380 |
+
1
|
7381 |
+
1
|
7382 |
+
1
|
7383 |
+
1
|
7384 |
+
1
|
7385 |
+
1
|
7386 |
+
1
|
7387 |
+
1
|
7388 |
+
2
|
7389 |
+
1
|
7390 |
+
1
|
7391 |
+
1
|
7392 |
+
1
|
7393 |
+
1
|
7394 |
+
1
|
7395 |
+
1
|
7396 |
+
1
|
7397 |
+
1
|
7398 |
+
1
|
7399 |
+
1
|
7400 |
+
1
|
7401 |
+
1
|
7402 |
+
1
|
7403 |
+
1
|
7404 |
+
1
|
7405 |
+
1
|
7406 |
+
1
|
7407 |
+
1
|
7408 |
+
2
|
7409 |
+
1
|
7410 |
+
1
|
7411 |
+
1
|
7412 |
+
1
|
7413 |
+
1
|
7414 |
+
1
|
7415 |
+
1
|
7416 |
+
1
|
7417 |
+
1
|
7418 |
+
1
|
7419 |
+
1
|
7420 |
+
1
|
7421 |
+
1
|
7422 |
+
1
|
7423 |
+
1
|
7424 |
+
1
|
7425 |
+
1
|
7426 |
+
1
|
7427 |
+
1
|
7428 |
+
1
|
7429 |
+
1
|
7430 |
+
1
|
7431 |
+
1
|
7432 |
+
1
|
7433 |
+
1
|
7434 |
+
1
|
7435 |
+
1
|
7436 |
+
1
|
7437 |
+
1
|
7438 |
+
1
|
7439 |
+
1
|
7440 |
+
1
|
7441 |
+
1
|
7442 |
+
1
|
7443 |
+
1
|
7444 |
+
1
|
7445 |
+
1
|
7446 |
+
1
|
7447 |
+
1
|
7448 |
+
1
|
7449 |
+
1
|
7450 |
+
1
|
7451 |
+
1
|
7452 |
+
1
|
7453 |
+
1
|
7454 |
+
1
|
7455 |
+
1
|
7456 |
+
1
|
7457 |
+
1
|
7458 |
+
1
|
7459 |
+
1
|
7460 |
+
1
|
7461 |
+
1
|
7462 |
+
1
|
7463 |
+
1
|
7464 |
+
1
|
7465 |
+
1
|
7466 |
+
1
|
7467 |
+
1
|
7468 |
+
1
|
7469 |
+
1
|
7470 |
+
1
|
7471 |
+
1
|
7472 |
+
1
|
7473 |
+
2
|
7474 |
+
1
|
7475 |
+
2
|
7476 |
+
1
|
7477 |
+
1
|
7478 |
+
1
|
7479 |
+
1
|
7480 |
+
1
|
7481 |
+
1
|
7482 |
+
1
|
7483 |
+
2
|
7484 |
+
1
|
7485 |
+
1
|
7486 |
+
1
|
7487 |
+
1
|
7488 |
+
1
|
7489 |
+
1
|
7490 |
+
2
|
7491 |
+
1
|
7492 |
+
1
|
7493 |
+
1
|
7494 |
+
1
|
7495 |
+
1
|
7496 |
+
1
|
7497 |
+
1
|
7498 |
+
1
|
7499 |
+
1
|
7500 |
+
2
|
7501 |
+
1
|
7502 |
+
1
|
7503 |
+
1
|
7504 |
+
1
|
7505 |
+
1
|
7506 |
+
1
|
7507 |
+
1
|
7508 |
+
1
|
7509 |
+
1
|
7510 |
+
1
|
7511 |
+
1
|
7512 |
+
1
|
7513 |
+
1
|
7514 |
+
1
|
7515 |
+
1
|
7516 |
+
1
|
7517 |
+
2
|
7518 |
+
1
|
7519 |
+
1
|
7520 |
+
1
|
7521 |
+
1
|
7522 |
+
1
|
7523 |
+
1
|
7524 |
+
1
|
7525 |
+
1
|
7526 |
+
1
|
7527 |
+
1
|
7528 |
+
1
|
7529 |
+
1
|
7530 |
+
1
|
7531 |
+
1
|
7532 |
+
1
|
7533 |
+
1
|
7534 |
+
2
|
7535 |
+
1
|
7536 |
+
1
|
7537 |
+
2
|
7538 |
+
1
|
7539 |
+
1
|
7540 |
+
1
|
7541 |
+
1
|
7542 |
+
1
|
7543 |
+
1
|
7544 |
+
1
|
7545 |
+
1
|
7546 |
+
1
|
7547 |
+
1
|
7548 |
+
1
|
7549 |
+
1
|
7550 |
+
1
|
7551 |
+
1
|
7552 |
+
1
|
7553 |
+
1
|
7554 |
+
1
|
7555 |
+
1
|
7556 |
+
1
|
7557 |
+
1
|
7558 |
+
1
|
7559 |
+
1
|
7560 |
+
1
|
7561 |
+
1
|
7562 |
+
1
|
7563 |
+
1
|
7564 |
+
1
|
7565 |
+
1
|
7566 |
+
1
|
7567 |
+
2
|
7568 |
+
1
|
7569 |
+
1
|
7570 |
+
1
|
7571 |
+
1
|
7572 |
+
1
|
7573 |
+
1
|
7574 |
+
1
|
7575 |
+
1
|
7576 |
+
1
|
7577 |
+
1
|
7578 |
+
1
|
7579 |
+
1
|
7580 |
+
1
|
7581 |
+
1
|
7582 |
+
1
|
7583 |
+
1
|
7584 |
+
1
|
7585 |
+
1
|
7586 |
+
1
|
7587 |
+
1
|
7588 |
+
1
|
7589 |
+
1
|
7590 |
+
1
|
7591 |
+
1
|
7592 |
+
1
|
7593 |
+
1
|
7594 |
+
1
|
7595 |
+
1
|
7596 |
+
1
|
7597 |
+
1
|
7598 |
+
1
|
7599 |
+
1
|
7600 |
+
1
|
7601 |
+
1
|
7602 |
+
1
|
7603 |
+
1
|
7604 |
+
1
|
7605 |
+
1
|
7606 |
+
1
|
7607 |
+
1
|
7608 |
+
1
|
7609 |
+
1
|
7610 |
+
1
|
7611 |
+
1
|
7612 |
+
1
|
7613 |
+
1
|
7614 |
+
1
|
7615 |
+
1
|
7616 |
+
1
|
7617 |
+
1
|
7618 |
+
1
|
7619 |
+
1
|
7620 |
+
1
|
7621 |
+
2
|
7622 |
+
1
|
7623 |
+
1
|
7624 |
+
1
|
7625 |
+
1
|
7626 |
+
1
|
7627 |
+
1
|
7628 |
+
1
|
7629 |
+
1
|
7630 |
+
1
|
7631 |
+
1
|
7632 |
+
1
|
7633 |
+
1
|
7634 |
+
1
|
7635 |
+
1
|
7636 |
+
1
|
7637 |
+
1
|
7638 |
+
1
|
7639 |
+
1
|
7640 |
+
1
|
7641 |
+
1
|
7642 |
+
1
|
7643 |
+
1
|
7644 |
+
1
|
7645 |
+
1
|
7646 |
+
1
|
7647 |
+
1
|
7648 |
+
1
|
7649 |
+
1
|
7650 |
+
1
|
7651 |
+
1
|
7652 |
+
1
|
7653 |
+
1
|
7654 |
+
1
|
7655 |
+
2
|
7656 |
+
1
|
7657 |
+
1
|
7658 |
+
1
|
7659 |
+
1
|
7660 |
+
1
|
7661 |
+
1
|
7662 |
+
1
|
7663 |
+
1
|
7664 |
+
1
|
7665 |
+
1
|
7666 |
+
1
|
7667 |
+
1
|
7668 |
+
1
|
7669 |
+
1
|
7670 |
+
1
|
7671 |
+
1
|
7672 |
+
1
|
7673 |
+
1
|
7674 |
+
1
|
7675 |
+
1
|
7676 |
+
1
|
7677 |
+
1
|
7678 |
+
1
|
7679 |
+
1
|
7680 |
+
1
|
7681 |
+
1
|
7682 |
+
1
|
7683 |
+
1
|
7684 |
+
1
|
7685 |
+
1
|
7686 |
+
1
|
7687 |
+
1
|
7688 |
+
1
|
7689 |
+
1
|
7690 |
+
1
|
7691 |
+
1
|
7692 |
+
2
|
7693 |
+
1
|
7694 |
+
1
|
7695 |
+
1
|
7696 |
+
1
|
7697 |
+
1
|
7698 |
+
1
|
7699 |
+
1
|
7700 |
+
1
|
7701 |
+
1
|
7702 |
+
1
|
7703 |
+
1
|
7704 |
+
1
|
7705 |
+
2
|
7706 |
+
1
|
7707 |
+
1
|
7708 |
+
1
|
7709 |
+
1
|
7710 |
+
1
|
7711 |
+
1
|
7712 |
+
1
|
7713 |
+
1
|
7714 |
+
1
|
7715 |
+
1
|
7716 |
+
1
|
7717 |
+
1
|
7718 |
+
1
|
7719 |
+
1
|
7720 |
+
1
|
7721 |
+
1
|
7722 |
+
1
|
7723 |
+
2
|
7724 |
+
1
|
7725 |
+
1
|
7726 |
+
1
|
7727 |
+
1
|
7728 |
+
1
|
7729 |
+
1
|
7730 |
+
1
|
7731 |
+
1
|
7732 |
+
1
|
7733 |
+
1
|
7734 |
+
1
|
7735 |
+
1
|
7736 |
+
1
|
7737 |
+
1
|
7738 |
+
1
|
7739 |
+
1
|
7740 |
+
1
|
7741 |
+
1
|
7742 |
+
1
|
7743 |
+
1
|
7744 |
+
1
|
7745 |
+
1
|
7746 |
+
1
|
7747 |
+
2
|
7748 |
+
1
|
7749 |
+
1
|
7750 |
+
1
|
7751 |
+
2
|
7752 |
+
1
|
7753 |
+
1
|
7754 |
+
1
|
7755 |
+
1
|
7756 |
+
1
|
7757 |
+
1
|
7758 |
+
1
|
7759 |
+
1
|
7760 |
+
1
|
7761 |
+
1
|
7762 |
+
1
|
7763 |
+
1
|
7764 |
+
1
|
7765 |
+
1
|
7766 |
+
1
|
7767 |
+
1
|
7768 |
+
1
|
7769 |
+
1
|
7770 |
+
1
|
7771 |
+
1
|
7772 |
+
1
|
7773 |
+
1
|
7774 |
+
2
|
7775 |
+
1
|
7776 |
+
1
|
7777 |
+
1
|
7778 |
+
1
|
7779 |
+
1
|
7780 |
+
1
|
7781 |
+
1
|
7782 |
+
1
|
7783 |
+
1
|
7784 |
+
1
|
7785 |
+
1
|
7786 |
+
1
|
7787 |
+
1
|
7788 |
+
1
|
7789 |
+
1
|
7790 |
+
1
|
7791 |
+
1
|
7792 |
+
1
|
7793 |
+
1
|
7794 |
+
1
|
7795 |
+
1
|
7796 |
+
1
|
7797 |
+
1
|
7798 |
+
1
|
7799 |
+
1
|
7800 |
+
1
|
7801 |
+
1
|
7802 |
+
1
|
7803 |
+
1
|
7804 |
+
1
|
7805 |
+
1
|
7806 |
+
1
|
7807 |
+
2
|
7808 |
+
1
|
7809 |
+
1
|
7810 |
+
1
|
7811 |
+
1
|
7812 |
+
1
|
7813 |
+
1
|
7814 |
+
1
|
7815 |
+
1
|
7816 |
+
1
|
7817 |
+
1
|
7818 |
+
1
|
7819 |
+
1
|
7820 |
+
1
|
7821 |
+
1
|
7822 |
+
2
|
7823 |
+
1
|
7824 |
+
1
|
7825 |
+
1
|
7826 |
+
1
|
7827 |
+
1
|
7828 |
+
2
|
7829 |
+
1
|
7830 |
+
1
|
7831 |
+
1
|
7832 |
+
1
|
7833 |
+
1
|
7834 |
+
1
|
7835 |
+
1
|
7836 |
+
1
|
7837 |
+
1
|
7838 |
+
1
|
7839 |
+
1
|
7840 |
+
1
|
7841 |
+
1
|
7842 |
+
1
|
7843 |
+
1
|
7844 |
+
1
|
7845 |
+
1
|
7846 |
+
1
|
7847 |
+
1
|
7848 |
+
1
|
7849 |
+
1
|
7850 |
+
1
|
7851 |
+
1
|
7852 |
+
2
|
7853 |
+
1
|
7854 |
+
1
|
7855 |
+
1
|
7856 |
+
1
|
7857 |
+
1
|
7858 |
+
1
|
7859 |
+
1
|
7860 |
+
1
|
7861 |
+
1
|
7862 |
+
1
|
7863 |
+
1
|
7864 |
+
1
|
7865 |
+
1
|
7866 |
+
1
|
7867 |
+
1
|
7868 |
+
1
|
7869 |
+
1
|
7870 |
+
1
|
7871 |
+
1
|
7872 |
+
1
|
7873 |
+
1
|
7874 |
+
2
|
7875 |
+
1
|
7876 |
+
1
|
7877 |
+
1
|
7878 |
+
1
|
7879 |
+
1
|
7880 |
+
1
|
7881 |
+
2
|
7882 |
+
1
|
7883 |
+
1
|
7884 |
+
1
|
7885 |
+
2
|
7886 |
+
1
|
7887 |
+
1
|
7888 |
+
1
|
7889 |
+
1
|
7890 |
+
1
|
7891 |
+
1
|
7892 |
+
1
|
7893 |
+
1
|
7894 |
+
1
|
7895 |
+
1
|
7896 |
+
1
|
7897 |
+
1
|
7898 |
+
1
|
7899 |
+
1
|
7900 |
+
1
|
7901 |
+
1
|
7902 |
+
1
|
7903 |
+
1
|
7904 |
+
1
|
7905 |
+
2
|
7906 |
+
1
|
7907 |
+
1
|
7908 |
+
1
|
7909 |
+
1
|
7910 |
+
1
|
7911 |
+
1
|
7912 |
+
1
|
7913 |
+
2
|
7914 |
+
1
|
7915 |
+
1
|
7916 |
+
1
|
7917 |
+
1
|
7918 |
+
1
|
7919 |
+
1
|
7920 |
+
1
|
7921 |
+
1
|
7922 |
+
1
|
7923 |
+
1
|
7924 |
+
1
|
7925 |
+
1
|
7926 |
+
1
|
7927 |
+
1
|
7928 |
+
1
|
7929 |
+
1
|
7930 |
+
1
|
7931 |
+
1
|
7932 |
+
1
|
7933 |
+
1
|
7934 |
+
1
|
7935 |
+
1
|
7936 |
+
1
|
7937 |
+
1
|
7938 |
+
1
|
7939 |
+
1
|
7940 |
+
1
|
7941 |
+
1
|
7942 |
+
1
|
7943 |
+
1
|
7944 |
+
1
|
7945 |
+
1
|
7946 |
+
1
|
7947 |
+
1
|
7948 |
+
1
|
7949 |
+
2
|
7950 |
+
1
|
7951 |
+
1
|
7952 |
+
1
|
7953 |
+
1
|
7954 |
+
1
|
7955 |
+
1
|
7956 |
+
1
|
7957 |
+
1
|
7958 |
+
1
|
7959 |
+
1
|
7960 |
+
1
|
7961 |
+
1
|
7962 |
+
1
|
7963 |
+
1
|
7964 |
+
1
|
7965 |
+
2
|
7966 |
+
2
|
7967 |
+
1
|
7968 |
+
1
|
7969 |
+
1
|
7970 |
+
1
|
7971 |
+
1
|
7972 |
+
1
|
7973 |
+
1
|
7974 |
+
1
|
7975 |
+
1
|
7976 |
+
1
|
7977 |
+
1
|
7978 |
+
1
|
7979 |
+
1
|
7980 |
+
1
|
7981 |
+
1
|
7982 |
+
1
|
7983 |
+
1
|
7984 |
+
1
|
7985 |
+
2
|
7986 |
+
1
|
7987 |
+
1
|
7988 |
+
1
|
7989 |
+
1
|
7990 |
+
2
|
7991 |
+
1
|
7992 |
+
1
|
7993 |
+
2
|
7994 |
+
1
|
7995 |
+
1
|
7996 |
+
1
|
7997 |
+
1
|
7998 |
+
1
|
7999 |
+
1
|
8000 |
+
1
|
8001 |
+
1
|
8002 |
+
1
|
8003 |
+
1
|
8004 |
+
1
|
8005 |
+
1
|
8006 |
+
1
|
8007 |
+
1
|
8008 |
+
1
|
8009 |
+
1
|
8010 |
+
1
|
8011 |
+
1
|
8012 |
+
1
|
8013 |
+
1
|
8014 |
+
1
|
8015 |
+
1
|
8016 |
+
1
|
8017 |
+
1
|
8018 |
+
1
|
8019 |
+
1
|
8020 |
+
1
|
8021 |
+
1
|
8022 |
+
1
|
8023 |
+
1
|
8024 |
+
1
|
8025 |
+
1
|
8026 |
+
1
|
8027 |
+
1
|
8028 |
+
1
|
8029 |
+
1
|
8030 |
+
1
|
8031 |
+
1
|
8032 |
+
1
|
8033 |
+
1
|
8034 |
+
1
|
8035 |
+
1
|
8036 |
+
2
|
8037 |
+
1
|
8038 |
+
1
|
8039 |
+
1
|
8040 |
+
1
|
8041 |
+
1
|
8042 |
+
1
|
8043 |
+
1
|
8044 |
+
1
|
8045 |
+
1
|
8046 |
+
1
|
8047 |
+
1
|
8048 |
+
1
|
8049 |
+
1
|
8050 |
+
1
|
8051 |
+
2
|
8052 |
+
1
|
8053 |
+
1
|
8054 |
+
1
|
8055 |
+
1
|
8056 |
+
1
|
8057 |
+
1
|
8058 |
+
1
|
8059 |
+
1
|
8060 |
+
1
|
8061 |
+
1
|
8062 |
+
1
|
8063 |
+
1
|
8064 |
+
1
|
8065 |
+
1
|
8066 |
+
1
|
8067 |
+
1
|
8068 |
+
1
|
8069 |
+
1
|
8070 |
+
1
|
8071 |
+
1
|
8072 |
+
1
|
8073 |
+
1
|
8074 |
+
1
|
8075 |
+
2
|
8076 |
+
1
|
8077 |
+
1
|
8078 |
+
1
|
8079 |
+
1
|
8080 |
+
1
|
8081 |
+
1
|
8082 |
+
1
|
8083 |
+
1
|
8084 |
+
1
|
8085 |
+
1
|
8086 |
+
1
|
8087 |
+
1
|
8088 |
+
1
|
8089 |
+
1
|
8090 |
+
1
|
8091 |
+
1
|
8092 |
+
2
|
8093 |
+
1
|
8094 |
+
1
|
8095 |
+
2
|
8096 |
+
1
|
8097 |
+
1
|
8098 |
+
1
|
8099 |
+
1
|
8100 |
+
1
|
8101 |
+
1
|
8102 |
+
1
|
8103 |
+
1
|
8104 |
+
1
|
8105 |
+
1
|
8106 |
+
1
|
8107 |
+
1
|
8108 |
+
1
|
8109 |
+
1
|
8110 |
+
1
|
8111 |
+
1
|
8112 |
+
1
|
8113 |
+
1
|
8114 |
+
2
|
8115 |
+
1
|
8116 |
+
1
|
8117 |
+
2
|
8118 |
+
1
|
8119 |
+
1
|
8120 |
+
1
|
8121 |
+
1
|
8122 |
+
1
|
8123 |
+
1
|
8124 |
+
1
|
8125 |
+
1
|
8126 |
+
1
|
8127 |
+
1
|
8128 |
+
1
|
8129 |
+
1
|
8130 |
+
1
|
8131 |
+
1
|
8132 |
+
1
|
8133 |
+
1
|
8134 |
+
1
|
8135 |
+
1
|
8136 |
+
1
|
8137 |
+
1
|
8138 |
+
1
|
8139 |
+
1
|
8140 |
+
1
|
8141 |
+
1
|
8142 |
+
1
|
8143 |
+
1
|
8144 |
+
1
|
8145 |
+
1
|
8146 |
+
1
|
8147 |
+
1
|
8148 |
+
1
|
8149 |
+
1
|
8150 |
+
1
|
8151 |
+
1
|
8152 |
+
2
|
8153 |
+
1
|
8154 |
+
1
|
8155 |
+
1
|
8156 |
+
1
|
8157 |
+
1
|
8158 |
+
1
|
8159 |
+
1
|
8160 |
+
2
|
8161 |
+
1
|
8162 |
+
1
|
8163 |
+
1
|
8164 |
+
1
|
8165 |
+
1
|
8166 |
+
1
|
8167 |
+
1
|
8168 |
+
1
|
8169 |
+
1
|
8170 |
+
1
|
8171 |
+
1
|
8172 |
+
2
|
8173 |
+
1
|
8174 |
+
1
|
8175 |
+
1
|
8176 |
+
1
|
8177 |
+
1
|
8178 |
+
1
|
8179 |
+
1
|
8180 |
+
2
|
8181 |
+
1
|
8182 |
+
1
|
8183 |
+
1
|
8184 |
+
1
|
8185 |
+
1
|
8186 |
+
1
|
8187 |
+
1
|
8188 |
+
1
|
8189 |
+
1
|
8190 |
+
1
|
8191 |
+
1
|
8192 |
+
1
|
8193 |
+
1
|
8194 |
+
1
|
8195 |
+
2
|
8196 |
+
2
|
8197 |
+
1
|
8198 |
+
1
|
8199 |
+
1
|
8200 |
+
1
|
8201 |
+
1
|
8202 |
+
1
|
8203 |
+
1
|
8204 |
+
1
|
8205 |
+
1
|
8206 |
+
1
|
8207 |
+
1
|
8208 |
+
1
|
8209 |
+
1
|
8210 |
+
1
|
8211 |
+
1
|
8212 |
+
1
|
8213 |
+
1
|
8214 |
+
1
|
8215 |
+
1
|
8216 |
+
1
|
8217 |
+
1
|
8218 |
+
1
|
8219 |
+
1
|
8220 |
+
1
|
8221 |
+
1
|
8222 |
+
1
|
8223 |
+
1
|
8224 |
+
1
|
8225 |
+
1
|
8226 |
+
1
|
8227 |
+
1
|
8228 |
+
1
|
8229 |
+
1
|
8230 |
+
1
|
8231 |
+
1
|
8232 |
+
1
|
8233 |
+
1
|
8234 |
+
1
|
8235 |
+
1
|
8236 |
+
1
|
8237 |
+
1
|
8238 |
+
1
|
8239 |
+
1
|
8240 |
+
2
|
8241 |
+
1
|
8242 |
+
1
|
8243 |
+
1
|
8244 |
+
1
|
8245 |
+
1
|
8246 |
+
1
|
8247 |
+
1
|
8248 |
+
1
|
8249 |
+
1
|
8250 |
+
1
|
8251 |
+
1
|
8252 |
+
1
|
8253 |
+
1
|
8254 |
+
1
|
8255 |
+
1
|
8256 |
+
1
|
8257 |
+
1
|
8258 |
+
1
|
8259 |
+
1
|
8260 |
+
1
|
8261 |
+
1
|
8262 |
+
1
|
8263 |
+
1
|
8264 |
+
2
|
8265 |
+
1
|
8266 |
+
1
|
8267 |
+
1
|
8268 |
+
1
|
8269 |
+
1
|
8270 |
+
1
|
8271 |
+
1
|
8272 |
+
1
|
8273 |
+
1
|
8274 |
+
1
|
8275 |
+
1
|
8276 |
+
1
|
8277 |
+
1
|
8278 |
+
1
|
8279 |
+
1
|
8280 |
+
1
|
8281 |
+
1
|
8282 |
+
1
|
8283 |
+
1
|
8284 |
+
1
|
8285 |
+
1
|
8286 |
+
1
|
8287 |
+
1
|
8288 |
+
1
|
8289 |
+
1
|
8290 |
+
1
|
8291 |
+
2
|
8292 |
+
1
|
8293 |
+
1
|
8294 |
+
1
|
8295 |
+
1
|
8296 |
+
2
|
8297 |
+
1
|
8298 |
+
1
|
8299 |
+
1
|
8300 |
+
1
|
8301 |
+
1
|
8302 |
+
1
|
8303 |
+
1
|
8304 |
+
1
|
8305 |
+
1
|
8306 |
+
1
|
8307 |
+
1
|
8308 |
+
1
|
8309 |
+
1
|
8310 |
+
1
|
8311 |
+
1
|
8312 |
+
1
|
8313 |
+
2
|
8314 |
+
1
|
8315 |
+
1
|
8316 |
+
1
|
8317 |
+
1
|
8318 |
+
1
|
8319 |
+
1
|
8320 |
+
1
|
8321 |
+
1
|
8322 |
+
1
|
8323 |
+
1
|
8324 |
+
1
|
8325 |
+
1
|
8326 |
+
1
|
8327 |
+
1
|
8328 |
+
1
|
8329 |
+
1
|
8330 |
+
1
|
8331 |
+
1
|
8332 |
+
1
|
8333 |
+
1
|
8334 |
+
1
|
8335 |
+
1
|
8336 |
+
1
|
8337 |
+
1
|
8338 |
+
1
|
8339 |
+
1
|
8340 |
+
1
|
8341 |
+
1
|
8342 |
+
1
|
8343 |
+
1
|
8344 |
+
1
|
8345 |
+
1
|
8346 |
+
1
|
8347 |
+
1
|
8348 |
+
1
|
8349 |
+
1
|
8350 |
+
1
|
8351 |
+
1
|
8352 |
+
1
|
8353 |
+
1
|
8354 |
+
1
|
8355 |
+
1
|
8356 |
+
1
|
8357 |
+
1
|
8358 |
+
1
|
8359 |
+
1
|
8360 |
+
1
|
8361 |
+
1
|
8362 |
+
1
|
8363 |
+
1
|
8364 |
+
1
|
8365 |
+
1
|
8366 |
+
1
|
8367 |
+
1
|
8368 |
+
2
|
8369 |
+
1
|
8370 |
+
1
|
8371 |
+
1
|
8372 |
+
1
|
8373 |
+
1
|
8374 |
+
1
|
8375 |
+
2
|
8376 |
+
1
|
8377 |
+
1
|
8378 |
+
1
|
8379 |
+
1
|
8380 |
+
1
|
8381 |
+
1
|
8382 |
+
1
|
8383 |
+
1
|
8384 |
+
1
|
8385 |
+
1
|
8386 |
+
1
|
8387 |
+
1
|
8388 |
+
2
|
8389 |
+
1
|
8390 |
+
1
|
8391 |
+
1
|
8392 |
+
1
|
8393 |
+
1
|
8394 |
+
1
|
8395 |
+
1
|
8396 |
+
1
|
8397 |
+
1
|
8398 |
+
1
|
8399 |
+
1
|
8400 |
+
1
|
8401 |
+
1
|
8402 |
+
1
|
8403 |
+
1
|
8404 |
+
1
|
8405 |
+
1
|
8406 |
+
1
|
8407 |
+
1
|
8408 |
+
2
|
8409 |
+
1
|
8410 |
+
1
|
8411 |
+
1
|
8412 |
+
1
|
8413 |
+
1
|
8414 |
+
1
|
8415 |
+
1
|
8416 |
+
1
|
8417 |
+
1
|
8418 |
+
1
|
8419 |
+
1
|
8420 |
+
1
|
8421 |
+
1
|
8422 |
+
1
|
8423 |
+
1
|
8424 |
+
1
|
8425 |
+
1
|
8426 |
+
1
|
8427 |
+
1
|
8428 |
+
1
|
8429 |
+
1
|
8430 |
+
1
|
8431 |
+
1
|
8432 |
+
1
|
8433 |
+
1
|
8434 |
+
1
|
8435 |
+
1
|
8436 |
+
1
|
8437 |
+
1
|
8438 |
+
2
|
8439 |
+
1
|
8440 |
+
2
|
8441 |
+
1
|
8442 |
+
1
|
8443 |
+
1
|
8444 |
+
1
|
8445 |
+
1
|
8446 |
+
1
|
8447 |
+
1
|
8448 |
+
1
|
8449 |
+
1
|
8450 |
+
1
|
8451 |
+
1
|
8452 |
+
1
|
8453 |
+
1
|
8454 |
+
1
|
8455 |
+
1
|
8456 |
+
1
|
8457 |
+
1
|
8458 |
+
1
|
8459 |
+
1
|
8460 |
+
1
|
8461 |
+
1
|
8462 |
+
1
|
8463 |
+
1
|
8464 |
+
1
|
8465 |
+
1
|
8466 |
+
1
|
8467 |
+
1
|
8468 |
+
1
|
8469 |
+
1
|
8470 |
+
1
|
8471 |
+
1
|
8472 |
+
1
|
8473 |
+
1
|
8474 |
+
1
|
8475 |
+
1
|
8476 |
+
1
|
8477 |
+
1
|
8478 |
+
1
|
8479 |
+
1
|
8480 |
+
1
|
8481 |
+
1
|
8482 |
+
1
|
8483 |
+
1
|
8484 |
+
1
|
8485 |
+
1
|
8486 |
+
1
|
8487 |
+
1
|
8488 |
+
1
|
8489 |
+
1
|
8490 |
+
1
|
8491 |
+
1
|
8492 |
+
1
|
8493 |
+
1
|
8494 |
+
1
|
8495 |
+
1
|
8496 |
+
1
|
8497 |
+
1
|
8498 |
+
1
|
8499 |
+
1
|
8500 |
+
1
|
8501 |
+
1
|
8502 |
+
1
|
8503 |
+
1
|
8504 |
+
1
|
8505 |
+
1
|
8506 |
+
1
|
8507 |
+
1
|
8508 |
+
1
|
8509 |
+
1
|
8510 |
+
1
|
8511 |
+
1
|
8512 |
+
1
|
8513 |
+
1
|
8514 |
+
1
|
8515 |
+
1
|
8516 |
+
1
|
8517 |
+
1
|
8518 |
+
1
|
8519 |
+
2
|
8520 |
+
1
|
8521 |
+
1
|
8522 |
+
1
|
8523 |
+
1
|
8524 |
+
1
|
8525 |
+
1
|
8526 |
+
1
|
8527 |
+
1
|
8528 |
+
1
|
8529 |
+
1
|
8530 |
+
1
|
8531 |
+
1
|
8532 |
+
1
|
8533 |
+
1
|
8534 |
+
1
|
8535 |
+
1
|
8536 |
+
1
|
8537 |
+
1
|
8538 |
+
1
|
8539 |
+
1
|
8540 |
+
1
|
8541 |
+
1
|
8542 |
+
1
|
8543 |
+
1
|
8544 |
+
1
|
8545 |
+
1
|
8546 |
+
1
|
8547 |
+
1
|
8548 |
+
1
|
8549 |
+
1
|
8550 |
+
1
|
8551 |
+
1
|
8552 |
+
1
|
8553 |
+
1
|
8554 |
+
1
|
8555 |
+
1
|
8556 |
+
1
|
8557 |
+
2
|
8558 |
+
1
|
8559 |
+
1
|
8560 |
+
1
|
8561 |
+
1
|
8562 |
+
1
|
8563 |
+
1
|
8564 |
+
1
|
8565 |
+
1
|
8566 |
+
1
|
8567 |
+
1
|
8568 |
+
1
|
8569 |
+
1
|
8570 |
+
1
|
8571 |
+
1
|
8572 |
+
1
|
8573 |
+
1
|
8574 |
+
1
|
8575 |
+
1
|
8576 |
+
1
|
8577 |
+
1
|
8578 |
+
1
|
8579 |
+
1
|
8580 |
+
1
|
8581 |
+
1
|
8582 |
+
1
|
8583 |
+
1
|
8584 |
+
1
|
8585 |
+
1
|
8586 |
+
1
|
8587 |
+
1
|
8588 |
+
1
|
8589 |
+
2
|
8590 |
+
1
|
8591 |
+
1
|
8592 |
+
1
|
8593 |
+
1
|
8594 |
+
1
|
8595 |
+
1
|
8596 |
+
1
|
8597 |
+
1
|
8598 |
+
2
|
8599 |
+
1
|
8600 |
+
1
|
8601 |
+
1
|
8602 |
+
2
|
8603 |
+
1
|
8604 |
+
1
|
8605 |
+
1
|
8606 |
+
1
|
8607 |
+
1
|
8608 |
+
1
|
8609 |
+
1
|
8610 |
+
1
|
8611 |
+
1
|
8612 |
+
1
|
8613 |
+
1
|
8614 |
+
1
|
8615 |
+
1
|
8616 |
+
1
|
8617 |
+
1
|
8618 |
+
1
|
8619 |
+
1
|
8620 |
+
1
|
8621 |
+
1
|
8622 |
+
1
|
8623 |
+
1
|
8624 |
+
1
|
8625 |
+
1
|
8626 |
+
1
|
8627 |
+
1
|
8628 |
+
1
|
8629 |
+
1
|
8630 |
+
1
|
8631 |
+
1
|
8632 |
+
1
|
8633 |
+
1
|
8634 |
+
1
|
8635 |
+
1
|
8636 |
+
1
|
8637 |
+
1
|
8638 |
+
1
|
8639 |
+
1
|
8640 |
+
1
|
8641 |
+
1
|
8642 |
+
1
|
8643 |
+
1
|
8644 |
+
1
|
8645 |
+
1
|
8646 |
+
1
|
8647 |
+
1
|
8648 |
+
1
|
8649 |
+
1
|
8650 |
+
1
|
8651 |
+
1
|
8652 |
+
2
|
8653 |
+
1
|
8654 |
+
1
|
8655 |
+
1
|
8656 |
+
1
|
8657 |
+
1
|
8658 |
+
2
|
8659 |
+
1
|
8660 |
+
1
|
8661 |
+
1
|
8662 |
+
1
|
8663 |
+
1
|
8664 |
+
1
|
8665 |
+
1
|
8666 |
+
1
|
8667 |
+
1
|
8668 |
+
1
|
8669 |
+
1
|
8670 |
+
1
|
8671 |
+
1
|
8672 |
+
1
|
8673 |
+
1
|
8674 |
+
1
|
8675 |
+
1
|
8676 |
+
1
|
8677 |
+
1
|
8678 |
+
1
|
8679 |
+
1
|
8680 |
+
1
|
8681 |
+
1
|
8682 |
+
1
|
8683 |
+
1
|
8684 |
+
1
|
8685 |
+
1
|
8686 |
+
1
|
8687 |
+
1
|
8688 |
+
1
|
8689 |
+
1
|
8690 |
+
1
|
8691 |
+
1
|
8692 |
+
1
|
8693 |
+
1
|
8694 |
+
1
|
8695 |
+
1
|
8696 |
+
1
|
8697 |
+
1
|
8698 |
+
1
|
8699 |
+
1
|
8700 |
+
1
|
8701 |
+
1
|
8702 |
+
1
|
8703 |
+
1
|
8704 |
+
1
|
8705 |
+
1
|
8706 |
+
1
|
8707 |
+
1
|
8708 |
+
1
|
8709 |
+
1
|
8710 |
+
1
|
8711 |
+
1
|
8712 |
+
1
|
8713 |
+
1
|
8714 |
+
1
|
8715 |
+
1
|
8716 |
+
1
|
8717 |
+
1
|
8718 |
+
1
|
8719 |
+
1
|
8720 |
+
1
|
8721 |
+
1
|
8722 |
+
1
|
8723 |
+
1
|
8724 |
+
2
|
8725 |
+
1
|
8726 |
+
1
|
8727 |
+
1
|
8728 |
+
1
|
8729 |
+
1
|
8730 |
+
1
|
8731 |
+
1
|
8732 |
+
1
|
8733 |
+
1
|
8734 |
+
1
|
8735 |
+
1
|
8736 |
+
1
|
8737 |
+
1
|
8738 |
+
1
|
8739 |
+
1
|
8740 |
+
1
|
8741 |
+
1
|
8742 |
+
1
|
8743 |
+
1
|
8744 |
+
1
|
8745 |
+
1
|
8746 |
+
1
|
8747 |
+
1
|
8748 |
+
1
|
8749 |
+
1
|
8750 |
+
1
|
8751 |
+
1
|
8752 |
+
1
|
8753 |
+
1
|
8754 |
+
1
|
8755 |
+
1
|
8756 |
+
1
|
8757 |
+
1
|
8758 |
+
1
|
8759 |
+
1
|
8760 |
+
2
|
8761 |
+
1
|
8762 |
+
1
|
8763 |
+
1
|
8764 |
+
2
|
8765 |
+
1
|
8766 |
+
1
|
8767 |
+
1
|
8768 |
+
1
|
8769 |
+
1
|
8770 |
+
1
|
8771 |
+
1
|
8772 |
+
1
|
8773 |
+
1
|
8774 |
+
1
|
8775 |
+
1
|
8776 |
+
1
|
8777 |
+
1
|
8778 |
+
1
|
8779 |
+
1
|
8780 |
+
1
|
8781 |
+
1
|
8782 |
+
1
|
8783 |
+
1
|
8784 |
+
1
|
8785 |
+
1
|
8786 |
+
2
|
8787 |
+
1
|
8788 |
+
1
|
8789 |
+
1
|
8790 |
+
1
|
8791 |
+
1
|
8792 |
+
1
|
8793 |
+
1
|
8794 |
+
1
|
8795 |
+
1
|
8796 |
+
1
|
8797 |
+
1
|
8798 |
+
1
|
8799 |
+
1
|
8800 |
+
1
|
8801 |
+
1
|
8802 |
+
1
|
8803 |
+
2
|
8804 |
+
1
|
8805 |
+
1
|
8806 |
+
1
|
8807 |
+
1
|
8808 |
+
1
|
8809 |
+
1
|
8810 |
+
1
|
8811 |
+
1
|
8812 |
+
1
|
8813 |
+
1
|
8814 |
+
2
|
8815 |
+
1
|
8816 |
+
1
|
8817 |
+
1
|
8818 |
+
1
|
8819 |
+
1
|
8820 |
+
1
|
8821 |
+
1
|
8822 |
+
1
|
8823 |
+
1
|
8824 |
+
1
|
8825 |
+
1
|
8826 |
+
1
|
8827 |
+
2
|
8828 |
+
1
|
8829 |
+
1
|
8830 |
+
1
|
8831 |
+
1
|
8832 |
+
1
|
8833 |
+
1
|
8834 |
+
1
|
8835 |
+
1
|
8836 |
+
1
|
8837 |
+
1
|
8838 |
+
1
|
8839 |
+
1
|
8840 |
+
1
|
8841 |
+
1
|
8842 |
+
1
|
8843 |
+
1
|
8844 |
+
1
|
8845 |
+
1
|
8846 |
+
1
|
8847 |
+
1
|
8848 |
+
1
|
8849 |
+
1
|
8850 |
+
1
|
8851 |
+
1
|
8852 |
+
1
|
8853 |
+
1
|
8854 |
+
1
|
8855 |
+
2
|
8856 |
+
1
|
8857 |
+
2
|
8858 |
+
1
|
8859 |
+
1
|
8860 |
+
1
|
8861 |
+
1
|
8862 |
+
1
|
8863 |
+
1
|
8864 |
+
1
|
8865 |
+
1
|
8866 |
+
1
|
8867 |
+
2
|
8868 |
+
1
|
8869 |
+
1
|
8870 |
+
1
|
8871 |
+
1
|
8872 |
+
1
|
8873 |
+
1
|
8874 |
+
1
|
8875 |
+
1
|
8876 |
+
1
|
8877 |
+
1
|
8878 |
+
1
|
8879 |
+
1
|
8880 |
+
1
|
8881 |
+
1
|
8882 |
+
1
|
8883 |
+
1
|
8884 |
+
1
|
8885 |
+
1
|
8886 |
+
1
|
8887 |
+
1
|
8888 |
+
1
|
8889 |
+
1
|
8890 |
+
1
|
8891 |
+
1
|
8892 |
+
1
|
8893 |
+
1
|
8894 |
+
1
|
8895 |
+
1
|
8896 |
+
1
|
8897 |
+
1
|
8898 |
+
1
|
8899 |
+
1
|
8900 |
+
1
|
8901 |
+
1
|
8902 |
+
1
|
8903 |
+
1
|
8904 |
+
1
|
8905 |
+
1
|
8906 |
+
1
|
8907 |
+
1
|
8908 |
+
1
|
8909 |
+
1
|
8910 |
+
1
|
8911 |
+
1
|
8912 |
+
1
|
8913 |
+
1
|
8914 |
+
1
|
8915 |
+
1
|
8916 |
+
1
|
8917 |
+
1
|
8918 |
+
1
|
8919 |
+
2
|
8920 |
+
1
|
8921 |
+
1
|
8922 |
+
1
|
8923 |
+
2
|
8924 |
+
2
|
8925 |
+
1
|
8926 |
+
1
|
8927 |
+
1
|
8928 |
+
1
|
8929 |
+
1
|
8930 |
+
1
|
8931 |
+
1
|
8932 |
+
1
|
8933 |
+
2
|
8934 |
+
1
|
8935 |
+
1
|
8936 |
+
1
|
8937 |
+
1
|
8938 |
+
1
|
8939 |
+
1
|
8940 |
+
1
|
8941 |
+
1
|
8942 |
+
1
|
8943 |
+
1
|
8944 |
+
1
|
8945 |
+
1
|
8946 |
+
1
|
8947 |
+
1
|
8948 |
+
1
|
8949 |
+
1
|
8950 |
+
1
|
8951 |
+
1
|
8952 |
+
1
|
8953 |
+
1
|
8954 |
+
1
|
8955 |
+
1
|
8956 |
+
1
|
8957 |
+
1
|
8958 |
+
1
|
8959 |
+
2
|
8960 |
+
1
|
8961 |
+
1
|
8962 |
+
1
|
8963 |
+
1
|
8964 |
+
1
|
8965 |
+
1
|
8966 |
+
1
|
8967 |
+
1
|
8968 |
+
2
|
8969 |
+
1
|
8970 |
+
1
|
8971 |
+
1
|
8972 |
+
1
|
8973 |
+
1
|
8974 |
+
1
|
8975 |
+
1
|
8976 |
+
1
|
8977 |
+
1
|
8978 |
+
1
|
8979 |
+
1
|
8980 |
+
1
|
8981 |
+
1
|
8982 |
+
1
|
8983 |
+
1
|
8984 |
+
1
|
8985 |
+
1
|
8986 |
+
1
|
8987 |
+
1
|
8988 |
+
1
|
8989 |
+
1
|
8990 |
+
1
|
8991 |
+
1
|
8992 |
+
1
|
8993 |
+
1
|
8994 |
+
1
|
8995 |
+
1
|
8996 |
+
1
|
8997 |
+
1
|
8998 |
+
1
|
8999 |
+
1
|
9000 |
+
1
|
9001 |
+
1
|
9002 |
+
1
|
9003 |
+
1
|
9004 |
+
2
|
9005 |
+
1
|
9006 |
+
1
|
9007 |
+
1
|
9008 |
+
1
|
9009 |
+
1
|
9010 |
+
1
|
9011 |
+
1
|
9012 |
+
1
|
9013 |
+
1
|
9014 |
+
1
|
9015 |
+
1
|
9016 |
+
1
|
9017 |
+
1
|
9018 |
+
1
|
9019 |
+
2
|
9020 |
+
1
|
9021 |
+
1
|
9022 |
+
1
|
9023 |
+
1
|
9024 |
+
1
|
9025 |
+
1
|
9026 |
+
1
|
9027 |
+
1
|
9028 |
+
1
|
9029 |
+
1
|
9030 |
+
1
|
9031 |
+
1
|
9032 |
+
1
|
9033 |
+
1
|
9034 |
+
1
|
9035 |
+
1
|
9036 |
+
1
|
9037 |
+
1
|
9038 |
+
1
|
9039 |
+
1
|
9040 |
+
1
|
9041 |
+
1
|
9042 |
+
1
|
9043 |
+
1
|
9044 |
+
1
|
9045 |
+
1
|
9046 |
+
1
|
9047 |
+
1
|
9048 |
+
1
|
9049 |
+
1
|
9050 |
+
1
|
9051 |
+
1
|
9052 |
+
1
|
9053 |
+
1
|
9054 |
+
1
|
9055 |
+
1
|
9056 |
+
1
|
9057 |
+
1
|
9058 |
+
1
|
9059 |
+
1
|
9060 |
+
1
|
9061 |
+
1
|
9062 |
+
1
|
9063 |
+
1
|
9064 |
+
1
|
9065 |
+
1
|
9066 |
+
1
|
9067 |
+
1
|
9068 |
+
1
|
9069 |
+
1
|
9070 |
+
1
|
9071 |
+
1
|
9072 |
+
1
|
9073 |
+
1
|
9074 |
+
1
|
9075 |
+
1
|
9076 |
+
1
|
9077 |
+
1
|
9078 |
+
1
|
9079 |
+
2
|
9080 |
+
1
|
9081 |
+
1
|
9082 |
+
1
|
9083 |
+
1
|
9084 |
+
1
|
9085 |
+
1
|
9086 |
+
1
|
9087 |
+
1
|
9088 |
+
1
|
9089 |
+
1
|
9090 |
+
1
|
9091 |
+
1
|
9092 |
+
1
|
9093 |
+
1
|
9094 |
+
1
|
9095 |
+
1
|
9096 |
+
2
|
9097 |
+
1
|
9098 |
+
1
|
9099 |
+
1
|
9100 |
+
1
|
9101 |
+
1
|
9102 |
+
1
|
9103 |
+
1
|
9104 |
+
1
|
9105 |
+
2
|
9106 |
+
1
|
9107 |
+
1
|
9108 |
+
1
|
9109 |
+
1
|
9110 |
+
1
|
9111 |
+
1
|
9112 |
+
1
|
9113 |
+
2
|
9114 |
+
1
|
9115 |
+
1
|
9116 |
+
1
|
9117 |
+
1
|
9118 |
+
1
|
9119 |
+
1
|
9120 |
+
1
|
9121 |
+
1
|
9122 |
+
1
|
9123 |
+
1
|
9124 |
+
1
|
9125 |
+
1
|
9126 |
+
1
|
9127 |
+
1
|
9128 |
+
1
|
9129 |
+
1
|
9130 |
+
2
|
9131 |
+
1
|
9132 |
+
1
|
9133 |
+
1
|
9134 |
+
1
|
9135 |
+
1
|
9136 |
+
1
|
9137 |
+
1
|
9138 |
+
1
|
9139 |
+
1
|
9140 |
+
1
|
9141 |
+
1
|
9142 |
+
1
|
9143 |
+
1
|
9144 |
+
1
|
9145 |
+
1
|
9146 |
+
1
|
9147 |
+
1
|
9148 |
+
2
|
9149 |
+
1
|
9150 |
+
1
|
9151 |
+
1
|
9152 |
+
1
|
9153 |
+
1
|
9154 |
+
1
|
9155 |
+
1
|
9156 |
+
1
|
9157 |
+
1
|
9158 |
+
1
|
9159 |
+
1
|
9160 |
+
1
|
9161 |
+
1
|
9162 |
+
1
|
9163 |
+
1
|
9164 |
+
1
|
9165 |
+
1
|
9166 |
+
1
|
9167 |
+
1
|
9168 |
+
1
|
9169 |
+
1
|
9170 |
+
1
|
9171 |
+
2
|
9172 |
+
2
|
9173 |
+
1
|
9174 |
+
1
|
9175 |
+
1
|
9176 |
+
1
|
9177 |
+
1
|
9178 |
+
1
|
9179 |
+
1
|
9180 |
+
1
|
9181 |
+
1
|
9182 |
+
1
|
9183 |
+
1
|
9184 |
+
1
|
9185 |
+
1
|
9186 |
+
1
|
9187 |
+
1
|
9188 |
+
1
|
9189 |
+
1
|
9190 |
+
1
|
9191 |
+
1
|
9192 |
+
1
|
9193 |
+
1
|
9194 |
+
1
|
9195 |
+
1
|
9196 |
+
1
|
9197 |
+
1
|
9198 |
+
2
|
9199 |
+
1
|
9200 |
+
1
|
9201 |
+
2
|
9202 |
+
1
|
9203 |
+
1
|
9204 |
+
1
|
9205 |
+
1
|
9206 |
+
1
|
9207 |
+
1
|
9208 |
+
1
|
9209 |
+
1
|
9210 |
+
1
|
9211 |
+
1
|
9212 |
+
1
|
9213 |
+
1
|
9214 |
+
1
|
9215 |
+
1
|
9216 |
+
1
|
9217 |
+
1
|
9218 |
+
1
|
9219 |
+
1
|
9220 |
+
1
|
9221 |
+
1
|
9222 |
+
1
|
9223 |
+
1
|
9224 |
+
1
|
9225 |
+
1
|
9226 |
+
1
|
9227 |
+
1
|
9228 |
+
1
|
9229 |
+
1
|
9230 |
+
1
|
9231 |
+
1
|
9232 |
+
1
|
9233 |
+
1
|
9234 |
+
1
|
9235 |
+
1
|
9236 |
+
1
|
9237 |
+
1
|
9238 |
+
1
|
9239 |
+
1
|
9240 |
+
1
|
9241 |
+
1
|
9242 |
+
1
|
9243 |
+
1
|
9244 |
+
1
|
9245 |
+
1
|
9246 |
+
1
|
9247 |
+
1
|
9248 |
+
1
|
9249 |
+
1
|
9250 |
+
2
|
9251 |
+
1
|
9252 |
+
1
|
9253 |
+
1
|
9254 |
+
2
|
9255 |
+
1
|
9256 |
+
1
|
9257 |
+
1
|
9258 |
+
1
|
9259 |
+
1
|
9260 |
+
1
|
9261 |
+
1
|
9262 |
+
1
|
9263 |
+
1
|
9264 |
+
1
|
9265 |
+
1
|
9266 |
+
1
|
9267 |
+
1
|
9268 |
+
1
|
9269 |
+
1
|
9270 |
+
1
|
9271 |
+
2
|
9272 |
+
1
|
9273 |
+
1
|
9274 |
+
1
|
9275 |
+
1
|
9276 |
+
1
|
9277 |
+
1
|
9278 |
+
1
|
9279 |
+
1
|
9280 |
+
1
|
9281 |
+
1
|
9282 |
+
1
|
9283 |
+
2
|
9284 |
+
1
|
9285 |
+
1
|
9286 |
+
1
|
9287 |
+
1
|
9288 |
+
1
|
9289 |
+
2
|
9290 |
+
1
|
9291 |
+
1
|
9292 |
+
1
|
9293 |
+
1
|
9294 |
+
1
|
9295 |
+
1
|
9296 |
+
2
|
9297 |
+
1
|
9298 |
+
1
|
9299 |
+
1
|
9300 |
+
1
|
9301 |
+
1
|
9302 |
+
1
|
9303 |
+
1
|
9304 |
+
1
|
9305 |
+
1
|
9306 |
+
1
|
9307 |
+
1
|
9308 |
+
1
|
9309 |
+
1
|
9310 |
+
1
|
9311 |
+
1
|
9312 |
+
1
|
9313 |
+
1
|
9314 |
+
1
|
9315 |
+
1
|
9316 |
+
1
|
9317 |
+
1
|
9318 |
+
1
|
9319 |
+
1
|
9320 |
+
1
|
9321 |
+
1
|
9322 |
+
2
|
9323 |
+
1
|
9324 |
+
2
|
9325 |
+
2
|
9326 |
+
1
|
9327 |
+
1
|
9328 |
+
1
|
9329 |
+
1
|
9330 |
+
1
|
9331 |
+
1
|
9332 |
+
1
|
9333 |
+
1
|
9334 |
+
1
|
9335 |
+
1
|
9336 |
+
1
|
9337 |
+
1
|
9338 |
+
1
|
9339 |
+
1
|
9340 |
+
1
|
9341 |
+
1
|
9342 |
+
1
|
9343 |
+
1
|
9344 |
+
1
|
9345 |
+
1
|
9346 |
+
1
|
9347 |
+
1
|
9348 |
+
2
|
9349 |
+
1
|
9350 |
+
1
|
9351 |
+
1
|
9352 |
+
1
|
9353 |
+
1
|
9354 |
+
1
|
9355 |
+
1
|
9356 |
+
1
|
9357 |
+
1
|
9358 |
+
1
|
9359 |
+
1
|
9360 |
+
1
|
9361 |
+
1
|
9362 |
+
1
|
9363 |
+
1
|
9364 |
+
1
|
9365 |
+
1
|
9366 |
+
1
|
9367 |
+
1
|
9368 |
+
1
|
9369 |
+
1
|
9370 |
+
1
|
9371 |
+
1
|
9372 |
+
1
|
9373 |
+
1
|
9374 |
+
1
|
9375 |
+
1
|
9376 |
+
1
|
9377 |
+
1
|
9378 |
+
1
|
9379 |
+
1
|
9380 |
+
1
|
9381 |
+
1
|
9382 |
+
1
|
9383 |
+
1
|
9384 |
+
1
|
9385 |
+
1
|
9386 |
+
1
|
9387 |
+
1
|
9388 |
+
1
|
9389 |
+
1
|
9390 |
+
1
|
9391 |
+
1
|
9392 |
+
1
|
9393 |
+
1
|
9394 |
+
1
|
9395 |
+
1
|
9396 |
+
1
|
9397 |
+
1
|
9398 |
+
1
|
9399 |
+
1
|
9400 |
+
2
|
9401 |
+
1
|
9402 |
+
1
|
9403 |
+
1
|
9404 |
+
2
|
9405 |
+
1
|
9406 |
+
1
|
9407 |
+
1
|
9408 |
+
1
|
9409 |
+
1
|
9410 |
+
1
|
9411 |
+
1
|
9412 |
+
1
|
9413 |
+
1
|
9414 |
+
1
|
9415 |
+
1
|
9416 |
+
1
|
9417 |
+
1
|
9418 |
+
2
|
9419 |
+
1
|
9420 |
+
1
|
9421 |
+
1
|
9422 |
+
1
|
9423 |
+
1
|
9424 |
+
1
|
9425 |
+
1
|
9426 |
+
1
|
9427 |
+
2
|
9428 |
+
2
|
9429 |
+
1
|
9430 |
+
1
|
9431 |
+
1
|
9432 |
+
1
|
9433 |
+
1
|
9434 |
+
1
|
9435 |
+
1
|
9436 |
+
1
|
9437 |
+
1
|
9438 |
+
1
|
9439 |
+
1
|
9440 |
+
2
|
9441 |
+
1
|
9442 |
+
1
|
9443 |
+
1
|
9444 |
+
1
|
9445 |
+
1
|
9446 |
+
1
|
9447 |
+
1
|
9448 |
+
1
|
9449 |
+
1
|
9450 |
+
1
|
9451 |
+
1
|
9452 |
+
1
|
9453 |
+
1
|
9454 |
+
1
|
9455 |
+
1
|
9456 |
+
1
|
9457 |
+
1
|
9458 |
+
1
|
9459 |
+
1
|
9460 |
+
1
|
9461 |
+
1
|
9462 |
+
1
|
9463 |
+
1
|
9464 |
+
1
|
9465 |
+
1
|
9466 |
+
1
|
9467 |
+
1
|
9468 |
+
1
|
9469 |
+
2
|
9470 |
+
1
|
9471 |
+
1
|
9472 |
+
1
|
9473 |
+
1
|
9474 |
+
1
|
9475 |
+
1
|
9476 |
+
1
|
9477 |
+
1
|
9478 |
+
1
|
9479 |
+
1
|
9480 |
+
1
|
9481 |
+
1
|
9482 |
+
1
|
9483 |
+
1
|
9484 |
+
1
|
9485 |
+
1
|
9486 |
+
1
|
9487 |
+
2
|
9488 |
+
1
|
9489 |
+
1
|
9490 |
+
1
|
9491 |
+
1
|
9492 |
+
1
|
9493 |
+
1
|
9494 |
+
1
|
9495 |
+
1
|
9496 |
+
1
|
9497 |
+
2
|
9498 |
+
1
|
9499 |
+
1
|
9500 |
+
1
|
9501 |
+
1
|
9502 |
+
1
|
9503 |
+
1
|
9504 |
+
1
|
9505 |
+
1
|
9506 |
+
1
|
9507 |
+
1
|
9508 |
+
1
|
9509 |
+
1
|
9510 |
+
1
|
9511 |
+
1
|
9512 |
+
2
|
9513 |
+
1
|
9514 |
+
1
|
9515 |
+
1
|
9516 |
+
1
|
9517 |
+
2
|
9518 |
+
1
|
9519 |
+
2
|
9520 |
+
1
|
9521 |
+
1
|
9522 |
+
1
|
9523 |
+
1
|
9524 |
+
1
|
9525 |
+
1
|
9526 |
+
1
|
9527 |
+
1
|
9528 |
+
1
|
9529 |
+
1
|
9530 |
+
2
|
9531 |
+
1
|
9532 |
+
1
|
9533 |
+
1
|
9534 |
+
1
|
9535 |
+
1
|
9536 |
+
1
|
9537 |
+
1
|
9538 |
+
1
|
9539 |
+
1
|
9540 |
+
1
|
9541 |
+
1
|
9542 |
+
1
|
9543 |
+
1
|
9544 |
+
1
|
9545 |
+
1
|
9546 |
+
1
|
9547 |
+
1
|
9548 |
+
1
|
9549 |
+
1
|
9550 |
+
1
|
9551 |
+
1
|
9552 |
+
1
|
9553 |
+
1
|
9554 |
+
1
|
9555 |
+
1
|
9556 |
+
1
|
9557 |
+
1
|
9558 |
+
2
|
9559 |
+
1
|
9560 |
+
1
|
9561 |
+
1
|
9562 |
+
1
|
9563 |
+
1
|
9564 |
+
2
|
9565 |
+
2
|
9566 |
+
1
|
9567 |
+
1
|
9568 |
+
1
|
9569 |
+
1
|
9570 |
+
1
|
9571 |
+
1
|
9572 |
+
1
|
9573 |
+
1
|
9574 |
+
1
|
9575 |
+
1
|
9576 |
+
1
|
9577 |
+
1
|
9578 |
+
1
|
9579 |
+
1
|
9580 |
+
1
|
9581 |
+
1
|
9582 |
+
1
|
9583 |
+
1
|
9584 |
+
1
|
9585 |
+
2
|
9586 |
+
1
|
9587 |
+
2
|
9588 |
+
1
|
9589 |
+
1
|
9590 |
+
1
|
9591 |
+
1
|
9592 |
+
2
|
9593 |
+
1
|
9594 |
+
1
|
9595 |
+
1
|
9596 |
+
1
|
9597 |
+
1
|
9598 |
+
1
|
9599 |
+
1
|
9600 |
+
2
|
9601 |
+
2
|
9602 |
+
2
|
9603 |
+
1
|
9604 |
+
1
|
9605 |
+
1
|
9606 |
+
1
|
9607 |
+
1
|
9608 |
+
1
|
9609 |
+
1
|
9610 |
+
1
|
9611 |
+
1
|
9612 |
+
1
|
9613 |
+
1
|
9614 |
+
1
|
9615 |
+
1
|
9616 |
+
1
|
9617 |
+
1
|
9618 |
+
1
|
9619 |
+
1
|
9620 |
+
1
|
9621 |
+
1
|
9622 |
+
1
|
9623 |
+
1
|
9624 |
+
1
|
9625 |
+
1
|
9626 |
+
1
|
9627 |
+
1
|
9628 |
+
1
|
9629 |
+
1
|
9630 |
+
1
|
9631 |
+
1
|
9632 |
+
1
|
9633 |
+
2
|
9634 |
+
1
|
9635 |
+
1
|
9636 |
+
1
|
9637 |
+
1
|
9638 |
+
1
|
9639 |
+
1
|
9640 |
+
1
|
9641 |
+
1
|
9642 |
+
1
|
9643 |
+
1
|
9644 |
+
1
|
9645 |
+
1
|
9646 |
+
1
|
9647 |
+
1
|
9648 |
+
1
|
9649 |
+
1
|
9650 |
+
1
|
9651 |
+
1
|
9652 |
+
1
|
9653 |
+
1
|
9654 |
+
1
|
9655 |
+
2
|
9656 |
+
1
|
9657 |
+
1
|
9658 |
+
1
|
9659 |
+
1
|
9660 |
+
1
|
9661 |
+
1
|
9662 |
+
1
|
9663 |
+
1
|
9664 |
+
1
|
9665 |
+
1
|
9666 |
+
1
|
9667 |
+
1
|
9668 |
+
2
|
9669 |
+
1
|
9670 |
+
1
|
9671 |
+
1
|
9672 |
+
1
|
9673 |
+
1
|
9674 |
+
1
|
9675 |
+
1
|
9676 |
+
1
|
9677 |
+
1
|
9678 |
+
1
|
9679 |
+
2
|
9680 |
+
1
|
9681 |
+
1
|
9682 |
+
1
|
9683 |
+
1
|
9684 |
+
1
|
9685 |
+
1
|
9686 |
+
1
|
9687 |
+
1
|
9688 |
+
1
|
9689 |
+
1
|
9690 |
+
1
|
9691 |
+
1
|
9692 |
+
1
|
9693 |
+
1
|
9694 |
+
1
|
9695 |
+
1
|
9696 |
+
1
|
9697 |
+
2
|
9698 |
+
1
|
9699 |
+
1
|
9700 |
+
1
|
9701 |
+
1
|
9702 |
+
1
|
9703 |
+
1
|
9704 |
+
1
|
9705 |
+
1
|
9706 |
+
1
|
9707 |
+
1
|
9708 |
+
1
|
9709 |
+
1
|
9710 |
+
1
|
9711 |
+
1
|
9712 |
+
1
|
9713 |
+
1
|
9714 |
+
1
|
9715 |
+
1
|
9716 |
+
1
|
9717 |
+
2
|
9718 |
+
1
|
9719 |
+
1
|
9720 |
+
1
|
9721 |
+
1
|
9722 |
+
1
|
9723 |
+
1
|
9724 |
+
2
|
9725 |
+
1
|
9726 |
+
1
|
9727 |
+
1
|
9728 |
+
1
|
9729 |
+
1
|
9730 |
+
1
|
9731 |
+
1
|
9732 |
+
1
|
9733 |
+
1
|
9734 |
+
1
|
9735 |
+
1
|
9736 |
+
1
|
9737 |
+
1
|
9738 |
+
1
|
9739 |
+
1
|
9740 |
+
1
|
9741 |
+
2
|
9742 |
+
1
|
9743 |
+
1
|
9744 |
+
1
|
9745 |
+
1
|
9746 |
+
1
|
9747 |
+
1
|
9748 |
+
1
|
9749 |
+
1
|
9750 |
+
1
|
9751 |
+
1
|
9752 |
+
1
|
9753 |
+
1
|
9754 |
+
1
|
9755 |
+
1
|
9756 |
+
1
|
9757 |
+
1
|
9758 |
+
1
|
9759 |
+
1
|
9760 |
+
1
|
9761 |
+
1
|
9762 |
+
1
|
9763 |
+
1
|
9764 |
+
1
|
9765 |
+
1
|
9766 |
+
1
|
9767 |
+
1
|
9768 |
+
1
|
9769 |
+
1
|
9770 |
+
1
|
9771 |
+
1
|
9772 |
+
1
|
9773 |
+
1
|
9774 |
+
1
|
9775 |
+
1
|
9776 |
+
1
|
9777 |
+
1
|
9778 |
+
1
|
9779 |
+
1
|
9780 |
+
1
|
9781 |
+
1
|
9782 |
+
1
|
9783 |
+
1
|
9784 |
+
1
|
9785 |
+
1
|
9786 |
+
1
|
9787 |
+
1
|
9788 |
+
1
|
9789 |
+
1
|
9790 |
+
1
|
9791 |
+
1
|
9792 |
+
1
|
9793 |
+
1
|
9794 |
+
1
|
9795 |
+
1
|
9796 |
+
1
|
9797 |
+
1
|
9798 |
+
1
|
9799 |
+
1
|
9800 |
+
1
|
9801 |
+
1
|
9802 |
+
1
|
9803 |
+
1
|
9804 |
+
1
|
9805 |
+
1
|
9806 |
+
1
|
9807 |
+
1
|
9808 |
+
1
|
9809 |
+
1
|
9810 |
+
1
|
9811 |
+
1
|
9812 |
+
1
|
9813 |
+
1
|
9814 |
+
1
|
9815 |
+
1
|
9816 |
+
1
|
9817 |
+
1
|
9818 |
+
1
|
9819 |
+
1
|
9820 |
+
1
|
9821 |
+
2
|
9822 |
+
1
|
9823 |
+
1
|
9824 |
+
1
|
9825 |
+
2
|
9826 |
+
2
|
9827 |
+
1
|
9828 |
+
1
|
9829 |
+
2
|
9830 |
+
1
|
9831 |
+
1
|
9832 |
+
1
|
9833 |
+
1
|
9834 |
+
1
|
9835 |
+
1
|
9836 |
+
1
|
9837 |
+
1
|
9838 |
+
1
|
9839 |
+
1
|
9840 |
+
1
|
9841 |
+
1
|
9842 |
+
1
|
9843 |
+
1
|
9844 |
+
1
|
9845 |
+
1
|
9846 |
+
1
|
9847 |
+
1
|
9848 |
+
1
|
9849 |
+
1
|
9850 |
+
1
|
9851 |
+
1
|
9852 |
+
1
|
9853 |
+
1
|
9854 |
+
1
|
9855 |
+
1
|
9856 |
+
1
|
9857 |
+
1
|
9858 |
+
1
|
9859 |
+
1
|
9860 |
+
1
|
9861 |
+
1
|
9862 |
+
1
|
9863 |
+
1
|
9864 |
+
2
|
9865 |
+
1
|
9866 |
+
1
|
9867 |
+
2
|
9868 |
+
1
|
9869 |
+
2
|
9870 |
+
1
|
9871 |
+
1
|
9872 |
+
1
|
9873 |
+
1
|
9874 |
+
1
|
9875 |
+
1
|
9876 |
+
1
|
9877 |
+
1
|
9878 |
+
1
|
9879 |
+
1
|
9880 |
+
1
|
9881 |
+
1
|
9882 |
+
1
|
9883 |
+
1
|
9884 |
+
1
|
9885 |
+
1
|
9886 |
+
1
|
9887 |
+
1
|
9888 |
+
1
|
9889 |
+
1
|
9890 |
+
2
|
9891 |
+
1
|
9892 |
+
1
|
9893 |
+
1
|
9894 |
+
1
|
9895 |
+
1
|
9896 |
+
1
|
9897 |
+
1
|
9898 |
+
1
|
9899 |
+
1
|
9900 |
+
1
|
9901 |
+
1
|
9902 |
+
1
|
9903 |
+
1
|
9904 |
+
1
|
9905 |
+
1
|
9906 |
+
1
|
9907 |
+
1
|
9908 |
+
1
|
9909 |
+
1
|
9910 |
+
1
|
9911 |
+
1
|
9912 |
+
1
|
9913 |
+
1
|
9914 |
+
1
|
9915 |
+
1
|
9916 |
+
1
|
9917 |
+
1
|
9918 |
+
1
|
9919 |
+
1
|
9920 |
+
1
|
9921 |
+
1
|
9922 |
+
1
|
9923 |
+
1
|
9924 |
+
1
|
9925 |
+
1
|
9926 |
+
1
|
9927 |
+
1
|
9928 |
+
1
|
9929 |
+
1
|
9930 |
+
2
|
9931 |
+
1
|
9932 |
+
1
|
9933 |
+
1
|
9934 |
+
1
|
9935 |
+
1
|
9936 |
+
1
|
9937 |
+
1
|
9938 |
+
1
|
9939 |
+
2
|
9940 |
+
1
|
9941 |
+
1
|
9942 |
+
1
|
9943 |
+
1
|
9944 |
+
1
|
9945 |
+
1
|
9946 |
+
1
|
9947 |
+
1
|
9948 |
+
1
|
9949 |
+
1
|
9950 |
+
1
|
9951 |
+
1
|
9952 |
+
1
|
9953 |
+
1
|
9954 |
+
2
|
9955 |
+
1
|
9956 |
+
1
|
9957 |
+
1
|
9958 |
+
1
|
9959 |
+
1
|
9960 |
+
1
|
9961 |
+
1
|
9962 |
+
1
|
9963 |
+
1
|
9964 |
+
1
|
9965 |
+
1
|
9966 |
+
1
|
9967 |
+
1
|
9968 |
+
2
|
9969 |
+
1
|
9970 |
+
1
|
9971 |
+
1
|
9972 |
+
1
|
9973 |
+
1
|
9974 |
+
1
|
9975 |
+
1
|
9976 |
+
1
|
9977 |
+
1
|
9978 |
+
1
|
9979 |
+
1
|
9980 |
+
1
|
9981 |
+
1
|
9982 |
+
1
|
9983 |
+
1
|
9984 |
+
1
|
9985 |
+
1
|
9986 |
+
1
|
9987 |
+
1
|
9988 |
+
1
|
9989 |
+
1
|
9990 |
+
1
|
9991 |
+
1
|
9992 |
+
1
|
9993 |
+
1
|
9994 |
+
1
|
9995 |
+
1
|
9996 |
+
1
|
9997 |
+
1
|
9998 |
+
1
|
9999 |
+
1
|
10000 |
+
1
|
10001 |
+
1
|
10002 |
+
1
|
10003 |
+
1
|
10004 |
+
1
|
10005 |
+
1
|
10006 |
+
1
|
10007 |
+
1
|
10008 |
+
1
|
10009 |
+
1
|
10010 |
+
1
|
10011 |
+
1
|
10012 |
+
1
|
10013 |
+
1
|
10014 |
+
1
|
10015 |
+
1
|
10016 |
+
1
|
10017 |
+
1
|
10018 |
+
1
|
10019 |
+
1
|
10020 |
+
2
|
10021 |
+
2
|
10022 |
+
1
|
10023 |
+
1
|
10024 |
+
1
|
10025 |
+
1
|
10026 |
+
2
|
10027 |
+
1
|
10028 |
+
1
|
10029 |
+
1
|
10030 |
+
1
|
10031 |
+
1
|
10032 |
+
1
|
10033 |
+
1
|
10034 |
+
1
|
10035 |
+
1
|
10036 |
+
1
|
10037 |
+
1
|
10038 |
+
1
|
10039 |
+
1
|
10040 |
+
1
|
10041 |
+
1
|
10042 |
+
1
|
10043 |
+
1
|
10044 |
+
1
|
10045 |
+
1
|
10046 |
+
1
|
10047 |
+
1
|
10048 |
+
1
|
10049 |
+
1
|
10050 |
+
1
|
10051 |
+
1
|
10052 |
+
1
|
10053 |
+
1
|
10054 |
+
1
|
10055 |
+
1
|
10056 |
+
1
|
10057 |
+
1
|
10058 |
+
1
|
10059 |
+
1
|
10060 |
+
2
|
10061 |
+
1
|
10062 |
+
1
|
10063 |
+
1
|
10064 |
+
1
|
10065 |
+
1
|
10066 |
+
1
|
10067 |
+
1
|
10068 |
+
1
|
10069 |
+
1
|
10070 |
+
1
|
10071 |
+
1
|
10072 |
+
1
|
10073 |
+
1
|
10074 |
+
1
|
10075 |
+
1
|
10076 |
+
1
|
10077 |
+
1
|
10078 |
+
1
|
10079 |
+
1
|
10080 |
+
1
|
10081 |
+
1
|
10082 |
+
1
|
10083 |
+
1
|
10084 |
+
1
|
10085 |
+
1
|
10086 |
+
1
|
10087 |
+
1
|
10088 |
+
1
|
10089 |
+
1
|
10090 |
+
1
|
10091 |
+
1
|
10092 |
+
1
|
10093 |
+
1
|
10094 |
+
1
|
10095 |
+
1
|
10096 |
+
1
|
10097 |
+
1
|
10098 |
+
1
|
10099 |
+
1
|
10100 |
+
1
|
10101 |
+
1
|
10102 |
+
1
|
10103 |
+
1
|
10104 |
+
1
|
10105 |
+
1
|
10106 |
+
1
|
10107 |
+
1
|
10108 |
+
1
|
10109 |
+
1
|
10110 |
+
1
|
10111 |
+
1
|
10112 |
+
2
|
10113 |
+
1
|
10114 |
+
1
|
10115 |
+
1
|
10116 |
+
1
|
10117 |
+
1
|
10118 |
+
1
|
10119 |
+
2
|
10120 |
+
1
|
10121 |
+
1
|
10122 |
+
1
|
10123 |
+
1
|
10124 |
+
1
|
10125 |
+
1
|
10126 |
+
2
|
10127 |
+
1
|
10128 |
+
1
|
10129 |
+
1
|
10130 |
+
1
|
10131 |
+
1
|
10132 |
+
1
|
10133 |
+
1
|
10134 |
+
1
|
10135 |
+
1
|
10136 |
+
1
|
10137 |
+
1
|
10138 |
+
1
|
10139 |
+
1
|
10140 |
+
1
|
10141 |
+
1
|
10142 |
+
1
|
10143 |
+
1
|
10144 |
+
1
|
10145 |
+
1
|
10146 |
+
1
|
10147 |
+
1
|
10148 |
+
1
|
10149 |
+
1
|
10150 |
+
1
|
10151 |
+
1
|
10152 |
+
1
|
10153 |
+
1
|
10154 |
+
1
|
10155 |
+
1
|
10156 |
+
1
|
10157 |
+
1
|
10158 |
+
1
|
10159 |
+
1
|
10160 |
+
1
|
10161 |
+
1
|
10162 |
+
1
|
10163 |
+
1
|
10164 |
+
1
|
10165 |
+
1
|
10166 |
+
1
|
10167 |
+
1
|
10168 |
+
1
|
10169 |
+
1
|
10170 |
+
1
|
10171 |
+
1
|
10172 |
+
1
|
10173 |
+
1
|
10174 |
+
1
|
10175 |
+
2
|
10176 |
+
1
|
10177 |
+
1
|
10178 |
+
1
|
10179 |
+
1
|
10180 |
+
1
|
10181 |
+
1
|
10182 |
+
1
|
10183 |
+
1
|
10184 |
+
1
|
10185 |
+
1
|
10186 |
+
1
|
10187 |
+
1
|
10188 |
+
1
|
10189 |
+
1
|
10190 |
+
1
|
10191 |
+
1
|
10192 |
+
1
|
10193 |
+
1
|
10194 |
+
1
|
10195 |
+
2
|
10196 |
+
1
|
10197 |
+
1
|
10198 |
+
1
|
10199 |
+
1
|
10200 |
+
1
|
10201 |
+
1
|
10202 |
+
2
|
10203 |
+
2
|
10204 |
+
1
|
10205 |
+
1
|
10206 |
+
1
|
10207 |
+
1
|
10208 |
+
1
|
10209 |
+
1
|
10210 |
+
1
|
10211 |
+
1
|
10212 |
+
1
|
10213 |
+
1
|
10214 |
+
1
|
10215 |
+
1
|
10216 |
+
1
|
10217 |
+
1
|
10218 |
+
1
|
10219 |
+
1
|
10220 |
+
1
|
10221 |
+
2
|
10222 |
+
2
|
10223 |
+
1
|
10224 |
+
1
|
10225 |
+
1
|
10226 |
+
1
|
10227 |
+
2
|
10228 |
+
1
|
10229 |
+
1
|
10230 |
+
1
|
10231 |
+
1
|
10232 |
+
1
|
10233 |
+
1
|
10234 |
+
1
|
10235 |
+
1
|
10236 |
+
1
|
10237 |
+
1
|
10238 |
+
1
|
10239 |
+
1
|
10240 |
+
1
|
10241 |
+
1
|
10242 |
+
1
|
10243 |
+
2
|
10244 |
+
1
|
10245 |
+
1
|
10246 |
+
1
|
10247 |
+
1
|
10248 |
+
1
|
10249 |
+
1
|
10250 |
+
1
|
10251 |
+
2
|
10252 |
+
1
|
10253 |
+
1
|
10254 |
+
1
|
10255 |
+
1
|
10256 |
+
1
|
10257 |
+
1
|
10258 |
+
1
|
10259 |
+
1
|
10260 |
+
1
|
10261 |
+
1
|
10262 |
+
1
|
10263 |
+
1
|
10264 |
+
1
|
10265 |
+
1
|
10266 |
+
1
|
10267 |
+
1
|
10268 |
+
1
|
10269 |
+
1
|
10270 |
+
1
|
10271 |
+
1
|
10272 |
+
1
|
10273 |
+
1
|
10274 |
+
1
|
10275 |
+
1
|
10276 |
+
1
|
10277 |
+
2
|
10278 |
+
1
|
10279 |
+
1
|
10280 |
+
1
|
10281 |
+
1
|
10282 |
+
1
|
10283 |
+
1
|
10284 |
+
1
|
10285 |
+
1
|
10286 |
+
1
|
10287 |
+
1
|
10288 |
+
1
|
10289 |
+
1
|
10290 |
+
1
|
10291 |
+
1
|
10292 |
+
1
|
10293 |
+
1
|
10294 |
+
1
|
10295 |
+
1
|
10296 |
+
2
|
10297 |
+
1
|
10298 |
+
1
|
10299 |
+
1
|
10300 |
+
1
|
10301 |
+
1
|
10302 |
+
1
|
10303 |
+
2
|
10304 |
+
1
|
10305 |
+
1
|
10306 |
+
2
|
10307 |
+
1
|
10308 |
+
1
|
10309 |
+
1
|
10310 |
+
1
|
10311 |
+
1
|
10312 |
+
1
|
10313 |
+
1
|
10314 |
+
1
|
10315 |
+
1
|
10316 |
+
1
|
10317 |
+
1
|
10318 |
+
1
|
10319 |
+
1
|
10320 |
+
1
|
10321 |
+
1
|
10322 |
+
1
|
10323 |
+
1
|
10324 |
+
1
|
10325 |
+
1
|
10326 |
+
1
|
10327 |
+
1
|
10328 |
+
2
|
10329 |
+
1
|
10330 |
+
1
|
10331 |
+
1
|
10332 |
+
1
|
10333 |
+
1
|
10334 |
+
1
|
10335 |
+
1
|
10336 |
+
1
|
10337 |
+
1
|
10338 |
+
1
|
10339 |
+
1
|
10340 |
+
1
|
10341 |
+
1
|
10342 |
+
1
|
10343 |
+
1
|
10344 |
+
1
|
10345 |
+
1
|
10346 |
+
1
|
10347 |
+
1
|
10348 |
+
1
|
10349 |
+
1
|
10350 |
+
1
|
10351 |
+
1
|
10352 |
+
2
|
10353 |
+
1
|
10354 |
+
1
|
10355 |
+
1
|
10356 |
+
1
|
10357 |
+
1
|
10358 |
+
1
|
10359 |
+
1
|
10360 |
+
1
|
10361 |
+
2
|
10362 |
+
1
|
10363 |
+
1
|
10364 |
+
1
|
10365 |
+
1
|
10366 |
+
1
|
10367 |
+
1
|
10368 |
+
1
|
10369 |
+
1
|
10370 |
+
2
|
10371 |
+
1
|
10372 |
+
1
|
10373 |
+
1
|
10374 |
+
1
|
10375 |
+
1
|
10376 |
+
1
|
10377 |
+
1
|
10378 |
+
1
|
10379 |
+
1
|
10380 |
+
1
|
10381 |
+
1
|
10382 |
+
1
|
10383 |
+
1
|
10384 |
+
1
|
10385 |
+
1
|
10386 |
+
1
|
10387 |
+
1
|
10388 |
+
1
|
10389 |
+
1
|
10390 |
+
1
|
10391 |
+
1
|
10392 |
+
1
|
10393 |
+
1
|
10394 |
+
2
|
10395 |
+
1
|
10396 |
+
1
|
10397 |
+
1
|
10398 |
+
1
|
10399 |
+
1
|
10400 |
+
1
|
10401 |
+
1
|
10402 |
+
1
|
10403 |
+
1
|
10404 |
+
1
|
10405 |
+
1
|
10406 |
+
1
|
10407 |
+
1
|
10408 |
+
2
|
10409 |
+
1
|
10410 |
+
1
|
10411 |
+
1
|
10412 |
+
1
|
10413 |
+
1
|
10414 |
+
1
|
10415 |
+
1
|
10416 |
+
1
|
10417 |
+
1
|
10418 |
+
1
|
10419 |
+
1
|
10420 |
+
1
|
10421 |
+
1
|
10422 |
+
1
|
10423 |
+
1
|
10424 |
+
1
|
10425 |
+
1
|
10426 |
+
1
|
10427 |
+
1
|
10428 |
+
1
|
10429 |
+
1
|
10430 |
+
1
|
10431 |
+
1
|
10432 |
+
1
|
10433 |
+
1
|
10434 |
+
1
|
10435 |
+
1
|
10436 |
+
1
|
10437 |
+
1
|
10438 |
+
1
|
10439 |
+
2
|
10440 |
+
1
|
10441 |
+
1
|
10442 |
+
1
|
10443 |
+
1
|
10444 |
+
1
|
10445 |
+
1
|
10446 |
+
1
|
10447 |
+
1
|
10448 |
+
1
|
10449 |
+
1
|
10450 |
+
1
|
10451 |
+
1
|
10452 |
+
1
|
10453 |
+
1
|
10454 |
+
1
|
10455 |
+
1
|
10456 |
+
2
|
10457 |
+
1
|
10458 |
+
1
|
10459 |
+
1
|
10460 |
+
1
|
10461 |
+
1
|
10462 |
+
1
|
10463 |
+
1
|
10464 |
+
2
|
10465 |
+
1
|
10466 |
+
2
|
10467 |
+
1
|
10468 |
+
1
|
10469 |
+
1
|
10470 |
+
1
|
10471 |
+
2
|
10472 |
+
1
|
10473 |
+
1
|
10474 |
+
1
|
10475 |
+
1
|
10476 |
+
1
|
10477 |
+
1
|
10478 |
+
1
|
10479 |
+
2
|
10480 |
+
1
|
10481 |
+
1
|
10482 |
+
1
|
10483 |
+
1
|
10484 |
+
1
|
10485 |
+
1
|
10486 |
+
1
|
10487 |
+
1
|
10488 |
+
1
|
10489 |
+
1
|
10490 |
+
1
|
10491 |
+
1
|
10492 |
+
1
|
10493 |
+
1
|
10494 |
+
1
|
10495 |
+
1
|
10496 |
+
1
|
10497 |
+
1
|
10498 |
+
1
|
10499 |
+
1
|
10500 |
+
1
|
10501 |
+
1
|
10502 |
+
1
|
10503 |
+
1
|
10504 |
+
2
|
10505 |
+
1
|
10506 |
+
1
|
10507 |
+
1
|
10508 |
+
1
|
10509 |
+
2
|
10510 |
+
2
|
10511 |
+
1
|
10512 |
+
1
|
10513 |
+
1
|
10514 |
+
1
|
10515 |
+
1
|
10516 |
+
1
|
10517 |
+
1
|
10518 |
+
1
|
10519 |
+
1
|
10520 |
+
1
|
10521 |
+
1
|
10522 |
+
1
|
10523 |
+
1
|
10524 |
+
1
|
10525 |
+
1
|
10526 |
+
1
|
10527 |
+
1
|
10528 |
+
1
|
10529 |
+
1
|
10530 |
+
1
|
10531 |
+
1
|
10532 |
+
1
|
10533 |
+
1
|
10534 |
+
1
|
10535 |
+
1
|
10536 |
+
1
|
10537 |
+
1
|
10538 |
+
1
|
10539 |
+
1
|
10540 |
+
1
|
10541 |
+
1
|
10542 |
+
1
|
10543 |
+
1
|
10544 |
+
1
|
10545 |
+
1
|
10546 |
+
1
|
10547 |
+
1
|
10548 |
+
1
|
10549 |
+
1
|
10550 |
+
1
|
10551 |
+
1
|
10552 |
+
1
|
10553 |
+
1
|
10554 |
+
1
|
10555 |
+
1
|
10556 |
+
1
|
10557 |
+
1
|
10558 |
+
1
|
10559 |
+
1
|
10560 |
+
1
|
10561 |
+
1
|
10562 |
+
1
|
10563 |
+
1
|
10564 |
+
1
|
10565 |
+
1
|
10566 |
+
1
|
10567 |
+
1
|
10568 |
+
1
|
10569 |
+
1
|
10570 |
+
1
|
10571 |
+
1
|
10572 |
+
1
|
10573 |
+
1
|
10574 |
+
1
|
10575 |
+
1
|
10576 |
+
1
|
10577 |
+
1
|
10578 |
+
1
|
10579 |
+
1
|
10580 |
+
1
|
10581 |
+
1
|
10582 |
+
1
|
10583 |
+
1
|
10584 |
+
1
|
10585 |
+
1
|
10586 |
+
1
|
10587 |
+
1
|
10588 |
+
1
|
10589 |
+
1
|
10590 |
+
1
|
10591 |
+
1
|
10592 |
+
1
|
10593 |
+
1
|
10594 |
+
1
|
10595 |
+
1
|
10596 |
+
1
|
10597 |
+
1
|
10598 |
+
1
|
10599 |
+
1
|
10600 |
+
1
|
10601 |
+
1
|
10602 |
+
1
|
10603 |
+
1
|
10604 |
+
1
|
10605 |
+
1
|
10606 |
+
1
|
10607 |
+
1
|
10608 |
+
1
|
10609 |
+
1
|
10610 |
+
1
|
10611 |
+
1
|
10612 |
+
1
|
10613 |
+
1
|
10614 |
+
1
|
10615 |
+
1
|
10616 |
+
1
|
10617 |
+
1
|
10618 |
+
1
|
10619 |
+
1
|
10620 |
+
1
|
10621 |
+
1
|
10622 |
+
1
|
10623 |
+
1
|
10624 |
+
1
|
10625 |
+
1
|
10626 |
+
1
|
10627 |
+
1
|
10628 |
+
1
|
10629 |
+
1
|
10630 |
+
1
|
10631 |
+
1
|
10632 |
+
1
|
10633 |
+
1
|
10634 |
+
1
|
10635 |
+
1
|
10636 |
+
1
|
10637 |
+
1
|
10638 |
+
1
|
10639 |
+
1
|
10640 |
+
1
|
10641 |
+
1
|
10642 |
+
1
|
10643 |
+
1
|
10644 |
+
1
|
10645 |
+
1
|
10646 |
+
1
|
10647 |
+
1
|
10648 |
+
1
|
10649 |
+
1
|
10650 |
+
1
|
10651 |
+
1
|
10652 |
+
1
|
10653 |
+
1
|
10654 |
+
1
|
10655 |
+
1
|
10656 |
+
1
|
10657 |
+
1
|
10658 |
+
1
|
10659 |
+
1
|
10660 |
+
1
|
10661 |
+
1
|
10662 |
+
1
|
10663 |
+
1
|
10664 |
+
1
|
10665 |
+
1
|
10666 |
+
1
|
10667 |
+
1
|
10668 |
+
1
|
10669 |
+
1
|
10670 |
+
1
|
10671 |
+
1
|
10672 |
+
1
|
10673 |
+
1
|
10674 |
+
1
|
10675 |
+
1
|
10676 |
+
1
|
10677 |
+
1
|
10678 |
+
1
|
10679 |
+
1
|
10680 |
+
1
|
10681 |
+
1
|
10682 |
+
1
|
10683 |
+
1
|
10684 |
+
1
|
10685 |
+
1
|
10686 |
+
1
|
10687 |
+
1
|
10688 |
+
1
|
10689 |
+
1
|
10690 |
+
1
|
10691 |
+
1
|
10692 |
+
1
|
10693 |
+
1
|
10694 |
+
1
|
10695 |
+
1
|
10696 |
+
1
|
10697 |
+
1
|
10698 |
+
1
|
10699 |
+
1
|
10700 |
+
1
|
10701 |
+
1
|
10702 |
+
1
|
10703 |
+
1
|
10704 |
+
1
|
10705 |
+
1
|
10706 |
+
1
|
10707 |
+
1
|
10708 |
+
1
|
10709 |
+
1
|
10710 |
+
1
|
10711 |
+
1
|
10712 |
+
1
|
10713 |
+
1
|
10714 |
+
1
|
10715 |
+
1
|
10716 |
+
1
|
10717 |
+
1
|
10718 |
+
1
|
10719 |
+
1
|
10720 |
+
1
|
10721 |
+
1
|
10722 |
+
1
|
10723 |
+
1
|
10724 |
+
1
|
10725 |
+
1
|
10726 |
+
1
|
10727 |
+
1
|
10728 |
+
1
|
10729 |
+
1
|
10730 |
+
1
|
10731 |
+
1
|
10732 |
+
1
|
10733 |
+
1
|
10734 |
+
1
|
10735 |
+
1
|
10736 |
+
1
|
10737 |
+
1
|
10738 |
+
1
|
10739 |
+
1
|
10740 |
+
1
|
10741 |
+
1
|
10742 |
+
1
|
10743 |
+
1
|
10744 |
+
1
|
10745 |
+
1
|
10746 |
+
1
|
10747 |
+
1
|
10748 |
+
1
|
10749 |
+
1
|
10750 |
+
1
|
10751 |
+
1
|
10752 |
+
1
|
10753 |
+
1
|
10754 |
+
1
|
10755 |
+
1
|
10756 |
+
1
|
10757 |
+
1
|
10758 |
+
1
|
10759 |
+
1
|
10760 |
+
1
|
10761 |
+
1
|
10762 |
+
1
|
10763 |
+
1
|
10764 |
+
1
|
10765 |
+
1
|
10766 |
+
1
|
10767 |
+
1
|
10768 |
+
1
|
10769 |
+
1
|
10770 |
+
1
|
10771 |
+
1
|
10772 |
+
1
|
10773 |
+
1
|
10774 |
+
1
|
10775 |
+
1
|
10776 |
+
1
|
10777 |
+
1
|
10778 |
+
1
|
10779 |
+
1
|
10780 |
+
1
|
10781 |
+
1
|
10782 |
+
1
|
10783 |
+
1
|
10784 |
+
1
|
10785 |
+
1
|
10786 |
+
1
|
10787 |
+
1
|
10788 |
+
1
|
10789 |
+
1
|
10790 |
+
1
|
10791 |
+
1
|
10792 |
+
1
|
10793 |
+
1
|
10794 |
+
1
|
10795 |
+
1
|
10796 |
+
1
|
10797 |
+
1
|
10798 |
+
1
|
10799 |
+
1
|
10800 |
+
1
|
10801 |
+
1
|
10802 |
+
1
|
10803 |
+
1
|
10804 |
+
1
|
10805 |
+
1
|
10806 |
+
1
|
10807 |
+
1
|
10808 |
+
1
|
10809 |
+
1
|
10810 |
+
2
|
10811 |
+
1
|
10812 |
+
1
|
10813 |
+
1
|
10814 |
+
1
|
10815 |
+
1
|
10816 |
+
1
|
10817 |
+
1
|
10818 |
+
1
|
10819 |
+
1
|
10820 |
+
1
|
10821 |
+
1
|
10822 |
+
1
|
10823 |
+
1
|
10824 |
+
1
|
10825 |
+
1
|
10826 |
+
1
|
10827 |
+
1
|
10828 |
+
1
|
10829 |
+
1
|
10830 |
+
1
|
10831 |
+
1
|
10832 |
+
1
|
10833 |
+
1
|
10834 |
+
1
|
10835 |
+
1
|
10836 |
+
1
|
10837 |
+
1
|
10838 |
+
1
|
10839 |
+
1
|
10840 |
+
1
|
10841 |
+
1
|
10842 |
+
1
|
10843 |
+
1
|
10844 |
+
1
|
10845 |
+
1
|
10846 |
+
1
|
10847 |
+
1
|
10848 |
+
1
|
10849 |
+
1
|
10850 |
+
1
|
10851 |
+
1
|
10852 |
+
1
|
10853 |
+
1
|
10854 |
+
1
|
10855 |
+
1
|
10856 |
+
1
|
10857 |
+
1
|
10858 |
+
1
|
10859 |
+
1
|
10860 |
+
1
|
10861 |
+
1
|
10862 |
+
1
|
10863 |
+
1
|
10864 |
+
1
|
10865 |
+
1
|
10866 |
+
1
|
10867 |
+
1
|
10868 |
+
1
|
10869 |
+
1
|
10870 |
+
1
|
10871 |
+
1
|
10872 |
+
1
|
10873 |
+
1
|
10874 |
+
1
|
10875 |
+
1
|
10876 |
+
1
|
10877 |
+
1
|
10878 |
+
1
|
10879 |
+
1
|
10880 |
+
1
|
10881 |
+
1
|
10882 |
+
1
|
10883 |
+
1
|
10884 |
+
1
|
10885 |
+
1
|
10886 |
+
1
|
10887 |
+
1
|
10888 |
+
1
|
10889 |
+
1
|
10890 |
+
1
|
10891 |
+
1
|
10892 |
+
1
|
10893 |
+
1
|
10894 |
+
1
|
10895 |
+
1
|
10896 |
+
1
|
10897 |
+
1
|
10898 |
+
1
|
10899 |
+
1
|
10900 |
+
1
|
10901 |
+
1
|
10902 |
+
1
|
10903 |
+
1
|
10904 |
+
1
|
10905 |
+
1
|
10906 |
+
1
|
10907 |
+
1
|
10908 |
+
1
|
10909 |
+
1
|
10910 |
+
1
|
10911 |
+
1
|
10912 |
+
1
|
10913 |
+
1
|
10914 |
+
1
|
10915 |
+
1
|
10916 |
+
1
|
10917 |
+
1
|
10918 |
+
1
|
10919 |
+
1
|
10920 |
+
1
|
10921 |
+
1
|
10922 |
+
1
|
10923 |
+
1
|
10924 |
+
1
|
10925 |
+
1
|
10926 |
+
1
|
10927 |
+
1
|
10928 |
+
1
|
10929 |
+
1
|
10930 |
+
1
|
10931 |
+
1
|
10932 |
+
1
|
10933 |
+
1
|
10934 |
+
1
|
10935 |
+
1
|
10936 |
+
1
|
10937 |
+
1
|
10938 |
+
1
|
10939 |
+
1
|
10940 |
+
1
|
10941 |
+
1
|
10942 |
+
1
|
10943 |
+
1
|
10944 |
+
1
|
10945 |
+
1
|
10946 |
+
1
|
10947 |
+
1
|
10948 |
+
1
|
10949 |
+
1
|
10950 |
+
1
|
10951 |
+
1
|
10952 |
+
1
|
10953 |
+
1
|
10954 |
+
1
|
10955 |
+
1
|
10956 |
+
1
|
10957 |
+
1
|
10958 |
+
1
|
10959 |
+
1
|
10960 |
+
1
|
10961 |
+
1
|
10962 |
+
1
|
10963 |
+
1
|
10964 |
+
1
|
10965 |
+
1
|
10966 |
+
1
|
10967 |
+
1
|
10968 |
+
1
|
10969 |
+
1
|
10970 |
+
1
|
10971 |
+
1
|
10972 |
+
1
|
10973 |
+
1
|
10974 |
+
1
|
10975 |
+
1
|
10976 |
+
1
|
10977 |
+
1
|
10978 |
+
1
|
10979 |
+
1
|
10980 |
+
1
|
10981 |
+
1
|
10982 |
+
1
|
10983 |
+
1
|
10984 |
+
1
|
10985 |
+
1
|
10986 |
+
1
|
10987 |
+
1
|
10988 |
+
1
|
10989 |
+
1
|
10990 |
+
1
|
10991 |
+
1
|
10992 |
+
1
|
10993 |
+
1
|
10994 |
+
1
|
10995 |
+
1
|
10996 |
+
1
|
10997 |
+
1
|
10998 |
+
1
|
10999 |
+
1
|
11000 |
+
1
|
11001 |
+
1
|
11002 |
+
1
|
11003 |
+
1
|
11004 |
+
1
|
11005 |
+
1
|
11006 |
+
1
|
11007 |
+
1
|
11008 |
+
1
|
11009 |
+
1
|
11010 |
+
1
|
11011 |
+
1
|
11012 |
+
1
|
11013 |
+
1
|
11014 |
+
1
|
11015 |
+
1
|
11016 |
+
1
|
11017 |
+
1
|
11018 |
+
1
|
11019 |
+
1
|
11020 |
+
1
|
11021 |
+
1
|
11022 |
+
1
|
11023 |
+
1
|
11024 |
+
1
|
11025 |
+
1
|
11026 |
+
1
|
11027 |
+
1
|
11028 |
+
1
|
11029 |
+
1
|
11030 |
+
1
|
11031 |
+
1
|
11032 |
+
1
|
11033 |
+
1
|
11034 |
+
1
|
11035 |
+
1
|
11036 |
+
1
|
11037 |
+
1
|
11038 |
+
1
|
11039 |
+
1
|
11040 |
+
1
|
11041 |
+
1
|
11042 |
+
1
|
11043 |
+
1
|
11044 |
+
1
|
11045 |
+
1
|
11046 |
+
1
|
11047 |
+
1
|
11048 |
+
1
|
11049 |
+
1
|
11050 |
+
1
|
11051 |
+
1
|
11052 |
+
1
|
11053 |
+
1
|
11054 |
+
1
|
11055 |
+
1
|
11056 |
+
1
|
11057 |
+
1
|
11058 |
+
1
|
11059 |
+
1
|
11060 |
+
1
|
11061 |
+
1
|
11062 |
+
1
|
11063 |
+
1
|
11064 |
+
1
|
11065 |
+
1
|
11066 |
+
1
|
11067 |
+
1
|
11068 |
+
1
|
11069 |
+
1
|
11070 |
+
1
|
11071 |
+
1
|
11072 |
+
1
|
11073 |
+
1
|
11074 |
+
1
|
11075 |
+
1
|
11076 |
+
1
|
11077 |
+
1
|
11078 |
+
1
|
11079 |
+
1
|
11080 |
+
1
|
11081 |
+
2
|
11082 |
+
1
|
11083 |
+
1
|
11084 |
+
1
|
11085 |
+
1
|
11086 |
+
1
|
11087 |
+
1
|
11088 |
+
1
|
11089 |
+
1
|
11090 |
+
1
|
11091 |
+
1
|
11092 |
+
1
|
11093 |
+
1
|
11094 |
+
1
|
11095 |
+
1
|
11096 |
+
1
|
11097 |
+
1
|
11098 |
+
1
|
11099 |
+
1
|
11100 |
+
1
|
11101 |
+
1
|
11102 |
+
1
|
11103 |
+
1
|
11104 |
+
1
|
11105 |
+
1
|
11106 |
+
1
|
11107 |
+
1
|
11108 |
+
1
|
11109 |
+
1
|
11110 |
+
1
|
11111 |
+
1
|
11112 |
+
1
|
11113 |
+
1
|
11114 |
+
1
|
11115 |
+
1
|
11116 |
+
1
|
11117 |
+
1
|
11118 |
+
1
|
11119 |
+
1
|
11120 |
+
1
|
11121 |
+
1
|
11122 |
+
1
|
11123 |
+
1
|
11124 |
+
1
|
11125 |
+
1
|
11126 |
+
1
|
11127 |
+
1
|
11128 |
+
1
|
11129 |
+
1
|
11130 |
+
1
|
11131 |
+
1
|
11132 |
+
1
|
11133 |
+
1
|
11134 |
+
1
|
11135 |
+
1
|
11136 |
+
1
|
11137 |
+
1
|
11138 |
+
1
|
11139 |
+
1
|
11140 |
+
1
|
11141 |
+
1
|
11142 |
+
1
|
11143 |
+
1
|
11144 |
+
1
|
11145 |
+
1
|
11146 |
+
1
|
11147 |
+
1
|
11148 |
+
1
|
11149 |
+
1
|
11150 |
+
1
|
11151 |
+
1
|
11152 |
+
1
|
11153 |
+
1
|
11154 |
+
1
|
11155 |
+
1
|
11156 |
+
1
|
11157 |
+
1
|
11158 |
+
1
|
11159 |
+
1
|
11160 |
+
1
|
11161 |
+
1
|
11162 |
+
1
|
11163 |
+
1
|
11164 |
+
1
|
11165 |
+
1
|
11166 |
+
1
|
11167 |
+
1
|
11168 |
+
1
|
11169 |
+
1
|
11170 |
+
1
|
11171 |
+
1
|
11172 |
+
1
|
11173 |
+
1
|
11174 |
+
1
|
11175 |
+
1
|
11176 |
+
1
|
11177 |
+
1
|
11178 |
+
1
|
11179 |
+
1
|
11180 |
+
1
|
11181 |
+
1
|
11182 |
+
1
|
11183 |
+
1
|
11184 |
+
1
|
11185 |
+
1
|
11186 |
+
1
|
11187 |
+
1
|
11188 |
+
1
|
11189 |
+
1
|
11190 |
+
1
|
11191 |
+
1
|
11192 |
+
1
|
11193 |
+
1
|
11194 |
+
1
|
11195 |
+
1
|
11196 |
+
1
|
11197 |
+
1
|
11198 |
+
1
|
11199 |
+
1
|
11200 |
+
1
|
11201 |
+
1
|
11202 |
+
1
|
11203 |
+
1
|
11204 |
+
1
|
11205 |
+
1
|
11206 |
+
1
|
11207 |
+
1
|
11208 |
+
1
|
11209 |
+
1
|
11210 |
+
1
|
11211 |
+
1
|
11212 |
+
1
|
11213 |
+
1
|
11214 |
+
1
|
11215 |
+
1
|
11216 |
+
1
|
11217 |
+
1
|
11218 |
+
1
|
11219 |
+
1
|
11220 |
+
1
|
11221 |
+
1
|
11222 |
+
1
|
11223 |
+
1
|
11224 |
+
1
|
11225 |
+
1
|
11226 |
+
1
|
11227 |
+
1
|
11228 |
+
1
|
11229 |
+
1
|
11230 |
+
1
|
11231 |
+
1
|
11232 |
+
1
|
11233 |
+
1
|
11234 |
+
1
|
11235 |
+
1
|
11236 |
+
1
|
11237 |
+
1
|
11238 |
+
1
|
11239 |
+
1
|
11240 |
+
1
|
11241 |
+
1
|
11242 |
+
1
|
11243 |
+
1
|
11244 |
+
1
|
11245 |
+
1
|
11246 |
+
1
|
11247 |
+
1
|
11248 |
+
1
|
11249 |
+
1
|
11250 |
+
1
|
11251 |
+
1
|
11252 |
+
1
|
11253 |
+
1
|
11254 |
+
1
|
11255 |
+
1
|
11256 |
+
1
|
11257 |
+
1
|
11258 |
+
1
|
11259 |
+
1
|
11260 |
+
1
|
11261 |
+
1
|
11262 |
+
1
|
11263 |
+
1
|
11264 |
+
1
|
11265 |
+
1
|
11266 |
+
1
|
11267 |
+
1
|
11268 |
+
1
|
11269 |
+
1
|
11270 |
+
1
|
11271 |
+
1
|
11272 |
+
1
|
11273 |
+
1
|
11274 |
+
1
|
11275 |
+
1
|
11276 |
+
1
|
11277 |
+
1
|
11278 |
+
1
|
11279 |
+
1
|
11280 |
+
1
|
11281 |
+
1
|
11282 |
+
1
|
11283 |
+
1
|
11284 |
+
1
|
11285 |
+
1
|
11286 |
+
1
|
11287 |
+
1
|
11288 |
+
1
|
11289 |
+
1
|
11290 |
+
1
|
11291 |
+
1
|
11292 |
+
1
|
11293 |
+
1
|
11294 |
+
1
|
11295 |
+
1
|
11296 |
+
1
|
11297 |
+
1
|
11298 |
+
1
|
11299 |
+
1
|
11300 |
+
1
|
11301 |
+
1
|
11302 |
+
1
|
11303 |
+
1
|
11304 |
+
1
|
11305 |
+
1
|
11306 |
+
1
|
11307 |
+
1
|
11308 |
+
1
|
11309 |
+
1
|
11310 |
+
1
|
11311 |
+
1
|
11312 |
+
1
|
11313 |
+
1
|
11314 |
+
1
|
11315 |
+
1
|
11316 |
+
1
|
11317 |
+
1
|
11318 |
+
1
|
11319 |
+
1
|
11320 |
+
1
|
11321 |
+
1
|
11322 |
+
1
|
11323 |
+
1
|
11324 |
+
1
|
11325 |
+
1
|
11326 |
+
1
|
11327 |
+
1
|
11328 |
+
1
|
11329 |
+
1
|
11330 |
+
1
|
11331 |
+
1
|
11332 |
+
2
|
11333 |
+
1
|
11334 |
+
1
|
11335 |
+
1
|
11336 |
+
1
|
11337 |
+
1
|
11338 |
+
1
|
11339 |
+
1
|
11340 |
+
1
|
11341 |
+
1
|
11342 |
+
1
|
11343 |
+
1
|
11344 |
+
1
|
11345 |
+
1
|
11346 |
+
1
|
11347 |
+
1
|
11348 |
+
1
|
11349 |
+
1
|
11350 |
+
1
|
11351 |
+
1
|
11352 |
+
1
|
11353 |
+
1
|
11354 |
+
1
|
11355 |
+
1
|
11356 |
+
1
|
11357 |
+
1
|
11358 |
+
1
|
11359 |
+
1
|
11360 |
+
1
|
11361 |
+
1
|
11362 |
+
1
|
11363 |
+
1
|
11364 |
+
1
|
11365 |
+
1
|
11366 |
+
1
|
11367 |
+
1
|
11368 |
+
1
|
11369 |
+
1
|
11370 |
+
1
|
11371 |
+
1
|
11372 |
+
1
|
11373 |
+
1
|
11374 |
+
1
|
11375 |
+
1
|
11376 |
+
1
|
11377 |
+
1
|
11378 |
+
1
|
11379 |
+
1
|
11380 |
+
1
|
11381 |
+
1
|
11382 |
+
1
|
11383 |
+
1
|
11384 |
+
1
|
11385 |
+
1
|
11386 |
+
1
|
11387 |
+
1
|
11388 |
+
1
|
11389 |
+
1
|
11390 |
+
1
|
11391 |
+
1
|
11392 |
+
1
|
11393 |
+
1
|
11394 |
+
1
|
11395 |
+
1
|
11396 |
+
1
|
11397 |
+
1
|
11398 |
+
1
|
11399 |
+
1
|
11400 |
+
1
|
11401 |
+
1
|
11402 |
+
1
|
11403 |
+
1
|
11404 |
+
1
|
11405 |
+
1
|
11406 |
+
1
|
11407 |
+
1
|
11408 |
+
1
|
11409 |
+
1
|
11410 |
+
1
|
11411 |
+
1
|
11412 |
+
1
|
11413 |
+
1
|
11414 |
+
1
|
11415 |
+
1
|
11416 |
+
1
|
11417 |
+
1
|
11418 |
+
1
|
11419 |
+
1
|
11420 |
+
1
|
11421 |
+
1
|
11422 |
+
1
|
11423 |
+
1
|
11424 |
+
1
|
11425 |
+
1
|
11426 |
+
1
|
11427 |
+
1
|
11428 |
+
1
|
11429 |
+
1
|
11430 |
+
1
|
11431 |
+
1
|
11432 |
+
1
|
11433 |
+
1
|
11434 |
+
1
|
11435 |
+
1
|
11436 |
+
1
|
11437 |
+
1
|
11438 |
+
1
|
11439 |
+
1
|
11440 |
+
1
|
11441 |
+
1
|
11442 |
+
1
|
11443 |
+
1
|
11444 |
+
1
|
11445 |
+
1
|
11446 |
+
1
|
11447 |
+
1
|
11448 |
+
1
|
11449 |
+
1
|
11450 |
+
1
|
11451 |
+
1
|
11452 |
+
1
|
11453 |
+
1
|
11454 |
+
1
|
11455 |
+
1
|
11456 |
+
1
|
11457 |
+
1
|
11458 |
+
1
|
11459 |
+
1
|
11460 |
+
1
|
11461 |
+
1
|
11462 |
+
1
|
11463 |
+
1
|
11464 |
+
1
|
11465 |
+
1
|
11466 |
+
1
|
11467 |
+
1
|
11468 |
+
1
|
11469 |
+
1
|
11470 |
+
1
|
11471 |
+
1
|
11472 |
+
1
|
11473 |
+
1
|
11474 |
+
1
|
11475 |
+
1
|
11476 |
+
1
|
11477 |
+
1
|
11478 |
+
1
|
11479 |
+
1
|
11480 |
+
1
|
11481 |
+
1
|
11482 |
+
1
|
11483 |
+
1
|
11484 |
+
1
|
11485 |
+
1
|
11486 |
+
1
|
11487 |
+
1
|
11488 |
+
1
|
11489 |
+
1
|
11490 |
+
1
|
11491 |
+
1
|
11492 |
+
1
|
11493 |
+
1
|
11494 |
+
1
|
11495 |
+
1
|
11496 |
+
1
|
11497 |
+
1
|
11498 |
+
1
|
11499 |
+
1
|
11500 |
+
1
|
11501 |
+
1
|
11502 |
+
1
|
11503 |
+
1
|
11504 |
+
1
|
11505 |
+
1
|
11506 |
+
1
|
11507 |
+
1
|
11508 |
+
1
|
11509 |
+
1
|
11510 |
+
1
|
11511 |
+
1
|
11512 |
+
1
|
11513 |
+
1
|
11514 |
+
1
|
11515 |
+
1
|
11516 |
+
1
|
11517 |
+
1
|
11518 |
+
1
|
11519 |
+
1
|
11520 |
+
1
|
11521 |
+
1
|
11522 |
+
1
|
11523 |
+
1
|
11524 |
+
1
|
11525 |
+
1
|
11526 |
+
1
|
11527 |
+
1
|
11528 |
+
1
|
11529 |
+
1
|
11530 |
+
1
|
11531 |
+
1
|
11532 |
+
1
|
11533 |
+
1
|
11534 |
+
1
|
11535 |
+
1
|
11536 |
+
1
|
11537 |
+
1
|
11538 |
+
1
|
11539 |
+
1
|
11540 |
+
1
|
11541 |
+
1
|
11542 |
+
1
|
11543 |
+
1
|
11544 |
+
1
|
11545 |
+
1
|
11546 |
+
1
|
11547 |
+
1
|
11548 |
+
1
|
11549 |
+
1
|
11550 |
+
1
|
11551 |
+
1
|
11552 |
+
1
|
11553 |
+
1
|
11554 |
+
1
|
11555 |
+
1
|
11556 |
+
1
|
11557 |
+
1
|
11558 |
+
1
|
11559 |
+
1
|
11560 |
+
1
|
11561 |
+
1
|
11562 |
+
1
|
11563 |
+
1
|
11564 |
+
1
|
11565 |
+
1
|
11566 |
+
1
|
11567 |
+
1
|
11568 |
+
1
|
11569 |
+
1
|
11570 |
+
1
|
11571 |
+
1
|
11572 |
+
1
|
11573 |
+
1
|
11574 |
+
1
|
11575 |
+
1
|
11576 |
+
1
|
11577 |
+
1
|
11578 |
+
1
|
11579 |
+
1
|
11580 |
+
1
|
11581 |
+
1
|
11582 |
+
1
|
11583 |
+
1
|
11584 |
+
1
|
11585 |
+
1
|
11586 |
+
1
|
11587 |
+
1
|
11588 |
+
1
|
11589 |
+
1
|
11590 |
+
1
|
11591 |
+
1
|
11592 |
+
1
|
11593 |
+
1
|
11594 |
+
1
|
11595 |
+
1
|
11596 |
+
1
|
11597 |
+
1
|
11598 |
+
1
|
11599 |
+
1
|
11600 |
+
1
|
11601 |
+
1
|
11602 |
+
1
|
11603 |
+
1
|
11604 |
+
1
|
11605 |
+
1
|
11606 |
+
1
|
11607 |
+
1
|
11608 |
+
2
|
11609 |
+
1
|
11610 |
+
1
|
11611 |
+
2
|
11612 |
+
1
|
11613 |
+
1
|
11614 |
+
1
|
11615 |
+
1
|
11616 |
+
1
|
11617 |
+
1
|
11618 |
+
1
|
11619 |
+
1
|
11620 |
+
1
|
11621 |
+
1
|
11622 |
+
1
|
11623 |
+
1
|
11624 |
+
1
|
11625 |
+
1
|
11626 |
+
1
|
11627 |
+
1
|
11628 |
+
1
|
11629 |
+
1
|
11630 |
+
1
|
11631 |
+
1
|
11632 |
+
1
|
11633 |
+
1
|
11634 |
+
1
|
11635 |
+
1
|
11636 |
+
1
|
11637 |
+
1
|
11638 |
+
1
|
11639 |
+
1
|
11640 |
+
1
|
11641 |
+
1
|
11642 |
+
1
|
11643 |
+
1
|
11644 |
+
1
|
11645 |
+
1
|
11646 |
+
1
|
11647 |
+
1
|
11648 |
+
1
|
11649 |
+
1
|
11650 |
+
1
|
11651 |
+
1
|
11652 |
+
1
|
11653 |
+
1
|
11654 |
+
1
|
11655 |
+
1
|
11656 |
+
1
|
11657 |
+
1
|
11658 |
+
1
|
11659 |
+
1
|
11660 |
+
1
|
11661 |
+
1
|
11662 |
+
1
|
11663 |
+
1
|
11664 |
+
1
|
11665 |
+
1
|
11666 |
+
1
|
11667 |
+
1
|
11668 |
+
1
|
11669 |
+
1
|
11670 |
+
1
|
11671 |
+
1
|
11672 |
+
1
|
11673 |
+
1
|
11674 |
+
1
|
11675 |
+
1
|
11676 |
+
1
|
11677 |
+
1
|
11678 |
+
1
|
11679 |
+
1
|
11680 |
+
1
|
11681 |
+
1
|
11682 |
+
1
|
11683 |
+
1
|
11684 |
+
1
|
11685 |
+
1
|
11686 |
+
1
|
11687 |
+
1
|
11688 |
+
1
|
11689 |
+
1
|
11690 |
+
1
|
11691 |
+
1
|
11692 |
+
1
|
11693 |
+
1
|
11694 |
+
1
|
11695 |
+
1
|
11696 |
+
1
|
11697 |
+
1
|
11698 |
+
1
|
11699 |
+
1
|
11700 |
+
1
|
11701 |
+
1
|
11702 |
+
1
|
11703 |
+
1
|
11704 |
+
1
|
11705 |
+
1
|
11706 |
+
1
|
11707 |
+
1
|
11708 |
+
1
|
11709 |
+
1
|
11710 |
+
1
|
11711 |
+
1
|
11712 |
+
1
|
11713 |
+
1
|
11714 |
+
1
|
11715 |
+
1
|
11716 |
+
1
|
11717 |
+
1
|
11718 |
+
1
|
11719 |
+
1
|
11720 |
+
1
|
11721 |
+
1
|
11722 |
+
1
|
11723 |
+
1
|
11724 |
+
1
|
11725 |
+
1
|
11726 |
+
1
|
11727 |
+
1
|
11728 |
+
1
|
11729 |
+
1
|
11730 |
+
1
|
11731 |
+
1
|
11732 |
+
1
|
11733 |
+
1
|
11734 |
+
1
|
11735 |
+
1
|
11736 |
+
1
|
11737 |
+
1
|
11738 |
+
1
|
11739 |
+
1
|
11740 |
+
1
|
11741 |
+
1
|
11742 |
+
1
|
11743 |
+
1
|
11744 |
+
1
|
11745 |
+
1
|
11746 |
+
1
|
11747 |
+
1
|
11748 |
+
1
|
11749 |
+
1
|
11750 |
+
1
|
11751 |
+
1
|
11752 |
+
1
|
11753 |
+
1
|
11754 |
+
1
|
11755 |
+
1
|
11756 |
+
1
|
11757 |
+
1
|
11758 |
+
1
|
11759 |
+
1
|
11760 |
+
1
|
11761 |
+
1
|
11762 |
+
1
|
11763 |
+
1
|
11764 |
+
1
|
11765 |
+
1
|
11766 |
+
1
|
11767 |
+
1
|
11768 |
+
1
|
11769 |
+
1
|
11770 |
+
1
|
11771 |
+
1
|
11772 |
+
1
|
11773 |
+
1
|
11774 |
+
1
|
11775 |
+
1
|
11776 |
+
1
|
11777 |
+
1
|
11778 |
+
1
|
11779 |
+
1
|
11780 |
+
1
|
11781 |
+
1
|
11782 |
+
1
|
11783 |
+
1
|
11784 |
+
1
|
11785 |
+
1
|
11786 |
+
1
|
11787 |
+
1
|
11788 |
+
1
|
11789 |
+
1
|
11790 |
+
1
|
11791 |
+
1
|
11792 |
+
1
|
11793 |
+
1
|
11794 |
+
1
|
11795 |
+
1
|
11796 |
+
1
|
11797 |
+
1
|
11798 |
+
1
|
11799 |
+
1
|
11800 |
+
1
|
11801 |
+
1
|
11802 |
+
1
|
11803 |
+
1
|
11804 |
+
1
|
11805 |
+
1
|
11806 |
+
1
|
11807 |
+
1
|
11808 |
+
1
|
11809 |
+
1
|
11810 |
+
1
|
11811 |
+
1
|
11812 |
+
1
|
11813 |
+
1
|
11814 |
+
1
|
11815 |
+
1
|
11816 |
+
1
|
11817 |
+
1
|
11818 |
+
1
|
11819 |
+
1
|
11820 |
+
1
|
11821 |
+
1
|
11822 |
+
1
|
11823 |
+
1
|
11824 |
+
1
|
11825 |
+
1
|
11826 |
+
1
|
11827 |
+
1
|
11828 |
+
1
|
11829 |
+
1
|
11830 |
+
1
|
11831 |
+
1
|
11832 |
+
1
|
11833 |
+
1
|
11834 |
+
1
|
11835 |
+
1
|
11836 |
+
1
|
11837 |
+
1
|
11838 |
+
1
|
11839 |
+
1
|
11840 |
+
1
|
11841 |
+
1
|
11842 |
+
1
|
11843 |
+
1
|
11844 |
+
1
|
11845 |
+
1
|
11846 |
+
1
|
11847 |
+
1
|
11848 |
+
1
|
11849 |
+
1
|
11850 |
+
1
|
11851 |
+
1
|
11852 |
+
1
|
11853 |
+
1
|
11854 |
+
1
|
11855 |
+
1
|
11856 |
+
1
|
11857 |
+
1
|
11858 |
+
1
|
11859 |
+
1
|
11860 |
+
1
|
11861 |
+
1
|
11862 |
+
1
|
11863 |
+
1
|
11864 |
+
1
|
11865 |
+
2
|
11866 |
+
1
|
11867 |
+
1
|
11868 |
+
1
|
11869 |
+
1
|
11870 |
+
1
|
11871 |
+
1
|
11872 |
+
1
|
11873 |
+
1
|
11874 |
+
1
|
11875 |
+
1
|
11876 |
+
1
|
11877 |
+
1
|
11878 |
+
1
|
11879 |
+
1
|
11880 |
+
1
|
11881 |
+
1
|
11882 |
+
1
|
11883 |
+
1
|
11884 |
+
1
|
11885 |
+
1
|
11886 |
+
1
|
11887 |
+
1
|
11888 |
+
1
|
11889 |
+
1
|
11890 |
+
1
|
11891 |
+
1
|
11892 |
+
1
|
11893 |
+
1
|
11894 |
+
1
|
11895 |
+
1
|
11896 |
+
1
|
11897 |
+
1
|
11898 |
+
1
|
11899 |
+
1
|
11900 |
+
1
|
11901 |
+
1
|
11902 |
+
1
|
11903 |
+
1
|
11904 |
+
1
|
11905 |
+
1
|
11906 |
+
1
|
11907 |
+
1
|
11908 |
+
1
|
11909 |
+
1
|
11910 |
+
1
|
11911 |
+
1
|
11912 |
+
1
|
11913 |
+
1
|
11914 |
+
1
|
11915 |
+
1
|
11916 |
+
1
|
11917 |
+
1
|
11918 |
+
1
|
11919 |
+
1
|
11920 |
+
1
|
11921 |
+
1
|
11922 |
+
1
|
11923 |
+
1
|
11924 |
+
1
|
11925 |
+
1
|
11926 |
+
1
|
11927 |
+
1
|
11928 |
+
1
|
11929 |
+
1
|
11930 |
+
1
|
11931 |
+
1
|
11932 |
+
1
|
11933 |
+
1
|
11934 |
+
1
|
11935 |
+
1
|
11936 |
+
1
|
11937 |
+
1
|
11938 |
+
1
|
11939 |
+
1
|
11940 |
+
1
|
11941 |
+
1
|
11942 |
+
1
|
11943 |
+
1
|
11944 |
+
1
|
11945 |
+
1
|
11946 |
+
1
|
11947 |
+
1
|
11948 |
+
1
|
11949 |
+
1
|
11950 |
+
1
|
11951 |
+
1
|
11952 |
+
1
|
11953 |
+
1
|
11954 |
+
1
|
11955 |
+
1
|
11956 |
+
1
|
11957 |
+
1
|
11958 |
+
1
|
11959 |
+
1
|
11960 |
+
1
|
11961 |
+
1
|
11962 |
+
1
|
11963 |
+
1
|
11964 |
+
1
|
11965 |
+
1
|
11966 |
+
1
|
11967 |
+
1
|
11968 |
+
1
|
11969 |
+
1
|
11970 |
+
1
|
11971 |
+
1
|
11972 |
+
1
|
11973 |
+
1
|
11974 |
+
1
|
11975 |
+
1
|
11976 |
+
1
|
11977 |
+
1
|
11978 |
+
1
|
11979 |
+
1
|
11980 |
+
1
|
11981 |
+
1
|
11982 |
+
1
|
11983 |
+
1
|
11984 |
+
1
|
11985 |
+
1
|
11986 |
+
1
|
11987 |
+
1
|
11988 |
+
1
|
11989 |
+
1
|
11990 |
+
1
|
11991 |
+
1
|
11992 |
+
1
|
11993 |
+
1
|
11994 |
+
1
|
11995 |
+
1
|
11996 |
+
1
|
11997 |
+
1
|
11998 |
+
1
|
11999 |
+
1
|
12000 |
+
1
|
12001 |
+
1
|
12002 |
+
1
|
12003 |
+
1
|
12004 |
+
1
|
12005 |
+
1
|
12006 |
+
1
|
12007 |
+
1
|
12008 |
+
1
|
12009 |
+
1
|
12010 |
+
1
|
12011 |
+
1
|
12012 |
+
1
|
12013 |
+
1
|
12014 |
+
1
|
12015 |
+
1
|
12016 |
+
1
|
12017 |
+
1
|
12018 |
+
1
|
12019 |
+
1
|
12020 |
+
1
|
12021 |
+
1
|
12022 |
+
1
|
12023 |
+
1
|
12024 |
+
1
|
12025 |
+
1
|
12026 |
+
1
|
12027 |
+
1
|
12028 |
+
1
|
12029 |
+
1
|
12030 |
+
1
|
12031 |
+
1
|
12032 |
+
1
|
12033 |
+
1
|
12034 |
+
1
|
12035 |
+
1
|
12036 |
+
1
|
12037 |
+
1
|
12038 |
+
1
|
12039 |
+
1
|
12040 |
+
1
|
12041 |
+
1
|
12042 |
+
1
|
12043 |
+
1
|
12044 |
+
1
|
12045 |
+
1
|
12046 |
+
1
|
12047 |
+
1
|
12048 |
+
1
|
12049 |
+
1
|
12050 |
+
1
|
12051 |
+
1
|
12052 |
+
1
|
12053 |
+
1
|
12054 |
+
1
|
12055 |
+
1
|
12056 |
+
1
|
12057 |
+
1
|
12058 |
+
1
|
12059 |
+
1
|
12060 |
+
1
|
12061 |
+
1
|
12062 |
+
1
|
12063 |
+
1
|
12064 |
+
1
|
12065 |
+
1
|
12066 |
+
1
|
12067 |
+
1
|
12068 |
+
1
|
12069 |
+
1
|
12070 |
+
1
|
12071 |
+
1
|
12072 |
+
1
|
12073 |
+
1
|
12074 |
+
1
|
12075 |
+
1
|
12076 |
+
1
|
12077 |
+
1
|
12078 |
+
1
|
12079 |
+
1
|
12080 |
+
1
|
12081 |
+
1
|
12082 |
+
1
|
12083 |
+
1
|
12084 |
+
1
|
12085 |
+
1
|
12086 |
+
1
|
12087 |
+
1
|
12088 |
+
1
|
12089 |
+
1
|
12090 |
+
1
|
12091 |
+
1
|
12092 |
+
1
|
12093 |
+
1
|
12094 |
+
1
|
12095 |
+
1
|
12096 |
+
1
|
12097 |
+
1
|
12098 |
+
1
|
12099 |
+
1
|
12100 |
+
1
|
12101 |
+
1
|
12102 |
+
1
|
12103 |
+
1
|
12104 |
+
1
|
12105 |
+
1
|
12106 |
+
1
|
12107 |
+
1
|
12108 |
+
1
|
12109 |
+
1
|
12110 |
+
1
|
12111 |
+
1
|
12112 |
+
1
|
12113 |
+
1
|
12114 |
+
1
|
12115 |
+
1
|
12116 |
+
1
|
12117 |
+
1
|
12118 |
+
1
|
12119 |
+
1
|
12120 |
+
1
|
12121 |
+
1
|
12122 |
+
1
|
12123 |
+
1
|
12124 |
+
1
|
12125 |
+
1
|
12126 |
+
1
|
12127 |
+
1
|
12128 |
+
1
|
12129 |
+
1
|
12130 |
+
1
|
12131 |
+
1
|
12132 |
+
1
|
12133 |
+
1
|
12134 |
+
1
|
12135 |
+
1
|
12136 |
+
1
|
12137 |
+
1
|
12138 |
+
1
|
12139 |
+
1
|
12140 |
+
1
|
12141 |
+
1
|
12142 |
+
1
|
12143 |
+
1
|
12144 |
+
1
|
12145 |
+
1
|
12146 |
+
1
|
12147 |
+
1
|
12148 |
+
1
|
12149 |
+
1
|
12150 |
+
1
|
12151 |
+
1
|
12152 |
+
1
|
12153 |
+
1
|
12154 |
+
1
|
12155 |
+
1
|
12156 |
+
1
|
12157 |
+
1
|
12158 |
+
1
|
12159 |
+
1
|
12160 |
+
1
|
12161 |
+
1
|
12162 |
+
1
|
12163 |
+
1
|
12164 |
+
1
|
12165 |
+
1
|
12166 |
+
1
|
12167 |
+
1
|
12168 |
+
1
|
12169 |
+
1
|
12170 |
+
1
|
12171 |
+
1
|
12172 |
+
1
|
12173 |
+
1
|
12174 |
+
1
|
12175 |
+
1
|
12176 |
+
1
|
12177 |
+
1
|
12178 |
+
1
|
12179 |
+
1
|
12180 |
+
1
|
12181 |
+
1
|
12182 |
+
1
|
12183 |
+
1
|
12184 |
+
1
|
12185 |
+
1
|
12186 |
+
1
|
12187 |
+
1
|
12188 |
+
1
|
12189 |
+
1
|
12190 |
+
1
|
12191 |
+
1
|
12192 |
+
1
|
12193 |
+
1
|
12194 |
+
1
|
12195 |
+
1
|
12196 |
+
1
|
12197 |
+
1
|
12198 |
+
1
|
12199 |
+
1
|
12200 |
+
1
|
12201 |
+
1
|
12202 |
+
1
|
12203 |
+
1
|
12204 |
+
1
|
12205 |
+
1
|
12206 |
+
1
|
12207 |
+
1
|
12208 |
+
1
|
12209 |
+
1
|
12210 |
+
1
|
12211 |
+
1
|
12212 |
+
1
|
12213 |
+
1
|
12214 |
+
1
|
12215 |
+
1
|
12216 |
+
1
|
12217 |
+
1
|
12218 |
+
1
|
12219 |
+
1
|
12220 |
+
1
|
12221 |
+
1
|
12222 |
+
1
|
12223 |
+
1
|
12224 |
+
1
|
12225 |
+
1
|
12226 |
+
1
|
12227 |
+
1
|
12228 |
+
1
|
12229 |
+
1
|
12230 |
+
1
|
12231 |
+
1
|
12232 |
+
1
|
12233 |
+
1
|
12234 |
+
1
|
12235 |
+
1
|
12236 |
+
1
|
12237 |
+
1
|
12238 |
+
1
|
12239 |
+
1
|
12240 |
+
1
|
12241 |
+
1
|
12242 |
+
1
|
12243 |
+
1
|
12244 |
+
1
|
12245 |
+
1
|
12246 |
+
1
|
12247 |
+
1
|
12248 |
+
1
|
12249 |
+
1
|
12250 |
+
1
|
12251 |
+
1
|
12252 |
+
1
|
12253 |
+
1
|
12254 |
+
1
|
12255 |
+
1
|
12256 |
+
1
|
12257 |
+
1
|
12258 |
+
1
|
12259 |
+
1
|
12260 |
+
1
|
12261 |
+
1
|
12262 |
+
1
|
12263 |
+
1
|
12264 |
+
1
|
12265 |
+
1
|
12266 |
+
1
|
12267 |
+
1
|
12268 |
+
1
|
12269 |
+
1
|
12270 |
+
1
|
12271 |
+
1
|
12272 |
+
1
|
12273 |
+
1
|
12274 |
+
1
|
12275 |
+
1
|
12276 |
+
1
|
12277 |
+
1
|
12278 |
+
1
|
12279 |
+
1
|
12280 |
+
1
|
12281 |
+
1
|
12282 |
+
1
|
12283 |
+
1
|
12284 |
+
1
|
12285 |
+
1
|
12286 |
+
1
|
12287 |
+
1
|
12288 |
+
1
|
12289 |
+
1
|
12290 |
+
1
|
12291 |
+
1
|
12292 |
+
1
|
12293 |
+
1
|
12294 |
+
1
|
12295 |
+
1
|
12296 |
+
1
|
12297 |
+
1
|
12298 |
+
1
|
12299 |
+
1
|
12300 |
+
1
|
12301 |
+
1
|
12302 |
+
1
|
12303 |
+
1
|
12304 |
+
1
|
12305 |
+
1
|
12306 |
+
1
|
12307 |
+
1
|
12308 |
+
1
|
12309 |
+
1
|
12310 |
+
1
|
12311 |
+
1
|
12312 |
+
1
|
12313 |
+
1
|
12314 |
+
1
|
12315 |
+
1
|
12316 |
+
1
|
12317 |
+
1
|
12318 |
+
1
|
12319 |
+
1
|
12320 |
+
1
|
12321 |
+
1
|
12322 |
+
1
|
12323 |
+
1
|
12324 |
+
1
|
12325 |
+
1
|
12326 |
+
1
|
12327 |
+
1
|
12328 |
+
1
|
12329 |
+
1
|
12330 |
+
1
|
12331 |
+
1
|
12332 |
+
1
|
12333 |
+
1
|
12334 |
+
1
|
12335 |
+
1
|
12336 |
+
1
|
12337 |
+
1
|
12338 |
+
1
|
12339 |
+
1
|
12340 |
+
1
|
12341 |
+
1
|
12342 |
+
1
|
12343 |
+
1
|
12344 |
+
1
|
12345 |
+
1
|
12346 |
+
1
|
12347 |
+
1
|
12348 |
+
1
|
12349 |
+
1
|
12350 |
+
1
|
12351 |
+
1
|
12352 |
+
1
|
12353 |
+
1
|
12354 |
+
1
|
12355 |
+
1
|
12356 |
+
1
|
12357 |
+
1
|
12358 |
+
1
|
12359 |
+
1
|
12360 |
+
1
|
12361 |
+
1
|
12362 |
+
1
|
12363 |
+
1
|
12364 |
+
1
|
12365 |
+
1
|
12366 |
+
1
|
12367 |
+
1
|
12368 |
+
1
|
12369 |
+
1
|
12370 |
+
1
|
12371 |
+
1
|
12372 |
+
1
|
12373 |
+
1
|
12374 |
+
1
|
12375 |
+
1
|
12376 |
+
1
|
12377 |
+
1
|
12378 |
+
1
|
12379 |
+
1
|
12380 |
+
1
|
12381 |
+
1
|
12382 |
+
1
|
12383 |
+
1
|
12384 |
+
1
|
12385 |
+
1
|
12386 |
+
1
|
12387 |
+
1
|
12388 |
+
1
|
12389 |
+
1
|
12390 |
+
1
|
12391 |
+
2
|
12392 |
+
1
|
12393 |
+
1
|
12394 |
+
2
|
12395 |
+
1
|
12396 |
+
1
|
12397 |
+
2
|
12398 |
+
1
|
12399 |
+
1
|
12400 |
+
2
|
12401 |
+
1
|
12402 |
+
1
|
12403 |
+
1
|
12404 |
+
1
|
12405 |
+
1
|
12406 |
+
1
|
12407 |
+
1
|
12408 |
+
1
|
12409 |
+
1
|
12410 |
+
1
|
12411 |
+
1
|
12412 |
+
1
|
12413 |
+
1
|
12414 |
+
1
|
12415 |
+
1
|
12416 |
+
1
|
12417 |
+
1
|
12418 |
+
1
|
12419 |
+
1
|
12420 |
+
1
|
12421 |
+
1
|
12422 |
+
1
|
12423 |
+
1
|
12424 |
+
1
|
12425 |
+
1
|
12426 |
+
1
|
12427 |
+
1
|
12428 |
+
1
|
12429 |
+
1
|
12430 |
+
1
|
12431 |
+
1
|
12432 |
+
1
|
12433 |
+
1
|
12434 |
+
1
|
12435 |
+
1
|
12436 |
+
1
|
12437 |
+
1
|
12438 |
+
1
|
12439 |
+
1
|
12440 |
+
1
|
12441 |
+
1
|
12442 |
+
1
|
12443 |
+
1
|
12444 |
+
1
|
12445 |
+
1
|
12446 |
+
1
|
12447 |
+
1
|
12448 |
+
1
|
12449 |
+
1
|
12450 |
+
1
|
12451 |
+
1
|
12452 |
+
1
|
12453 |
+
1
|
12454 |
+
1
|
12455 |
+
1
|
12456 |
+
1
|
12457 |
+
1
|
12458 |
+
1
|
12459 |
+
1
|
12460 |
+
1
|
12461 |
+
1
|
12462 |
+
1
|
12463 |
+
1
|
12464 |
+
1
|
12465 |
+
1
|
12466 |
+
1
|
12467 |
+
1
|
12468 |
+
1
|
12469 |
+
1
|
12470 |
+
1
|
12471 |
+
1
|
12472 |
+
1
|
12473 |
+
1
|
12474 |
+
1
|
12475 |
+
1
|
12476 |
+
1
|
12477 |
+
1
|
12478 |
+
1
|
12479 |
+
1
|
12480 |
+
1
|
12481 |
+
1
|
12482 |
+
1
|
12483 |
+
1
|
12484 |
+
1
|
12485 |
+
1
|
12486 |
+
1
|
12487 |
+
1
|
12488 |
+
1
|
12489 |
+
1
|
12490 |
+
1
|
12491 |
+
1
|
12492 |
+
1
|
12493 |
+
1
|
12494 |
+
1
|
12495 |
+
1
|
12496 |
+
1
|
12497 |
+
1
|
12498 |
+
1
|
12499 |
+
1
|
12500 |
+
1
|
12501 |
+
1
|
12502 |
+
1
|
12503 |
+
1
|
12504 |
+
1
|
12505 |
+
1
|
12506 |
+
1
|
12507 |
+
1
|
12508 |
+
1
|
12509 |
+
1
|
12510 |
+
1
|
12511 |
+
1
|
12512 |
+
1
|
12513 |
+
1
|
12514 |
+
1
|
12515 |
+
1
|
12516 |
+
1
|
12517 |
+
1
|
12518 |
+
1
|
12519 |
+
1
|
12520 |
+
1
|
12521 |
+
1
|
12522 |
+
1
|
12523 |
+
1
|
12524 |
+
1
|
12525 |
+
1
|
12526 |
+
1
|
12527 |
+
1
|
12528 |
+
1
|
12529 |
+
1
|
12530 |
+
1
|
12531 |
+
1
|
12532 |
+
1
|
12533 |
+
1
|
12534 |
+
1
|
12535 |
+
1
|
12536 |
+
1
|
12537 |
+
1
|
12538 |
+
1
|
12539 |
+
1
|
12540 |
+
1
|
12541 |
+
1
|
12542 |
+
1
|
12543 |
+
1
|
12544 |
+
1
|
12545 |
+
1
|
12546 |
+
1
|
12547 |
+
1
|
12548 |
+
1
|
12549 |
+
1
|
12550 |
+
1
|
12551 |
+
1
|
12552 |
+
1
|
12553 |
+
1
|
12554 |
+
1
|
12555 |
+
1
|
12556 |
+
1
|
12557 |
+
1
|
12558 |
+
1
|
12559 |
+
1
|
12560 |
+
1
|
12561 |
+
1
|
12562 |
+
1
|
12563 |
+
1
|
12564 |
+
1
|
12565 |
+
1
|
12566 |
+
1
|
12567 |
+
1
|
12568 |
+
1
|
12569 |
+
1
|
12570 |
+
1
|
12571 |
+
1
|
12572 |
+
1
|
12573 |
+
1
|
12574 |
+
1
|
12575 |
+
1
|
12576 |
+
1
|
12577 |
+
1
|
12578 |
+
1
|
12579 |
+
1
|
12580 |
+
1
|
12581 |
+
1
|
12582 |
+
1
|
12583 |
+
1
|
12584 |
+
1
|
12585 |
+
1
|
12586 |
+
1
|
12587 |
+
1
|
12588 |
+
1
|
12589 |
+
1
|
12590 |
+
1
|
12591 |
+
1
|
12592 |
+
1
|
12593 |
+
1
|
12594 |
+
1
|
12595 |
+
1
|
12596 |
+
1
|
12597 |
+
1
|
12598 |
+
1
|
12599 |
+
1
|
12600 |
+
1
|
12601 |
+
1
|
12602 |
+
1
|
12603 |
+
1
|
12604 |
+
1
|
12605 |
+
1
|
12606 |
+
1
|
12607 |
+
1
|
12608 |
+
1
|
12609 |
+
1
|
12610 |
+
1
|
12611 |
+
1
|
12612 |
+
1
|
12613 |
+
1
|
12614 |
+
1
|
12615 |
+
1
|
12616 |
+
1
|
12617 |
+
1
|
12618 |
+
1
|
12619 |
+
1
|
12620 |
+
1
|
12621 |
+
1
|
12622 |
+
1
|
12623 |
+
1
|
12624 |
+
1
|
12625 |
+
1
|
12626 |
+
1
|
12627 |
+
1
|
12628 |
+
1
|
12629 |
+
1
|
12630 |
+
1
|
12631 |
+
1
|
12632 |
+
1
|
12633 |
+
1
|
12634 |
+
1
|
12635 |
+
1
|
12636 |
+
1
|
12637 |
+
1
|
12638 |
+
1
|
12639 |
+
1
|
12640 |
+
1
|
12641 |
+
1
|
12642 |
+
1
|
12643 |
+
1
|
12644 |
+
1
|
12645 |
+
1
|
12646 |
+
1
|
12647 |
+
1
|
12648 |
+
1
|
12649 |
+
1
|
12650 |
+
1
|
12651 |
+
1
|
12652 |
+
1
|
12653 |
+
1
|
12654 |
+
1
|
12655 |
+
1
|
12656 |
+
1
|
12657 |
+
1
|
12658 |
+
1
|
12659 |
+
1
|
12660 |
+
1
|
12661 |
+
1
|
12662 |
+
1
|
12663 |
+
1
|
12664 |
+
1
|
12665 |
+
1
|
12666 |
+
1
|
12667 |
+
1
|
12668 |
+
1
|
12669 |
+
1
|
12670 |
+
1
|
12671 |
+
1
|
12672 |
+
2
|
12673 |
+
1
|
12674 |
+
1
|
12675 |
+
1
|
12676 |
+
1
|
12677 |
+
1
|
12678 |
+
1
|
12679 |
+
1
|
12680 |
+
1
|
12681 |
+
1
|
12682 |
+
1
|
12683 |
+
1
|
12684 |
+
1
|
12685 |
+
1
|
12686 |
+
1
|
12687 |
+
1
|
12688 |
+
1
|
12689 |
+
1
|
12690 |
+
1
|
12691 |
+
1
|
12692 |
+
1
|
12693 |
+
1
|
12694 |
+
1
|
12695 |
+
1
|
12696 |
+
1
|
12697 |
+
1
|
12698 |
+
1
|
12699 |
+
1
|
12700 |
+
1
|
12701 |
+
1
|
12702 |
+
1
|
12703 |
+
1
|
12704 |
+
1
|
12705 |
+
1
|
12706 |
+
1
|
12707 |
+
1
|
12708 |
+
1
|
12709 |
+
1
|
12710 |
+
1
|
12711 |
+
1
|
12712 |
+
1
|
12713 |
+
1
|
12714 |
+
1
|
12715 |
+
1
|
12716 |
+
1
|
12717 |
+
1
|
12718 |
+
1
|
12719 |
+
1
|
12720 |
+
1
|
12721 |
+
1
|
12722 |
+
1
|
12723 |
+
1
|
12724 |
+
1
|
12725 |
+
1
|
12726 |
+
1
|
12727 |
+
1
|
12728 |
+
1
|
12729 |
+
1
|
12730 |
+
1
|
12731 |
+
1
|
12732 |
+
1
|
12733 |
+
1
|
12734 |
+
1
|
12735 |
+
1
|
12736 |
+
1
|
12737 |
+
1
|
12738 |
+
1
|
12739 |
+
1
|
12740 |
+
1
|
12741 |
+
1
|
12742 |
+
1
|
12743 |
+
1
|
12744 |
+
1
|
12745 |
+
1
|
12746 |
+
1
|
12747 |
+
1
|
12748 |
+
1
|
12749 |
+
1
|
12750 |
+
1
|
12751 |
+
1
|
12752 |
+
1
|
12753 |
+
1
|
12754 |
+
1
|
12755 |
+
1
|
12756 |
+
1
|
12757 |
+
1
|
12758 |
+
1
|
12759 |
+
1
|
12760 |
+
1
|
12761 |
+
1
|
12762 |
+
1
|
12763 |
+
1
|
12764 |
+
1
|
12765 |
+
1
|
12766 |
+
1
|
12767 |
+
1
|
12768 |
+
1
|
12769 |
+
1
|
12770 |
+
1
|
12771 |
+
1
|
12772 |
+
1
|
12773 |
+
1
|
12774 |
+
1
|
12775 |
+
1
|
12776 |
+
1
|
12777 |
+
1
|
12778 |
+
1
|
12779 |
+
1
|
12780 |
+
1
|
12781 |
+
1
|
12782 |
+
1
|
12783 |
+
1
|
12784 |
+
1
|
12785 |
+
1
|
12786 |
+
1
|
12787 |
+
1
|
12788 |
+
1
|
12789 |
+
1
|
12790 |
+
1
|
12791 |
+
1
|
12792 |
+
1
|
12793 |
+
1
|
12794 |
+
1
|
12795 |
+
1
|
12796 |
+
1
|
12797 |
+
1
|
12798 |
+
1
|
12799 |
+
1
|
12800 |
+
1
|
12801 |
+
1
|
12802 |
+
1
|
12803 |
+
1
|
12804 |
+
1
|
12805 |
+
1
|
12806 |
+
1
|
12807 |
+
1
|
12808 |
+
1
|
12809 |
+
1
|
12810 |
+
1
|
12811 |
+
1
|
12812 |
+
1
|
12813 |
+
1
|
12814 |
+
1
|
12815 |
+
1
|
12816 |
+
1
|
12817 |
+
1
|
12818 |
+
1
|
12819 |
+
1
|
12820 |
+
1
|
12821 |
+
1
|
12822 |
+
1
|
12823 |
+
1
|
12824 |
+
1
|
12825 |
+
1
|
12826 |
+
1
|
12827 |
+
1
|
12828 |
+
1
|
12829 |
+
1
|
12830 |
+
1
|
12831 |
+
1
|
12832 |
+
1
|
12833 |
+
1
|
12834 |
+
1
|
12835 |
+
1
|
12836 |
+
1
|
12837 |
+
1
|
12838 |
+
1
|
12839 |
+
1
|
12840 |
+
1
|
12841 |
+
1
|
12842 |
+
1
|
12843 |
+
1
|
12844 |
+
1
|
12845 |
+
1
|
12846 |
+
1
|
12847 |
+
1
|
12848 |
+
1
|
12849 |
+
1
|
12850 |
+
1
|
12851 |
+
1
|
12852 |
+
1
|
12853 |
+
1
|
12854 |
+
1
|
12855 |
+
1
|
12856 |
+
1
|
12857 |
+
1
|
12858 |
+
1
|
12859 |
+
1
|
12860 |
+
1
|
12861 |
+
1
|
12862 |
+
1
|
12863 |
+
1
|
12864 |
+
1
|
12865 |
+
1
|
12866 |
+
1
|
12867 |
+
1
|
12868 |
+
1
|
12869 |
+
1
|
12870 |
+
1
|
12871 |
+
1
|
12872 |
+
1
|
12873 |
+
1
|
12874 |
+
1
|
12875 |
+
1
|
12876 |
+
1
|
12877 |
+
1
|
12878 |
+
1
|
12879 |
+
1
|
12880 |
+
1
|
12881 |
+
1
|
12882 |
+
1
|
12883 |
+
1
|
12884 |
+
1
|
12885 |
+
1
|
12886 |
+
1
|
12887 |
+
1
|
12888 |
+
1
|
12889 |
+
1
|
12890 |
+
1
|
12891 |
+
1
|
12892 |
+
1
|
12893 |
+
1
|
12894 |
+
1
|
12895 |
+
1
|
12896 |
+
1
|
12897 |
+
1
|
12898 |
+
1
|
12899 |
+
1
|
12900 |
+
1
|
12901 |
+
1
|
12902 |
+
1
|
12903 |
+
1
|
12904 |
+
1
|
12905 |
+
1
|
12906 |
+
1
|
12907 |
+
1
|
12908 |
+
1
|
12909 |
+
1
|
12910 |
+
1
|
12911 |
+
1
|
12912 |
+
1
|
12913 |
+
1
|
12914 |
+
1
|
12915 |
+
1
|
12916 |
+
1
|
12917 |
+
1
|
12918 |
+
1
|
12919 |
+
1
|
12920 |
+
1
|
12921 |
+
1
|
12922 |
+
2
|
12923 |
+
1
|
12924 |
+
1
|
12925 |
+
1
|
12926 |
+
1
|
12927 |
+
1
|
12928 |
+
1
|
12929 |
+
1
|
12930 |
+
1
|
12931 |
+
2
|
12932 |
+
1
|
12933 |
+
1
|
12934 |
+
1
|
12935 |
+
1
|
12936 |
+
1
|
12937 |
+
1
|
12938 |
+
1
|
12939 |
+
1
|
12940 |
+
1
|
12941 |
+
1
|
12942 |
+
1
|
12943 |
+
1
|
12944 |
+
1
|
12945 |
+
1
|
12946 |
+
1
|
12947 |
+
1
|
12948 |
+
1
|
12949 |
+
1
|
12950 |
+
1
|
12951 |
+
1
|
12952 |
+
1
|
12953 |
+
1
|
12954 |
+
1
|
12955 |
+
1
|
12956 |
+
1
|
12957 |
+
1
|
12958 |
+
1
|
12959 |
+
1
|
12960 |
+
1
|
12961 |
+
1
|
12962 |
+
1
|
12963 |
+
1
|
12964 |
+
1
|
12965 |
+
1
|
12966 |
+
1
|
12967 |
+
1
|
12968 |
+
1
|
12969 |
+
1
|
12970 |
+
1
|
12971 |
+
1
|
12972 |
+
1
|
12973 |
+
1
|
12974 |
+
1
|
12975 |
+
1
|
12976 |
+
1
|
12977 |
+
1
|
12978 |
+
1
|
12979 |
+
1
|
12980 |
+
1
|
12981 |
+
1
|
12982 |
+
1
|
12983 |
+
1
|
12984 |
+
1
|
12985 |
+
1
|
12986 |
+
1
|
12987 |
+
1
|
12988 |
+
1
|
12989 |
+
1
|
12990 |
+
1
|
12991 |
+
1
|
12992 |
+
1
|
12993 |
+
1
|
12994 |
+
1
|
12995 |
+
1
|
12996 |
+
1
|
12997 |
+
1
|
12998 |
+
1
|
12999 |
+
1
|
13000 |
+
1
|
13001 |
+
1
|
13002 |
+
1
|
13003 |
+
1
|
13004 |
+
1
|
13005 |
+
1
|
13006 |
+
1
|
13007 |
+
1
|
13008 |
+
1
|
13009 |
+
1
|
13010 |
+
1
|
13011 |
+
1
|
13012 |
+
1
|
13013 |
+
1
|
13014 |
+
1
|
13015 |
+
1
|
13016 |
+
1
|
13017 |
+
1
|
13018 |
+
1
|
13019 |
+
1
|
13020 |
+
1
|
13021 |
+
1
|
13022 |
+
1
|
13023 |
+
1
|
13024 |
+
1
|
13025 |
+
1
|
13026 |
+
1
|
13027 |
+
1
|
13028 |
+
1
|
13029 |
+
1
|
13030 |
+
1
|
13031 |
+
1
|
13032 |
+
1
|
13033 |
+
1
|
13034 |
+
1
|
13035 |
+
1
|
13036 |
+
1
|
13037 |
+
1
|
13038 |
+
1
|
13039 |
+
1
|
13040 |
+
1
|
13041 |
+
1
|
13042 |
+
1
|
13043 |
+
1
|
13044 |
+
1
|
13045 |
+
1
|
13046 |
+
1
|
13047 |
+
1
|
13048 |
+
1
|
13049 |
+
1
|
13050 |
+
1
|
13051 |
+
1
|
13052 |
+
1
|
13053 |
+
1
|
13054 |
+
1
|
13055 |
+
1
|
13056 |
+
1
|
13057 |
+
1
|
13058 |
+
1
|
13059 |
+
1
|
13060 |
+
1
|
13061 |
+
1
|
13062 |
+
1
|
13063 |
+
1
|
13064 |
+
1
|
13065 |
+
1
|
13066 |
+
1
|
13067 |
+
1
|
13068 |
+
1
|
13069 |
+
1
|
13070 |
+
1
|
13071 |
+
1
|
13072 |
+
1
|
13073 |
+
1
|
13074 |
+
1
|
13075 |
+
1
|
13076 |
+
1
|
13077 |
+
1
|
13078 |
+
1
|
13079 |
+
1
|
13080 |
+
1
|
13081 |
+
1
|
13082 |
+
1
|
13083 |
+
1
|
13084 |
+
1
|
13085 |
+
1
|
13086 |
+
1
|
13087 |
+
1
|
13088 |
+
1
|
13089 |
+
1
|
13090 |
+
1
|
13091 |
+
1
|
13092 |
+
1
|
13093 |
+
1
|
13094 |
+
1
|
13095 |
+
1
|
13096 |
+
1
|
13097 |
+
1
|
13098 |
+
1
|
13099 |
+
1
|
13100 |
+
1
|
13101 |
+
1
|
13102 |
+
1
|
13103 |
+
1
|
13104 |
+
1
|
13105 |
+
1
|
13106 |
+
1
|
13107 |
+
1
|
13108 |
+
1
|
13109 |
+
1
|
13110 |
+
1
|
13111 |
+
1
|
13112 |
+
1
|
13113 |
+
1
|
13114 |
+
1
|
13115 |
+
1
|
13116 |
+
1
|
13117 |
+
1
|
13118 |
+
1
|
13119 |
+
1
|
13120 |
+
1
|
13121 |
+
1
|
13122 |
+
1
|
13123 |
+
1
|
13124 |
+
1
|
13125 |
+
1
|
13126 |
+
1
|
13127 |
+
1
|
13128 |
+
1
|
13129 |
+
1
|
13130 |
+
1
|
13131 |
+
1
|
13132 |
+
1
|
13133 |
+
1
|
13134 |
+
1
|
13135 |
+
1
|
13136 |
+
1
|
13137 |
+
1
|
13138 |
+
1
|
13139 |
+
1
|
13140 |
+
1
|
13141 |
+
1
|
13142 |
+
1
|
13143 |
+
1
|
13144 |
+
1
|
13145 |
+
1
|
13146 |
+
1
|
13147 |
+
1
|
13148 |
+
1
|
13149 |
+
1
|
13150 |
+
1
|
13151 |
+
1
|
13152 |
+
1
|
13153 |
+
1
|
13154 |
+
1
|
13155 |
+
1
|
13156 |
+
1
|
13157 |
+
1
|
13158 |
+
1
|
13159 |
+
1
|
13160 |
+
1
|
13161 |
+
1
|
13162 |
+
1
|
13163 |
+
1
|
13164 |
+
1
|
13165 |
+
1
|
13166 |
+
1
|
13167 |
+
1
|
13168 |
+
1
|
13169 |
+
1
|
13170 |
+
1
|
13171 |
+
1
|
13172 |
+
1
|
13173 |
+
1
|
13174 |
+
1
|
13175 |
+
1
|
13176 |
+
1
|
13177 |
+
1
|
13178 |
+
1
|
13179 |
+
2
|
13180 |
+
1
|
13181 |
+
1
|
13182 |
+
1
|
13183 |
+
1
|
13184 |
+
1
|
13185 |
+
1
|
13186 |
+
1
|
13187 |
+
1
|
13188 |
+
1
|
13189 |
+
1
|
13190 |
+
1
|
13191 |
+
1
|
13192 |
+
1
|
13193 |
+
1
|
13194 |
+
1
|
13195 |
+
1
|
13196 |
+
1
|
13197 |
+
1
|
13198 |
+
1
|
13199 |
+
1
|
13200 |
+
1
|
13201 |
+
1
|
13202 |
+
1
|
13203 |
+
1
|
13204 |
+
1
|
13205 |
+
1
|
13206 |
+
1
|
13207 |
+
1
|
13208 |
+
1
|
13209 |
+
1
|
13210 |
+
1
|
13211 |
+
1
|
13212 |
+
1
|
13213 |
+
1
|
13214 |
+
1
|
13215 |
+
1
|
13216 |
+
1
|
13217 |
+
1
|
13218 |
+
1
|
13219 |
+
1
|
13220 |
+
1
|
13221 |
+
1
|
13222 |
+
1
|
13223 |
+
1
|
13224 |
+
1
|
13225 |
+
1
|
13226 |
+
1
|
13227 |
+
1
|
13228 |
+
1
|
13229 |
+
1
|
13230 |
+
1
|
13231 |
+
1
|
13232 |
+
1
|
13233 |
+
1
|
13234 |
+
1
|
13235 |
+
1
|
13236 |
+
1
|
13237 |
+
1
|
13238 |
+
1
|
13239 |
+
1
|
13240 |
+
1
|
13241 |
+
1
|
13242 |
+
1
|
13243 |
+
1
|
13244 |
+
1
|
13245 |
+
1
|
13246 |
+
1
|
13247 |
+
1
|
13248 |
+
1
|
13249 |
+
1
|
13250 |
+
1
|
13251 |
+
1
|
13252 |
+
1
|
13253 |
+
1
|
13254 |
+
1
|
13255 |
+
1
|
13256 |
+
1
|
13257 |
+
1
|
13258 |
+
1
|
13259 |
+
1
|
13260 |
+
1
|
13261 |
+
1
|
13262 |
+
1
|
13263 |
+
1
|
13264 |
+
1
|
13265 |
+
1
|
13266 |
+
1
|
13267 |
+
1
|
13268 |
+
1
|
13269 |
+
1
|
13270 |
+
1
|
13271 |
+
1
|
13272 |
+
1
|
13273 |
+
1
|
13274 |
+
1
|
13275 |
+
1
|
13276 |
+
1
|
13277 |
+
1
|
13278 |
+
1
|
13279 |
+
1
|
13280 |
+
1
|
13281 |
+
1
|
13282 |
+
1
|
13283 |
+
1
|
13284 |
+
1
|
13285 |
+
1
|
13286 |
+
1
|
13287 |
+
1
|
13288 |
+
1
|
13289 |
+
1
|
13290 |
+
1
|
13291 |
+
1
|
13292 |
+
1
|
13293 |
+
1
|
13294 |
+
1
|
13295 |
+
1
|
13296 |
+
1
|
13297 |
+
1
|
13298 |
+
1
|
13299 |
+
1
|
13300 |
+
1
|
13301 |
+
1
|
13302 |
+
1
|
13303 |
+
1
|
13304 |
+
1
|
13305 |
+
1
|
13306 |
+
1
|
13307 |
+
1
|
13308 |
+
1
|
13309 |
+
1
|
13310 |
+
1
|
13311 |
+
1
|
13312 |
+
1
|
13313 |
+
1
|
13314 |
+
1
|
13315 |
+
1
|
13316 |
+
1
|
13317 |
+
1
|
13318 |
+
1
|
13319 |
+
1
|
13320 |
+
1
|
13321 |
+
1
|
13322 |
+
1
|
13323 |
+
1
|
13324 |
+
1
|
13325 |
+
1
|
13326 |
+
1
|
13327 |
+
1
|
13328 |
+
1
|
13329 |
+
1
|
13330 |
+
1
|
13331 |
+
1
|
13332 |
+
1
|
13333 |
+
1
|
13334 |
+
1
|
13335 |
+
1
|
13336 |
+
1
|
13337 |
+
1
|
13338 |
+
1
|
13339 |
+
1
|
13340 |
+
1
|
13341 |
+
1
|
13342 |
+
1
|
13343 |
+
1
|
13344 |
+
1
|
13345 |
+
1
|
13346 |
+
1
|
13347 |
+
1
|
13348 |
+
1
|
13349 |
+
1
|
13350 |
+
1
|
13351 |
+
1
|
13352 |
+
1
|
13353 |
+
1
|
13354 |
+
1
|
13355 |
+
1
|
13356 |
+
1
|
13357 |
+
1
|
13358 |
+
1
|
13359 |
+
1
|
13360 |
+
1
|
13361 |
+
1
|
13362 |
+
1
|
13363 |
+
1
|
13364 |
+
1
|
13365 |
+
1
|
13366 |
+
1
|
13367 |
+
1
|
13368 |
+
1
|
13369 |
+
1
|
13370 |
+
1
|
13371 |
+
1
|
13372 |
+
1
|
13373 |
+
1
|
13374 |
+
1
|
13375 |
+
1
|
13376 |
+
1
|
13377 |
+
1
|
13378 |
+
1
|
13379 |
+
1
|
13380 |
+
1
|
13381 |
+
1
|
13382 |
+
1
|
13383 |
+
1
|
13384 |
+
1
|
13385 |
+
1
|
13386 |
+
1
|
13387 |
+
1
|
13388 |
+
1
|
13389 |
+
1
|
13390 |
+
1
|
13391 |
+
1
|
13392 |
+
1
|
13393 |
+
1
|
13394 |
+
1
|
13395 |
+
1
|
13396 |
+
1
|
13397 |
+
1
|
13398 |
+
1
|
13399 |
+
1
|
13400 |
+
1
|
13401 |
+
1
|
13402 |
+
1
|
13403 |
+
1
|
13404 |
+
1
|
13405 |
+
1
|
13406 |
+
1
|
13407 |
+
1
|
13408 |
+
1
|
13409 |
+
1
|
13410 |
+
1
|
13411 |
+
1
|
13412 |
+
1
|
13413 |
+
1
|
13414 |
+
1
|
13415 |
+
1
|
13416 |
+
1
|
13417 |
+
1
|
13418 |
+
1
|
13419 |
+
1
|
13420 |
+
1
|
13421 |
+
1
|
13422 |
+
1
|
13423 |
+
1
|
13424 |
+
1
|
13425 |
+
1
|
13426 |
+
1
|
13427 |
+
1
|
13428 |
+
1
|
13429 |
+
1
|
13430 |
+
1
|
13431 |
+
1
|
13432 |
+
1
|
13433 |
+
1
|
13434 |
+
1
|
13435 |
+
1
|
13436 |
+
1
|
13437 |
+
1
|
13438 |
+
1
|
13439 |
+
1
|
13440 |
+
1
|
13441 |
+
1
|
13442 |
+
1
|
13443 |
+
1
|
13444 |
+
1
|
13445 |
+
1
|
13446 |
+
1
|
13447 |
+
1
|
13448 |
+
1
|
13449 |
+
1
|
13450 |
+
1
|
13451 |
+
1
|
13452 |
+
1
|
13453 |
+
1
|
13454 |
+
2
|
13455 |
+
1
|
13456 |
+
1
|
13457 |
+
1
|
13458 |
+
1
|
13459 |
+
1
|
13460 |
+
1
|
13461 |
+
1
|
13462 |
+
1
|
13463 |
+
1
|
13464 |
+
1
|
13465 |
+
1
|
13466 |
+
1
|
13467 |
+
1
|
13468 |
+
1
|
13469 |
+
1
|
13470 |
+
1
|
13471 |
+
1
|
13472 |
+
1
|
13473 |
+
1
|
13474 |
+
1
|
13475 |
+
1
|
13476 |
+
1
|
13477 |
+
1
|
13478 |
+
1
|
13479 |
+
1
|
13480 |
+
1
|
13481 |
+
1
|
13482 |
+
1
|
13483 |
+
1
|
13484 |
+
1
|
13485 |
+
1
|
13486 |
+
1
|
13487 |
+
1
|
13488 |
+
1
|
13489 |
+
1
|
13490 |
+
1
|
13491 |
+
1
|
13492 |
+
1
|
13493 |
+
1
|
13494 |
+
1
|
13495 |
+
1
|
13496 |
+
1
|
13497 |
+
1
|
13498 |
+
1
|
13499 |
+
1
|
13500 |
+
1
|
13501 |
+
1
|
13502 |
+
1
|
13503 |
+
1
|
13504 |
+
1
|
13505 |
+
1
|
13506 |
+
1
|
13507 |
+
1
|
13508 |
+
1
|
13509 |
+
1
|
13510 |
+
1
|
13511 |
+
1
|
13512 |
+
1
|
13513 |
+
1
|
13514 |
+
1
|
13515 |
+
1
|
13516 |
+
1
|
13517 |
+
1
|
13518 |
+
1
|
13519 |
+
1
|
13520 |
+
1
|
13521 |
+
1
|
13522 |
+
1
|
13523 |
+
1
|
13524 |
+
1
|
13525 |
+
1
|
13526 |
+
1
|
13527 |
+
1
|
13528 |
+
1
|
13529 |
+
1
|
13530 |
+
1
|
13531 |
+
1
|
13532 |
+
1
|
13533 |
+
1
|
13534 |
+
1
|
13535 |
+
1
|
13536 |
+
1
|
13537 |
+
1
|
13538 |
+
1
|
13539 |
+
1
|
13540 |
+
1
|
13541 |
+
1
|
13542 |
+
1
|
13543 |
+
1
|
13544 |
+
1
|
13545 |
+
1
|
13546 |
+
1
|
13547 |
+
1
|
13548 |
+
1
|
13549 |
+
1
|
13550 |
+
1
|
13551 |
+
1
|
13552 |
+
1
|
13553 |
+
1
|
13554 |
+
1
|
13555 |
+
1
|
13556 |
+
1
|
13557 |
+
1
|
13558 |
+
1
|
13559 |
+
1
|
13560 |
+
1
|
13561 |
+
1
|
13562 |
+
1
|
13563 |
+
1
|
13564 |
+
1
|
13565 |
+
1
|
13566 |
+
1
|
13567 |
+
1
|
13568 |
+
1
|
13569 |
+
1
|
13570 |
+
1
|
13571 |
+
1
|
13572 |
+
1
|
13573 |
+
1
|
13574 |
+
1
|
13575 |
+
1
|
13576 |
+
1
|
13577 |
+
1
|
13578 |
+
1
|
13579 |
+
1
|
13580 |
+
1
|
13581 |
+
1
|
13582 |
+
1
|
13583 |
+
1
|
13584 |
+
1
|
13585 |
+
1
|
13586 |
+
1
|
13587 |
+
1
|
13588 |
+
1
|
13589 |
+
1
|
13590 |
+
1
|
13591 |
+
1
|
13592 |
+
1
|
13593 |
+
1
|
13594 |
+
1
|
13595 |
+
1
|
13596 |
+
1
|
13597 |
+
1
|
13598 |
+
1
|
13599 |
+
1
|
13600 |
+
1
|
13601 |
+
1
|
13602 |
+
1
|
13603 |
+
1
|
13604 |
+
1
|
13605 |
+
1
|
13606 |
+
1
|
13607 |
+
1
|
13608 |
+
1
|
13609 |
+
1
|
13610 |
+
1
|
13611 |
+
1
|
13612 |
+
1
|
13613 |
+
1
|
13614 |
+
1
|
13615 |
+
1
|
13616 |
+
1
|
13617 |
+
1
|
13618 |
+
1
|
13619 |
+
1
|
13620 |
+
1
|
13621 |
+
1
|
13622 |
+
1
|
13623 |
+
1
|
13624 |
+
1
|
13625 |
+
1
|
13626 |
+
1
|
13627 |
+
1
|
13628 |
+
1
|
13629 |
+
1
|
13630 |
+
1
|
13631 |
+
1
|
13632 |
+
1
|
13633 |
+
1
|
13634 |
+
1
|
13635 |
+
1
|
13636 |
+
1
|
13637 |
+
1
|
13638 |
+
1
|
13639 |
+
1
|
13640 |
+
1
|
13641 |
+
1
|
13642 |
+
1
|
13643 |
+
1
|
13644 |
+
1
|
13645 |
+
1
|
13646 |
+
1
|
13647 |
+
1
|
13648 |
+
1
|
13649 |
+
1
|
13650 |
+
1
|
13651 |
+
1
|
13652 |
+
1
|
13653 |
+
1
|
13654 |
+
1
|
13655 |
+
1
|
13656 |
+
1
|
13657 |
+
1
|
13658 |
+
1
|
13659 |
+
1
|
13660 |
+
1
|
13661 |
+
1
|
13662 |
+
1
|
13663 |
+
1
|
13664 |
+
1
|
13665 |
+
1
|
13666 |
+
1
|
13667 |
+
1
|
13668 |
+
1
|
13669 |
+
1
|
13670 |
+
1
|
13671 |
+
1
|
13672 |
+
1
|
13673 |
+
1
|
13674 |
+
1
|
13675 |
+
1
|
13676 |
+
1
|
13677 |
+
1
|
13678 |
+
1
|
13679 |
+
1
|
13680 |
+
1
|
13681 |
+
1
|
13682 |
+
1
|
13683 |
+
1
|
13684 |
+
1
|
13685 |
+
1
|
13686 |
+
1
|
13687 |
+
1
|
13688 |
+
1
|
13689 |
+
1
|
13690 |
+
1
|
13691 |
+
1
|
13692 |
+
1
|
13693 |
+
1
|
13694 |
+
1
|
13695 |
+
1
|
13696 |
+
1
|
13697 |
+
1
|
13698 |
+
1
|
13699 |
+
1
|
13700 |
+
1
|
13701 |
+
1
|
13702 |
+
1
|
13703 |
+
1
|
13704 |
+
1
|
13705 |
+
1
|
13706 |
+
1
|
13707 |
+
1
|
13708 |
+
1
|
13709 |
+
1
|
13710 |
+
1
|
13711 |
+
1
|
13712 |
+
1
|
13713 |
+
1
|
13714 |
+
1
|
13715 |
+
1
|
13716 |
+
1
|
13717 |
+
1
|
13718 |
+
2
|
13719 |
+
1
|
13720 |
+
1
|
13721 |
+
1
|
13722 |
+
1
|
13723 |
+
1
|
13724 |
+
1
|
13725 |
+
1
|
13726 |
+
1
|
13727 |
+
1
|
13728 |
+
1
|
13729 |
+
1
|
13730 |
+
1
|
13731 |
+
1
|
13732 |
+
1
|
13733 |
+
1
|
13734 |
+
1
|
13735 |
+
1
|
13736 |
+
1
|
13737 |
+
1
|
13738 |
+
1
|
13739 |
+
1
|
13740 |
+
1
|
13741 |
+
1
|
13742 |
+
1
|
13743 |
+
1
|
13744 |
+
1
|
13745 |
+
1
|
13746 |
+
1
|
13747 |
+
1
|
13748 |
+
1
|
13749 |
+
1
|
13750 |
+
1
|
13751 |
+
1
|
13752 |
+
1
|
13753 |
+
1
|
13754 |
+
1
|
13755 |
+
1
|
13756 |
+
1
|
13757 |
+
1
|
13758 |
+
1
|
13759 |
+
1
|
13760 |
+
1
|
13761 |
+
1
|
13762 |
+
1
|
13763 |
+
1
|
13764 |
+
1
|
13765 |
+
1
|
13766 |
+
1
|
13767 |
+
1
|
13768 |
+
1
|
13769 |
+
1
|
13770 |
+
1
|
13771 |
+
1
|
13772 |
+
1
|
13773 |
+
1
|
13774 |
+
1
|
13775 |
+
1
|
13776 |
+
1
|
13777 |
+
1
|
13778 |
+
1
|
13779 |
+
1
|
13780 |
+
1
|
13781 |
+
1
|
13782 |
+
1
|
13783 |
+
1
|
13784 |
+
1
|
13785 |
+
1
|
13786 |
+
1
|
13787 |
+
1
|
13788 |
+
1
|
13789 |
+
1
|
13790 |
+
1
|
13791 |
+
1
|
13792 |
+
1
|
13793 |
+
1
|
13794 |
+
1
|
13795 |
+
1
|
13796 |
+
1
|
13797 |
+
1
|
13798 |
+
1
|
13799 |
+
1
|
13800 |
+
1
|
13801 |
+
1
|
13802 |
+
1
|
13803 |
+
1
|
13804 |
+
1
|
13805 |
+
1
|
13806 |
+
1
|
13807 |
+
1
|
13808 |
+
1
|
13809 |
+
1
|
13810 |
+
1
|
13811 |
+
1
|
13812 |
+
1
|
13813 |
+
1
|
13814 |
+
1
|
13815 |
+
1
|
13816 |
+
1
|
13817 |
+
1
|
13818 |
+
1
|
13819 |
+
1
|
13820 |
+
1
|
13821 |
+
1
|
13822 |
+
1
|
13823 |
+
1
|
13824 |
+
1
|
13825 |
+
1
|
13826 |
+
1
|
13827 |
+
1
|
13828 |
+
1
|
13829 |
+
1
|
13830 |
+
1
|
13831 |
+
1
|
13832 |
+
1
|
13833 |
+
1
|
13834 |
+
1
|
13835 |
+
1
|
13836 |
+
1
|
13837 |
+
1
|
13838 |
+
1
|
13839 |
+
1
|
13840 |
+
1
|
13841 |
+
1
|
13842 |
+
1
|
13843 |
+
1
|
13844 |
+
1
|
13845 |
+
1
|
13846 |
+
1
|
13847 |
+
1
|
13848 |
+
1
|
13849 |
+
1
|
13850 |
+
1
|
13851 |
+
1
|
13852 |
+
1
|
13853 |
+
1
|
13854 |
+
1
|
13855 |
+
1
|
13856 |
+
1
|
13857 |
+
1
|
13858 |
+
1
|
13859 |
+
1
|
13860 |
+
1
|
13861 |
+
1
|
13862 |
+
1
|
13863 |
+
1
|
13864 |
+
1
|
13865 |
+
1
|
13866 |
+
1
|
13867 |
+
1
|
13868 |
+
1
|
13869 |
+
1
|
13870 |
+
1
|
13871 |
+
1
|
13872 |
+
1
|
13873 |
+
1
|
13874 |
+
1
|
13875 |
+
1
|
13876 |
+
1
|
13877 |
+
1
|
13878 |
+
1
|
13879 |
+
1
|
13880 |
+
1
|
13881 |
+
1
|
13882 |
+
1
|
13883 |
+
1
|
13884 |
+
1
|
13885 |
+
1
|
13886 |
+
1
|
13887 |
+
1
|
13888 |
+
1
|
13889 |
+
1
|
13890 |
+
1
|
13891 |
+
1
|
13892 |
+
1
|
13893 |
+
1
|
13894 |
+
1
|
13895 |
+
1
|
13896 |
+
1
|
13897 |
+
1
|
13898 |
+
1
|
13899 |
+
1
|
13900 |
+
1
|
13901 |
+
1
|
13902 |
+
1
|
13903 |
+
1
|
13904 |
+
1
|
13905 |
+
1
|
13906 |
+
1
|
13907 |
+
1
|
13908 |
+
1
|
13909 |
+
1
|
13910 |
+
1
|
13911 |
+
1
|
13912 |
+
1
|
13913 |
+
1
|
13914 |
+
1
|
13915 |
+
1
|
13916 |
+
1
|
13917 |
+
1
|
13918 |
+
1
|
13919 |
+
1
|
13920 |
+
1
|
13921 |
+
1
|
13922 |
+
1
|
13923 |
+
1
|
13924 |
+
1
|
13925 |
+
1
|
13926 |
+
1
|
13927 |
+
1
|
13928 |
+
1
|
13929 |
+
1
|
13930 |
+
1
|
13931 |
+
1
|
13932 |
+
1
|
13933 |
+
1
|
13934 |
+
1
|
13935 |
+
1
|
13936 |
+
1
|
13937 |
+
1
|
13938 |
+
1
|
13939 |
+
1
|
13940 |
+
1
|
13941 |
+
1
|
13942 |
+
1
|
13943 |
+
1
|
13944 |
+
1
|
13945 |
+
1
|
13946 |
+
1
|
13947 |
+
1
|
13948 |
+
1
|
13949 |
+
1
|
13950 |
+
1
|
13951 |
+
1
|
13952 |
+
1
|
13953 |
+
1
|
13954 |
+
1
|
13955 |
+
1
|
13956 |
+
1
|
13957 |
+
1
|
13958 |
+
1
|
13959 |
+
1
|
13960 |
+
1
|
13961 |
+
1
|
13962 |
+
1
|
13963 |
+
1
|
13964 |
+
1
|
13965 |
+
1
|
13966 |
+
1
|
13967 |
+
1
|
13968 |
+
1
|
13969 |
+
1
|
13970 |
+
1
|
13971 |
+
1
|
13972 |
+
1
|
13973 |
+
1
|
13974 |
+
1
|
13975 |
+
1
|
13976 |
+
1
|
13977 |
+
1
|
13978 |
+
1
|
13979 |
+
1
|
13980 |
+
1
|
13981 |
+
1
|
13982 |
+
1
|
13983 |
+
1
|
13984 |
+
1
|
13985 |
+
1
|
13986 |
+
1
|
13987 |
+
1
|
13988 |
+
1
|
13989 |
+
1
|
13990 |
+
1
|
13991 |
+
1
|
13992 |
+
1
|
13993 |
+
1
|
13994 |
+
1
|
13995 |
+
1
|
13996 |
+
1
|
13997 |
+
1
|
13998 |
+
1
|
13999 |
+
1
|
14000 |
+
1
|
14001 |
+
1
|
14002 |
+
1
|
14003 |
+
1
|
14004 |
+
1
|
14005 |
+
1
|
14006 |
+
1
|
14007 |
+
1
|
14008 |
+
1
|
14009 |
+
1
|
14010 |
+
1
|
14011 |
+
1
|
14012 |
+
1
|
14013 |
+
1
|
14014 |
+
1
|
14015 |
+
1
|
14016 |
+
1
|
14017 |
+
1
|
14018 |
+
1
|
14019 |
+
1
|
14020 |
+
1
|
14021 |
+
1
|
14022 |
+
1
|
14023 |
+
1
|
14024 |
+
1
|
14025 |
+
1
|
14026 |
+
1
|
14027 |
+
1
|
14028 |
+
1
|
14029 |
+
1
|
14030 |
+
1
|
14031 |
+
1
|
14032 |
+
1
|
14033 |
+
1
|
14034 |
+
1
|
14035 |
+
1
|
14036 |
+
1
|
14037 |
+
1
|
14038 |
+
1
|
14039 |
+
1
|
14040 |
+
1
|
14041 |
+
1
|
14042 |
+
1
|
14043 |
+
1
|
14044 |
+
1
|
14045 |
+
1
|
14046 |
+
1
|
14047 |
+
1
|
14048 |
+
1
|
14049 |
+
1
|
14050 |
+
1
|
14051 |
+
1
|
14052 |
+
1
|
14053 |
+
1
|
14054 |
+
1
|
14055 |
+
1
|
14056 |
+
1
|
14057 |
+
1
|
14058 |
+
1
|
14059 |
+
1
|
14060 |
+
1
|
14061 |
+
1
|
14062 |
+
1
|
14063 |
+
1
|
14064 |
+
1
|
14065 |
+
1
|
14066 |
+
1
|
14067 |
+
1
|
14068 |
+
1
|
14069 |
+
1
|
14070 |
+
1
|
14071 |
+
1
|
14072 |
+
1
|
14073 |
+
1
|
14074 |
+
1
|
14075 |
+
1
|
14076 |
+
1
|
14077 |
+
1
|
14078 |
+
1
|
14079 |
+
1
|
14080 |
+
1
|
14081 |
+
1
|
14082 |
+
1
|
14083 |
+
1
|
14084 |
+
1
|
14085 |
+
1
|
14086 |
+
1
|
14087 |
+
1
|
14088 |
+
1
|
14089 |
+
1
|
14090 |
+
1
|
14091 |
+
1
|
14092 |
+
1
|
14093 |
+
1
|
14094 |
+
1
|
14095 |
+
1
|
14096 |
+
1
|
14097 |
+
1
|
14098 |
+
1
|
14099 |
+
1
|
14100 |
+
1
|
14101 |
+
1
|
14102 |
+
1
|
14103 |
+
1
|
14104 |
+
1
|
14105 |
+
1
|
14106 |
+
1
|
14107 |
+
1
|
14108 |
+
1
|
14109 |
+
1
|
14110 |
+
1
|
14111 |
+
1
|
14112 |
+
1
|
14113 |
+
1
|
14114 |
+
1
|
14115 |
+
1
|
14116 |
+
1
|
14117 |
+
1
|
14118 |
+
1
|
14119 |
+
1
|
14120 |
+
1
|
14121 |
+
1
|
14122 |
+
1
|
14123 |
+
1
|
14124 |
+
1
|
14125 |
+
1
|
14126 |
+
1
|
14127 |
+
1
|
14128 |
+
1
|
14129 |
+
1
|
14130 |
+
1
|
14131 |
+
1
|
14132 |
+
1
|
14133 |
+
1
|
14134 |
+
1
|
14135 |
+
1
|
14136 |
+
1
|
14137 |
+
1
|
14138 |
+
1
|
14139 |
+
1
|
14140 |
+
1
|
14141 |
+
1
|
14142 |
+
1
|
14143 |
+
1
|
14144 |
+
1
|
14145 |
+
1
|
14146 |
+
1
|
14147 |
+
1
|
14148 |
+
1
|
14149 |
+
1
|
14150 |
+
1
|
14151 |
+
1
|
14152 |
+
1
|
14153 |
+
1
|
14154 |
+
1
|
14155 |
+
1
|
14156 |
+
1
|
14157 |
+
1
|
14158 |
+
1
|
14159 |
+
1
|
14160 |
+
1
|
14161 |
+
1
|
14162 |
+
1
|
14163 |
+
1
|
14164 |
+
1
|
14165 |
+
1
|
14166 |
+
1
|
14167 |
+
1
|
14168 |
+
1
|
14169 |
+
1
|
14170 |
+
1
|
14171 |
+
1
|
14172 |
+
1
|
14173 |
+
1
|
14174 |
+
1
|
14175 |
+
1
|
14176 |
+
1
|
14177 |
+
1
|
14178 |
+
1
|
14179 |
+
1
|
14180 |
+
1
|
14181 |
+
1
|
14182 |
+
1
|
14183 |
+
1
|
14184 |
+
1
|
14185 |
+
1
|
14186 |
+
1
|
14187 |
+
1
|
14188 |
+
1
|
14189 |
+
1
|
14190 |
+
1
|
14191 |
+
1
|
14192 |
+
1
|
14193 |
+
1
|
14194 |
+
1
|
14195 |
+
1
|
14196 |
+
1
|
14197 |
+
1
|
14198 |
+
1
|
14199 |
+
1
|
14200 |
+
1
|
14201 |
+
1
|
14202 |
+
1
|
14203 |
+
1
|
14204 |
+
1
|
14205 |
+
1
|
14206 |
+
1
|
14207 |
+
1
|
14208 |
+
1
|
14209 |
+
1
|
14210 |
+
1
|
14211 |
+
1
|
14212 |
+
1
|
14213 |
+
1
|
14214 |
+
1
|
14215 |
+
1
|
14216 |
+
1
|
14217 |
+
1
|
14218 |
+
1
|
14219 |
+
1
|
14220 |
+
1
|
14221 |
+
1
|
14222 |
+
1
|
14223 |
+
1
|
14224 |
+
1
|
14225 |
+
1
|
14226 |
+
1
|
14227 |
+
1
|
14228 |
+
1
|
14229 |
+
1
|
14230 |
+
1
|
14231 |
+
1
|
14232 |
+
1
|
14233 |
+
1
|
14234 |
+
1
|
14235 |
+
1
|
14236 |
+
1
|
14237 |
+
1
|
14238 |
+
1
|
14239 |
+
1
|
14240 |
+
1
|
14241 |
+
1
|
14242 |
+
1
|
14243 |
+
1
|
14244 |
+
1
|
14245 |
+
1
|
14246 |
+
1
|
14247 |
+
1
|
14248 |
+
1
|
14249 |
+
1
|
14250 |
+
1
|
14251 |
+
1
|
14252 |
+
1
|
14253 |
+
1
|
14254 |
+
1
|
14255 |
+
1
|
14256 |
+
1
|
14257 |
+
1
|
14258 |
+
1
|
14259 |
+
1
|
14260 |
+
1
|
14261 |
+
1
|
14262 |
+
1
|
14263 |
+
1
|
14264 |
+
1
|
14265 |
+
1
|
14266 |
+
1
|
14267 |
+
1
|
14268 |
+
1
|
14269 |
+
1
|
14270 |
+
1
|
14271 |
+
1
|
14272 |
+
1
|
14273 |
+
1
|
14274 |
+
1
|
14275 |
+
1
|
14276 |
+
1
|
14277 |
+
1
|
14278 |
+
1
|
14279 |
+
1
|
14280 |
+
1
|
14281 |
+
1
|
14282 |
+
1
|
14283 |
+
1
|
14284 |
+
1
|
14285 |
+
1
|
14286 |
+
1
|
14287 |
+
1
|
14288 |
+
1
|
14289 |
+
1
|
14290 |
+
1
|
14291 |
+
1
|
14292 |
+
1
|
14293 |
+
1
|
14294 |
+
1
|
14295 |
+
1
|
14296 |
+
1
|
14297 |
+
1
|
14298 |
+
1
|
14299 |
+
1
|
14300 |
+
1
|
14301 |
+
1
|
14302 |
+
1
|
14303 |
+
1
|
14304 |
+
1
|
14305 |
+
1
|
14306 |
+
1
|
14307 |
+
1
|
14308 |
+
1
|
14309 |
+
1
|
14310 |
+
1
|
14311 |
+
1
|
14312 |
+
1
|
14313 |
+
1
|
14314 |
+
1
|
14315 |
+
1
|
14316 |
+
1
|
14317 |
+
1
|
14318 |
+
1
|
14319 |
+
1
|
14320 |
+
1
|
14321 |
+
1
|
14322 |
+
1
|
14323 |
+
1
|
14324 |
+
1
|
14325 |
+
1
|
14326 |
+
1
|
14327 |
+
1
|
14328 |
+
1
|
14329 |
+
1
|
14330 |
+
1
|
14331 |
+
1
|
14332 |
+
1
|
14333 |
+
1
|
14334 |
+
1
|
14335 |
+
1
|
14336 |
+
1
|
14337 |
+
1
|
14338 |
+
1
|
14339 |
+
1
|
14340 |
+
1
|
14341 |
+
1
|
14342 |
+
1
|
14343 |
+
1
|
14344 |
+
1
|
14345 |
+
1
|
14346 |
+
1
|
14347 |
+
1
|
14348 |
+
1
|
14349 |
+
1
|
14350 |
+
1
|
14351 |
+
1
|
14352 |
+
1
|
14353 |
+
1
|
14354 |
+
1
|
14355 |
+
1
|
14356 |
+
1
|
14357 |
+
1
|
14358 |
+
1
|
14359 |
+
1
|
14360 |
+
1
|
14361 |
+
1
|
14362 |
+
1
|
14363 |
+
1
|
14364 |
+
1
|
14365 |
+
1
|
14366 |
+
1
|
14367 |
+
1
|
14368 |
+
1
|
14369 |
+
1
|
14370 |
+
1
|
14371 |
+
1
|
14372 |
+
1
|
14373 |
+
1
|
14374 |
+
1
|
14375 |
+
1
|
14376 |
+
1
|
14377 |
+
1
|
14378 |
+
1
|
14379 |
+
1
|
14380 |
+
1
|
14381 |
+
1
|
14382 |
+
1
|
14383 |
+
1
|
14384 |
+
1
|
14385 |
+
1
|
14386 |
+
1
|
14387 |
+
1
|
14388 |
+
1
|
14389 |
+
1
|
14390 |
+
1
|
14391 |
+
1
|
14392 |
+
1
|
14393 |
+
1
|
14394 |
+
1
|
14395 |
+
1
|
14396 |
+
1
|
14397 |
+
1
|
14398 |
+
1
|
14399 |
+
1
|
14400 |
+
1
|
14401 |
+
1
|
14402 |
+
1
|
14403 |
+
1
|
14404 |
+
1
|
14405 |
+
1
|
14406 |
+
1
|
14407 |
+
1
|
14408 |
+
1
|
14409 |
+
1
|
14410 |
+
1
|
14411 |
+
1
|
14412 |
+
1
|
14413 |
+
1
|
14414 |
+
1
|
14415 |
+
1
|
14416 |
+
1
|
14417 |
+
1
|
14418 |
+
1
|
14419 |
+
1
|
14420 |
+
1
|
14421 |
+
1
|
14422 |
+
1
|
14423 |
+
1
|
14424 |
+
1
|
14425 |
+
1
|
14426 |
+
1
|
14427 |
+
1
|
14428 |
+
1
|
14429 |
+
1
|
14430 |
+
1
|
14431 |
+
1
|
14432 |
+
1
|
14433 |
+
1
|
14434 |
+
1
|
14435 |
+
1
|
14436 |
+
1
|
14437 |
+
1
|
14438 |
+
1
|
14439 |
+
1
|
14440 |
+
1
|
14441 |
+
1
|
14442 |
+
1
|
14443 |
+
1
|
14444 |
+
1
|
14445 |
+
1
|
14446 |
+
1
|
14447 |
+
1
|
14448 |
+
1
|
14449 |
+
1
|
14450 |
+
1
|
14451 |
+
1
|
14452 |
+
1
|
14453 |
+
1
|
14454 |
+
1
|
14455 |
+
1
|
14456 |
+
1
|
14457 |
+
1
|
14458 |
+
1
|
14459 |
+
1
|
14460 |
+
1
|
14461 |
+
1
|
14462 |
+
1
|
14463 |
+
1
|
14464 |
+
1
|
14465 |
+
1
|
14466 |
+
1
|
14467 |
+
1
|
14468 |
+
1
|
14469 |
+
1
|
14470 |
+
1
|
14471 |
+
1
|
14472 |
+
1
|
14473 |
+
1
|
14474 |
+
1
|
14475 |
+
1
|
14476 |
+
1
|
14477 |
+
1
|
14478 |
+
1
|
14479 |
+
1
|
14480 |
+
1
|
14481 |
+
1
|
14482 |
+
1
|
14483 |
+
1
|
14484 |
+
1
|
14485 |
+
1
|
14486 |
+
1
|
14487 |
+
1
|
14488 |
+
1
|
14489 |
+
1
|
14490 |
+
1
|
14491 |
+
1
|
14492 |
+
1
|
14493 |
+
1
|
14494 |
+
1
|
14495 |
+
1
|
14496 |
+
1
|
14497 |
+
1
|
14498 |
+
1
|
14499 |
+
1
|
14500 |
+
2
|
14501 |
+
1
|
14502 |
+
1
|
14503 |
+
1
|
14504 |
+
1
|
14505 |
+
1
|
14506 |
+
1
|
14507 |
+
1
|
14508 |
+
1
|
14509 |
+
1
|
14510 |
+
1
|
14511 |
+
1
|
14512 |
+
1
|
14513 |
+
1
|
14514 |
+
1
|
14515 |
+
1
|
14516 |
+
1
|
14517 |
+
1
|
14518 |
+
2
|
14519 |
+
1
|
14520 |
+
1
|
14521 |
+
1
|
14522 |
+
1
|
14523 |
+
1
|
14524 |
+
1
|
14525 |
+
1
|
14526 |
+
1
|
14527 |
+
1
|
14528 |
+
1
|
14529 |
+
1
|
14530 |
+
1
|
14531 |
+
1
|
14532 |
+
1
|
14533 |
+
1
|
14534 |
+
1
|
14535 |
+
1
|
14536 |
+
1
|
14537 |
+
1
|
14538 |
+
1
|
14539 |
+
1
|
14540 |
+
1
|
14541 |
+
1
|
14542 |
+
1
|
14543 |
+
1
|
14544 |
+
1
|
14545 |
+
1
|
14546 |
+
1
|
14547 |
+
1
|
14548 |
+
1
|
14549 |
+
1
|
14550 |
+
1
|
14551 |
+
1
|
14552 |
+
1
|
14553 |
+
1
|
14554 |
+
1
|
14555 |
+
1
|
14556 |
+
1
|
14557 |
+
1
|
14558 |
+
1
|
14559 |
+
1
|
14560 |
+
1
|
14561 |
+
1
|
14562 |
+
1
|
14563 |
+
1
|
14564 |
+
1
|
14565 |
+
1
|
14566 |
+
1
|
14567 |
+
1
|
14568 |
+
1
|
14569 |
+
1
|
14570 |
+
1
|
14571 |
+
1
|
14572 |
+
1
|
14573 |
+
1
|
14574 |
+
1
|
14575 |
+
1
|
14576 |
+
1
|
14577 |
+
1
|
14578 |
+
1
|
14579 |
+
1
|
14580 |
+
1
|
14581 |
+
1
|
14582 |
+
1
|
14583 |
+
1
|
14584 |
+
1
|
14585 |
+
1
|
14586 |
+
1
|
14587 |
+
1
|
14588 |
+
1
|
14589 |
+
1
|
14590 |
+
1
|
14591 |
+
1
|
14592 |
+
1
|
14593 |
+
1
|
14594 |
+
1
|
14595 |
+
1
|
14596 |
+
1
|
14597 |
+
1
|
14598 |
+
1
|
14599 |
+
1
|
14600 |
+
1
|
14601 |
+
1
|
14602 |
+
1
|
14603 |
+
1
|
14604 |
+
1
|
14605 |
+
1
|
14606 |
+
1
|
14607 |
+
1
|
14608 |
+
1
|
14609 |
+
1
|
14610 |
+
1
|
14611 |
+
1
|
14612 |
+
1
|
14613 |
+
1
|
14614 |
+
1
|
14615 |
+
1
|
14616 |
+
1
|
14617 |
+
1
|
14618 |
+
1
|
14619 |
+
1
|
14620 |
+
1
|
14621 |
+
1
|
14622 |
+
1
|
14623 |
+
1
|
14624 |
+
1
|
14625 |
+
1
|
14626 |
+
1
|
14627 |
+
1
|
14628 |
+
1
|
14629 |
+
1
|
14630 |
+
1
|
14631 |
+
1
|
14632 |
+
1
|
14633 |
+
1
|
14634 |
+
1
|
14635 |
+
1
|
14636 |
+
1
|
14637 |
+
1
|
14638 |
+
1
|
14639 |
+
1
|
14640 |
+
1
|
14641 |
+
1
|
14642 |
+
1
|
14643 |
+
1
|
14644 |
+
1
|
14645 |
+
1
|
14646 |
+
1
|
14647 |
+
1
|
14648 |
+
1
|
14649 |
+
1
|
14650 |
+
1
|
14651 |
+
1
|
14652 |
+
1
|
14653 |
+
1
|
14654 |
+
1
|
14655 |
+
1
|
14656 |
+
1
|
14657 |
+
1
|
14658 |
+
1
|
14659 |
+
1
|
14660 |
+
1
|
14661 |
+
1
|
14662 |
+
1
|
14663 |
+
1
|
14664 |
+
1
|
14665 |
+
1
|
14666 |
+
1
|
14667 |
+
1
|
14668 |
+
1
|
14669 |
+
1
|
14670 |
+
1
|
14671 |
+
1
|
14672 |
+
1
|
14673 |
+
1
|
14674 |
+
1
|
14675 |
+
1
|
14676 |
+
1
|
14677 |
+
1
|
14678 |
+
1
|
14679 |
+
1
|
14680 |
+
1
|
14681 |
+
1
|
14682 |
+
1
|
14683 |
+
1
|
14684 |
+
1
|
14685 |
+
1
|
14686 |
+
1
|
14687 |
+
1
|
14688 |
+
1
|
14689 |
+
1
|
14690 |
+
1
|
14691 |
+
1
|
14692 |
+
1
|
14693 |
+
1
|
14694 |
+
1
|
14695 |
+
1
|
14696 |
+
1
|
14697 |
+
1
|
14698 |
+
1
|
14699 |
+
1
|
14700 |
+
1
|
14701 |
+
1
|
14702 |
+
1
|
14703 |
+
1
|
14704 |
+
1
|
14705 |
+
1
|
14706 |
+
1
|
14707 |
+
1
|
14708 |
+
1
|
14709 |
+
1
|
14710 |
+
1
|
14711 |
+
1
|
14712 |
+
1
|
14713 |
+
1
|
14714 |
+
1
|
14715 |
+
1
|
14716 |
+
1
|
14717 |
+
1
|
14718 |
+
1
|
14719 |
+
1
|
14720 |
+
1
|
14721 |
+
1
|
14722 |
+
1
|
14723 |
+
1
|
14724 |
+
1
|
14725 |
+
1
|
14726 |
+
1
|
14727 |
+
1
|
14728 |
+
1
|
14729 |
+
1
|
14730 |
+
1
|
14731 |
+
1
|
14732 |
+
1
|
14733 |
+
1
|
14734 |
+
1
|
14735 |
+
1
|
14736 |
+
1
|
14737 |
+
1
|
14738 |
+
1
|
14739 |
+
1
|
14740 |
+
1
|
14741 |
+
1
|
14742 |
+
1
|
14743 |
+
1
|
14744 |
+
1
|
14745 |
+
1
|
14746 |
+
1
|
14747 |
+
1
|
14748 |
+
1
|
14749 |
+
1
|
14750 |
+
1
|
14751 |
+
1
|
14752 |
+
1
|
14753 |
+
1
|
14754 |
+
1
|
14755 |
+
1
|
14756 |
+
1
|
14757 |
+
1
|
14758 |
+
1
|
14759 |
+
1
|
14760 |
+
1
|
14761 |
+
1
|
14762 |
+
1
|
14763 |
+
1
|
14764 |
+
1
|
14765 |
+
1
|
14766 |
+
1
|
14767 |
+
1
|
14768 |
+
1
|
14769 |
+
1
|
14770 |
+
1
|
14771 |
+
1
|
14772 |
+
1
|
14773 |
+
1
|
14774 |
+
1
|
14775 |
+
1
|
14776 |
+
2
|
14777 |
+
1
|
14778 |
+
1
|
14779 |
+
1
|
14780 |
+
1
|
14781 |
+
1
|
14782 |
+
1
|
14783 |
+
1
|
14784 |
+
1
|
14785 |
+
1
|
14786 |
+
1
|
14787 |
+
1
|
14788 |
+
1
|
14789 |
+
1
|
14790 |
+
1
|
14791 |
+
1
|
14792 |
+
1
|
14793 |
+
1
|
14794 |
+
1
|
14795 |
+
1
|
14796 |
+
1
|
14797 |
+
1
|
14798 |
+
1
|
14799 |
+
1
|
14800 |
+
1
|
14801 |
+
1
|
14802 |
+
1
|
14803 |
+
1
|
14804 |
+
1
|
14805 |
+
1
|
14806 |
+
1
|
14807 |
+
1
|
14808 |
+
1
|
14809 |
+
1
|
14810 |
+
1
|
14811 |
+
1
|
14812 |
+
1
|
14813 |
+
1
|
14814 |
+
1
|
14815 |
+
1
|
14816 |
+
1
|
14817 |
+
1
|
14818 |
+
1
|
14819 |
+
1
|
14820 |
+
1
|
14821 |
+
1
|
14822 |
+
1
|
14823 |
+
1
|
14824 |
+
1
|
14825 |
+
1
|
14826 |
+
1
|
14827 |
+
1
|
14828 |
+
1
|
14829 |
+
1
|
14830 |
+
1
|
14831 |
+
1
|
14832 |
+
1
|
14833 |
+
1
|
14834 |
+
1
|
14835 |
+
1
|
14836 |
+
1
|
14837 |
+
1
|
14838 |
+
1
|
14839 |
+
1
|
14840 |
+
1
|
14841 |
+
1
|
14842 |
+
1
|
14843 |
+
1
|
14844 |
+
1
|
14845 |
+
1
|
14846 |
+
1
|
14847 |
+
1
|
14848 |
+
1
|
14849 |
+
1
|
14850 |
+
1
|
14851 |
+
1
|
14852 |
+
1
|
14853 |
+
1
|
14854 |
+
1
|
14855 |
+
1
|
14856 |
+
1
|
14857 |
+
1
|
14858 |
+
1
|
14859 |
+
1
|
14860 |
+
1
|
14861 |
+
1
|
14862 |
+
1
|
14863 |
+
1
|
14864 |
+
1
|
14865 |
+
1
|
14866 |
+
1
|
14867 |
+
1
|
14868 |
+
1
|
14869 |
+
1
|
14870 |
+
1
|
14871 |
+
1
|
14872 |
+
1
|
14873 |
+
1
|
14874 |
+
1
|
14875 |
+
1
|
14876 |
+
1
|
14877 |
+
1
|
14878 |
+
1
|
14879 |
+
1
|
14880 |
+
1
|
14881 |
+
1
|
14882 |
+
1
|
14883 |
+
1
|
14884 |
+
1
|
14885 |
+
1
|
14886 |
+
1
|
14887 |
+
1
|
14888 |
+
1
|
14889 |
+
1
|
14890 |
+
1
|
14891 |
+
1
|
14892 |
+
1
|
14893 |
+
1
|
14894 |
+
1
|
14895 |
+
1
|
14896 |
+
1
|
14897 |
+
1
|
14898 |
+
1
|
14899 |
+
1
|
14900 |
+
1
|
14901 |
+
1
|
14902 |
+
1
|
14903 |
+
1
|
14904 |
+
1
|
14905 |
+
1
|
14906 |
+
1
|
14907 |
+
1
|
14908 |
+
1
|
14909 |
+
1
|
14910 |
+
1
|
14911 |
+
1
|
14912 |
+
1
|
14913 |
+
1
|
14914 |
+
1
|
14915 |
+
1
|
14916 |
+
1
|
14917 |
+
1
|
14918 |
+
1
|
14919 |
+
1
|
14920 |
+
1
|
14921 |
+
1
|
14922 |
+
1
|
14923 |
+
1
|
14924 |
+
1
|
14925 |
+
1
|
14926 |
+
1
|
14927 |
+
1
|
14928 |
+
1
|
14929 |
+
1
|
14930 |
+
1
|
14931 |
+
1
|
14932 |
+
1
|
14933 |
+
1
|
14934 |
+
1
|
14935 |
+
1
|
14936 |
+
1
|
14937 |
+
1
|
14938 |
+
1
|
14939 |
+
1
|
14940 |
+
1
|
14941 |
+
1
|
14942 |
+
1
|
14943 |
+
1
|
14944 |
+
1
|
14945 |
+
1
|
14946 |
+
1
|
14947 |
+
1
|
14948 |
+
1
|
14949 |
+
1
|
14950 |
+
1
|
14951 |
+
1
|
14952 |
+
1
|
14953 |
+
1
|
14954 |
+
1
|
14955 |
+
1
|
14956 |
+
1
|
14957 |
+
1
|
14958 |
+
1
|
14959 |
+
1
|
14960 |
+
1
|
14961 |
+
1
|
14962 |
+
1
|
14963 |
+
1
|
14964 |
+
1
|
14965 |
+
1
|
14966 |
+
1
|
14967 |
+
1
|
14968 |
+
1
|
14969 |
+
1
|
14970 |
+
1
|
14971 |
+
1
|
14972 |
+
1
|
14973 |
+
1
|
14974 |
+
1
|
14975 |
+
1
|
14976 |
+
1
|
14977 |
+
1
|
14978 |
+
1
|
14979 |
+
1
|
14980 |
+
1
|
14981 |
+
1
|
14982 |
+
1
|
14983 |
+
1
|
14984 |
+
1
|
14985 |
+
1
|
14986 |
+
1
|
14987 |
+
1
|
14988 |
+
1
|
14989 |
+
1
|
14990 |
+
1
|
14991 |
+
1
|
14992 |
+
1
|
14993 |
+
1
|
14994 |
+
1
|
14995 |
+
1
|
14996 |
+
1
|
14997 |
+
1
|
14998 |
+
1
|
14999 |
+
1
|
15000 |
+
1
|
15001 |
+
1
|
15002 |
+
1
|
15003 |
+
1
|
15004 |
+
1
|
15005 |
+
1
|
15006 |
+
1
|
15007 |
+
1
|
15008 |
+
1
|
15009 |
+
1
|
15010 |
+
1
|
15011 |
+
1
|
15012 |
+
1
|
15013 |
+
1
|
15014 |
+
1
|
15015 |
+
1
|
15016 |
+
1
|
15017 |
+
1
|
15018 |
+
1
|
15019 |
+
1
|
15020 |
+
1
|
15021 |
+
1
|
15022 |
+
1
|
15023 |
+
1
|
15024 |
+
1
|
15025 |
+
1
|
15026 |
+
1
|
15027 |
+
1
|
15028 |
+
1
|
15029 |
+
1
|
15030 |
+
1
|
15031 |
+
1
|
15032 |
+
1
|
15033 |
+
1
|
15034 |
+
1
|
15035 |
+
1
|
15036 |
+
1
|
15037 |
+
1
|
15038 |
+
1
|
15039 |
+
1
|
15040 |
+
1
|
15041 |
+
1
|
15042 |
+
1
|
15043 |
+
1
|
15044 |
+
1
|
15045 |
+
1
|
15046 |
+
1
|
15047 |
+
1
|
15048 |
+
1
|
15049 |
+
1
|
15050 |
+
1
|
15051 |
+
1
|
15052 |
+
1
|
15053 |
+
1
|
15054 |
+
1
|
15055 |
+
1
|
15056 |
+
1
|
15057 |
+
1
|
15058 |
+
1
|
15059 |
+
1
|
15060 |
+
1
|
15061 |
+
1
|
15062 |
+
1
|
15063 |
+
1
|
15064 |
+
1
|
15065 |
+
1
|
15066 |
+
1
|
15067 |
+
1
|
15068 |
+
1
|
15069 |
+
1
|
15070 |
+
1
|
15071 |
+
1
|
15072 |
+
1
|
15073 |
+
1
|
15074 |
+
1
|
15075 |
+
1
|
15076 |
+
1
|
15077 |
+
1
|
15078 |
+
1
|
15079 |
+
1
|
15080 |
+
1
|
15081 |
+
1
|
15082 |
+
1
|
15083 |
+
1
|
15084 |
+
1
|
15085 |
+
1
|
15086 |
+
1
|
15087 |
+
1
|
15088 |
+
1
|
15089 |
+
1
|
15090 |
+
1
|
15091 |
+
1
|
15092 |
+
1
|
15093 |
+
1
|
15094 |
+
1
|
15095 |
+
1
|
15096 |
+
1
|
15097 |
+
1
|
15098 |
+
1
|
15099 |
+
1
|
15100 |
+
1
|
15101 |
+
1
|
15102 |
+
1
|
15103 |
+
1
|
15104 |
+
1
|
15105 |
+
1
|
15106 |
+
1
|
15107 |
+
1
|
15108 |
+
1
|
15109 |
+
1
|
15110 |
+
1
|
15111 |
+
1
|
15112 |
+
1
|
15113 |
+
1
|
15114 |
+
1
|
15115 |
+
1
|
15116 |
+
1
|
15117 |
+
1
|
15118 |
+
1
|
15119 |
+
1
|
15120 |
+
1
|
15121 |
+
1
|
15122 |
+
1
|
15123 |
+
1
|
15124 |
+
1
|
15125 |
+
1
|
15126 |
+
1
|
15127 |
+
1
|
15128 |
+
1
|
15129 |
+
1
|
15130 |
+
1
|
15131 |
+
1
|
15132 |
+
1
|
15133 |
+
1
|
15134 |
+
1
|
15135 |
+
1
|
15136 |
+
1
|
15137 |
+
1
|
15138 |
+
1
|
15139 |
+
1
|
15140 |
+
1
|
15141 |
+
1
|
15142 |
+
1
|
15143 |
+
1
|
15144 |
+
1
|
15145 |
+
1
|
15146 |
+
1
|
15147 |
+
1
|
15148 |
+
1
|
15149 |
+
1
|
15150 |
+
1
|
15151 |
+
1
|
15152 |
+
1
|
15153 |
+
1
|
15154 |
+
1
|
15155 |
+
1
|
15156 |
+
1
|
15157 |
+
1
|
15158 |
+
1
|
15159 |
+
1
|
15160 |
+
1
|
15161 |
+
1
|
15162 |
+
1
|
15163 |
+
1
|
15164 |
+
1
|
15165 |
+
1
|
15166 |
+
1
|
15167 |
+
1
|
15168 |
+
1
|
15169 |
+
1
|
15170 |
+
1
|
15171 |
+
1
|
15172 |
+
1
|
15173 |
+
1
|
15174 |
+
1
|
15175 |
+
1
|
15176 |
+
1
|
15177 |
+
1
|
15178 |
+
1
|
15179 |
+
1
|
15180 |
+
1
|
15181 |
+
1
|
15182 |
+
1
|
15183 |
+
1
|
15184 |
+
1
|
15185 |
+
1
|
15186 |
+
1
|
15187 |
+
1
|
15188 |
+
1
|
15189 |
+
1
|
15190 |
+
1
|
15191 |
+
1
|
15192 |
+
1
|
15193 |
+
1
|
15194 |
+
1
|
15195 |
+
1
|
15196 |
+
1
|
15197 |
+
1
|
15198 |
+
1
|
15199 |
+
1
|
15200 |
+
1
|
15201 |
+
1
|
15202 |
+
1
|
15203 |
+
1
|
15204 |
+
1
|
15205 |
+
1
|
15206 |
+
1
|
15207 |
+
1
|
15208 |
+
1
|
15209 |
+
1
|
15210 |
+
1
|
15211 |
+
1
|
15212 |
+
1
|
15213 |
+
1
|
15214 |
+
1
|
15215 |
+
1
|
15216 |
+
1
|
15217 |
+
1
|
15218 |
+
1
|
15219 |
+
1
|
15220 |
+
1
|
15221 |
+
1
|
15222 |
+
1
|
15223 |
+
1
|
15224 |
+
1
|
15225 |
+
1
|
15226 |
+
1
|
15227 |
+
1
|
15228 |
+
1
|
15229 |
+
1
|
15230 |
+
1
|
15231 |
+
1
|
15232 |
+
1
|
15233 |
+
1
|
15234 |
+
1
|
15235 |
+
1
|
15236 |
+
1
|
15237 |
+
1
|
15238 |
+
1
|
15239 |
+
1
|
15240 |
+
1
|
15241 |
+
1
|
15242 |
+
1
|
15243 |
+
1
|
15244 |
+
1
|
15245 |
+
1
|
15246 |
+
1
|
15247 |
+
1
|
15248 |
+
1
|
15249 |
+
1
|
15250 |
+
1
|
15251 |
+
1
|
15252 |
+
1
|
15253 |
+
1
|
15254 |
+
1
|
15255 |
+
1
|
15256 |
+
1
|
15257 |
+
1
|
15258 |
+
1
|
15259 |
+
1
|
15260 |
+
1
|
15261 |
+
1
|
15262 |
+
1
|
15263 |
+
1
|
15264 |
+
1
|
15265 |
+
1
|
15266 |
+
1
|
15267 |
+
1
|
15268 |
+
1
|
15269 |
+
1
|
15270 |
+
1
|
15271 |
+
1
|
15272 |
+
1
|
15273 |
+
1
|
15274 |
+
1
|
15275 |
+
1
|
15276 |
+
1
|
15277 |
+
1
|
15278 |
+
1
|
15279 |
+
1
|
15280 |
+
1
|
15281 |
+
1
|
15282 |
+
1
|
15283 |
+
1
|
15284 |
+
1
|
15285 |
+
1
|
15286 |
+
1
|
15287 |
+
1
|
15288 |
+
1
|
15289 |
+
1
|
15290 |
+
1
|
15291 |
+
1
|
15292 |
+
1
|
15293 |
+
1
|
15294 |
+
1
|
15295 |
+
1
|
15296 |
+
1
|
15297 |
+
1
|
15298 |
+
2
|
15299 |
+
1
|
15300 |
+
1
|
15301 |
+
1
|
15302 |
+
1
|
15303 |
+
1
|
15304 |
+
1
|
15305 |
+
1
|
15306 |
+
1
|
15307 |
+
1
|
15308 |
+
1
|
15309 |
+
1
|
15310 |
+
1
|
15311 |
+
1
|
15312 |
+
1
|
15313 |
+
1
|
15314 |
+
1
|
15315 |
+
1
|
15316 |
+
1
|
15317 |
+
1
|
15318 |
+
1
|
15319 |
+
1
|
15320 |
+
1
|
15321 |
+
1
|
15322 |
+
1
|
15323 |
+
1
|
15324 |
+
1
|
15325 |
+
1
|
15326 |
+
1
|
15327 |
+
1
|
15328 |
+
1
|
15329 |
+
1
|
15330 |
+
1
|
15331 |
+
1
|
15332 |
+
1
|
15333 |
+
1
|
15334 |
+
1
|
15335 |
+
1
|
15336 |
+
1
|
15337 |
+
1
|
15338 |
+
1
|
15339 |
+
1
|
15340 |
+
1
|
15341 |
+
1
|
15342 |
+
1
|
15343 |
+
1
|
15344 |
+
1
|
15345 |
+
1
|
15346 |
+
1
|
15347 |
+
1
|
15348 |
+
1
|
15349 |
+
1
|
15350 |
+
1
|
15351 |
+
1
|
15352 |
+
1
|
15353 |
+
1
|
15354 |
+
1
|
15355 |
+
1
|
15356 |
+
1
|
15357 |
+
1
|
15358 |
+
1
|
15359 |
+
1
|
15360 |
+
1
|
15361 |
+
1
|
15362 |
+
1
|
15363 |
+
1
|
15364 |
+
1
|
15365 |
+
1
|
15366 |
+
1
|
15367 |
+
1
|
15368 |
+
1
|
15369 |
+
1
|
15370 |
+
1
|
15371 |
+
1
|
15372 |
+
1
|
15373 |
+
1
|
15374 |
+
1
|
15375 |
+
1
|
15376 |
+
1
|
15377 |
+
1
|
15378 |
+
1
|
15379 |
+
1
|
15380 |
+
1
|
15381 |
+
1
|
15382 |
+
1
|
15383 |
+
1
|
15384 |
+
1
|
15385 |
+
1
|
15386 |
+
1
|
15387 |
+
1
|
15388 |
+
1
|
15389 |
+
1
|
15390 |
+
1
|
15391 |
+
1
|
15392 |
+
1
|
15393 |
+
1
|
15394 |
+
1
|
15395 |
+
1
|
15396 |
+
1
|
15397 |
+
1
|
15398 |
+
1
|
15399 |
+
1
|
15400 |
+
1
|
15401 |
+
1
|
15402 |
+
1
|
15403 |
+
1
|
15404 |
+
1
|
15405 |
+
1
|
15406 |
+
1
|
15407 |
+
1
|
15408 |
+
1
|
15409 |
+
1
|
15410 |
+
1
|
15411 |
+
1
|
15412 |
+
1
|
15413 |
+
1
|
15414 |
+
1
|
15415 |
+
1
|
15416 |
+
1
|
15417 |
+
1
|
15418 |
+
1
|
15419 |
+
1
|
15420 |
+
1
|
15421 |
+
1
|
15422 |
+
1
|
15423 |
+
1
|
15424 |
+
1
|
15425 |
+
1
|
15426 |
+
1
|
15427 |
+
1
|
15428 |
+
1
|
15429 |
+
1
|
15430 |
+
1
|
15431 |
+
1
|
15432 |
+
1
|
15433 |
+
1
|
15434 |
+
1
|
15435 |
+
1
|
15436 |
+
1
|
15437 |
+
1
|
15438 |
+
1
|
15439 |
+
1
|
15440 |
+
1
|
15441 |
+
1
|
15442 |
+
1
|
15443 |
+
1
|
15444 |
+
1
|
15445 |
+
1
|
15446 |
+
1
|
15447 |
+
1
|
15448 |
+
1
|
15449 |
+
1
|
15450 |
+
1
|
15451 |
+
1
|
15452 |
+
1
|
15453 |
+
1
|
15454 |
+
1
|
15455 |
+
1
|
15456 |
+
1
|
15457 |
+
1
|
15458 |
+
1
|
15459 |
+
1
|
15460 |
+
1
|
15461 |
+
1
|
15462 |
+
1
|
15463 |
+
1
|
15464 |
+
1
|
15465 |
+
1
|
15466 |
+
1
|
15467 |
+
1
|
15468 |
+
1
|
15469 |
+
1
|
15470 |
+
1
|
15471 |
+
1
|
15472 |
+
1
|
15473 |
+
1
|
15474 |
+
1
|
15475 |
+
1
|
15476 |
+
1
|
15477 |
+
1
|
15478 |
+
1
|
15479 |
+
1
|
15480 |
+
1
|
15481 |
+
1
|
15482 |
+
1
|
15483 |
+
1
|
15484 |
+
1
|
15485 |
+
1
|
15486 |
+
1
|
15487 |
+
1
|
15488 |
+
1
|
15489 |
+
1
|
15490 |
+
1
|
15491 |
+
1
|
15492 |
+
1
|
15493 |
+
1
|
15494 |
+
1
|
15495 |
+
1
|
15496 |
+
1
|
15497 |
+
1
|
15498 |
+
1
|
15499 |
+
1
|
15500 |
+
1
|
15501 |
+
1
|
15502 |
+
1
|
15503 |
+
1
|
15504 |
+
1
|
15505 |
+
1
|
15506 |
+
1
|
15507 |
+
1
|
15508 |
+
1
|
15509 |
+
1
|
15510 |
+
1
|
15511 |
+
1
|
15512 |
+
1
|
15513 |
+
1
|
15514 |
+
1
|
15515 |
+
1
|
15516 |
+
1
|
15517 |
+
1
|
15518 |
+
1
|
15519 |
+
1
|
15520 |
+
1
|
15521 |
+
1
|
15522 |
+
1
|
15523 |
+
1
|
15524 |
+
1
|
15525 |
+
1
|
15526 |
+
1
|
15527 |
+
1
|
15528 |
+
1
|
15529 |
+
1
|
15530 |
+
1
|
15531 |
+
1
|
15532 |
+
1
|
15533 |
+
1
|
15534 |
+
1
|
15535 |
+
1
|
15536 |
+
1
|
15537 |
+
1
|
15538 |
+
1
|
15539 |
+
1
|
15540 |
+
1
|
15541 |
+
1
|
15542 |
+
1
|
15543 |
+
1
|
15544 |
+
1
|
15545 |
+
1
|
15546 |
+
1
|
15547 |
+
1
|
15548 |
+
1
|
15549 |
+
1
|
15550 |
+
1
|
15551 |
+
1
|
15552 |
+
1
|
15553 |
+
1
|
15554 |
+
1
|
15555 |
+
1
|
15556 |
+
1
|
15557 |
+
2
|
15558 |
+
1
|
15559 |
+
1
|
15560 |
+
1
|
15561 |
+
1
|
15562 |
+
1
|
15563 |
+
1
|
15564 |
+
1
|
15565 |
+
1
|
15566 |
+
1
|
15567 |
+
1
|
15568 |
+
1
|
15569 |
+
1
|
15570 |
+
1
|
15571 |
+
1
|
15572 |
+
1
|
15573 |
+
1
|
15574 |
+
1
|
15575 |
+
1
|
15576 |
+
1
|
15577 |
+
1
|
15578 |
+
1
|
15579 |
+
1
|
15580 |
+
1
|
15581 |
+
1
|
15582 |
+
1
|
15583 |
+
1
|
15584 |
+
1
|
15585 |
+
1
|
15586 |
+
1
|
15587 |
+
1
|
15588 |
+
1
|
15589 |
+
1
|
15590 |
+
1
|
15591 |
+
1
|
15592 |
+
1
|
15593 |
+
1
|
15594 |
+
1
|
15595 |
+
1
|
15596 |
+
1
|
15597 |
+
1
|
15598 |
+
1
|
15599 |
+
1
|
15600 |
+
1
|
15601 |
+
1
|
15602 |
+
1
|
15603 |
+
1
|
15604 |
+
1
|
15605 |
+
1
|
15606 |
+
1
|
15607 |
+
1
|
15608 |
+
1
|
15609 |
+
1
|
15610 |
+
1
|
15611 |
+
1
|
15612 |
+
1
|
15613 |
+
1
|
15614 |
+
1
|
15615 |
+
1
|
15616 |
+
1
|
15617 |
+
1
|
15618 |
+
1
|
15619 |
+
1
|
15620 |
+
1
|
15621 |
+
1
|
15622 |
+
1
|
15623 |
+
1
|
15624 |
+
1
|
15625 |
+
1
|
15626 |
+
1
|
15627 |
+
1
|
15628 |
+
1
|
15629 |
+
1
|
15630 |
+
1
|
15631 |
+
1
|
15632 |
+
1
|
15633 |
+
1
|
15634 |
+
1
|
15635 |
+
1
|
15636 |
+
1
|
15637 |
+
1
|
15638 |
+
1
|
15639 |
+
1
|
15640 |
+
1
|
15641 |
+
1
|
15642 |
+
1
|
15643 |
+
1
|
15644 |
+
1
|
15645 |
+
1
|
15646 |
+
1
|
15647 |
+
1
|
15648 |
+
1
|
15649 |
+
1
|
15650 |
+
1
|
15651 |
+
1
|
15652 |
+
1
|
15653 |
+
1
|
15654 |
+
1
|
15655 |
+
1
|
15656 |
+
1
|
15657 |
+
1
|
15658 |
+
1
|
15659 |
+
1
|
15660 |
+
1
|
15661 |
+
1
|
15662 |
+
1
|
15663 |
+
1
|
15664 |
+
1
|
15665 |
+
1
|
15666 |
+
1
|
15667 |
+
1
|
15668 |
+
1
|
15669 |
+
1
|
15670 |
+
1
|
15671 |
+
1
|
15672 |
+
1
|
15673 |
+
1
|
15674 |
+
1
|
15675 |
+
1
|
15676 |
+
1
|
15677 |
+
1
|
15678 |
+
1
|
15679 |
+
1
|
15680 |
+
1
|
15681 |
+
1
|
15682 |
+
1
|
15683 |
+
1
|
15684 |
+
1
|
15685 |
+
1
|
15686 |
+
1
|
15687 |
+
1
|
15688 |
+
1
|
15689 |
+
1
|
15690 |
+
1
|
15691 |
+
1
|
15692 |
+
1
|
15693 |
+
1
|
15694 |
+
1
|
15695 |
+
1
|
15696 |
+
1
|
15697 |
+
1
|
15698 |
+
1
|
15699 |
+
1
|
15700 |
+
1
|
15701 |
+
1
|
15702 |
+
1
|
15703 |
+
1
|
15704 |
+
1
|
15705 |
+
1
|
15706 |
+
1
|
15707 |
+
1
|
15708 |
+
1
|
15709 |
+
1
|
15710 |
+
1
|
15711 |
+
1
|
15712 |
+
1
|
15713 |
+
1
|
15714 |
+
1
|
15715 |
+
1
|
15716 |
+
1
|
15717 |
+
1
|
15718 |
+
1
|
15719 |
+
1
|
15720 |
+
1
|
15721 |
+
1
|
15722 |
+
1
|
15723 |
+
1
|
15724 |
+
1
|
15725 |
+
1
|
15726 |
+
1
|
15727 |
+
1
|
15728 |
+
1
|
15729 |
+
1
|
15730 |
+
1
|
15731 |
+
1
|
15732 |
+
1
|
15733 |
+
1
|
15734 |
+
1
|
15735 |
+
1
|
15736 |
+
1
|
15737 |
+
1
|
15738 |
+
1
|
15739 |
+
1
|
15740 |
+
1
|
15741 |
+
1
|
15742 |
+
1
|
15743 |
+
1
|
15744 |
+
1
|
15745 |
+
1
|
15746 |
+
1
|
15747 |
+
1
|
15748 |
+
1
|
15749 |
+
1
|
15750 |
+
1
|
15751 |
+
1
|
15752 |
+
1
|
15753 |
+
1
|
15754 |
+
1
|
15755 |
+
1
|
15756 |
+
1
|
15757 |
+
1
|
15758 |
+
1
|
15759 |
+
1
|
15760 |
+
1
|
15761 |
+
1
|
15762 |
+
1
|
15763 |
+
1
|
15764 |
+
1
|
15765 |
+
1
|
15766 |
+
1
|
15767 |
+
1
|
15768 |
+
1
|
15769 |
+
1
|
15770 |
+
1
|
15771 |
+
1
|
15772 |
+
1
|
15773 |
+
1
|
15774 |
+
1
|
15775 |
+
1
|
15776 |
+
1
|
15777 |
+
1
|
15778 |
+
1
|
15779 |
+
1
|
15780 |
+
1
|
15781 |
+
1
|
15782 |
+
1
|
15783 |
+
1
|
15784 |
+
1
|
15785 |
+
1
|
15786 |
+
1
|
15787 |
+
1
|
15788 |
+
1
|
15789 |
+
1
|
15790 |
+
1
|
15791 |
+
1
|
15792 |
+
1
|
15793 |
+
1
|
15794 |
+
1
|
15795 |
+
1
|
15796 |
+
1
|
15797 |
+
1
|
15798 |
+
1
|
15799 |
+
1
|
15800 |
+
1
|
15801 |
+
1
|
15802 |
+
1
|
15803 |
+
1
|
15804 |
+
1
|
15805 |
+
1
|
15806 |
+
1
|
15807 |
+
1
|
15808 |
+
1
|
15809 |
+
1
|
15810 |
+
1
|
15811 |
+
1
|
15812 |
+
1
|
15813 |
+
1
|
15814 |
+
1
|
15815 |
+
1
|
15816 |
+
1
|
15817 |
+
1
|
15818 |
+
1
|
15819 |
+
1
|
15820 |
+
1
|
15821 |
+
1
|
15822 |
+
1
|
15823 |
+
1
|
15824 |
+
1
|
15825 |
+
1
|
15826 |
+
1
|
15827 |
+
1
|
15828 |
+
1
|
15829 |
+
1
|
15830 |
+
1
|
15831 |
+
1
|
15832 |
+
1
|
15833 |
+
1
|
15834 |
+
1
|
15835 |
+
2
|
15836 |
+
1
|
15837 |
+
1
|
15838 |
+
1
|
15839 |
+
1
|
15840 |
+
2
|
15841 |
+
1
|
15842 |
+
1
|
15843 |
+
1
|
15844 |
+
1
|
15845 |
+
1
|
15846 |
+
1
|
15847 |
+
1
|
15848 |
+
1
|
15849 |
+
1
|
15850 |
+
1
|
15851 |
+
1
|
15852 |
+
1
|
15853 |
+
1
|
15854 |
+
1
|
15855 |
+
1
|
15856 |
+
1
|
15857 |
+
1
|
15858 |
+
1
|
15859 |
+
1
|
15860 |
+
1
|
15861 |
+
1
|
15862 |
+
1
|
15863 |
+
1
|
15864 |
+
1
|
15865 |
+
1
|
15866 |
+
1
|
15867 |
+
1
|
15868 |
+
1
|
15869 |
+
1
|
15870 |
+
1
|
15871 |
+
1
|
15872 |
+
1
|
15873 |
+
1
|
15874 |
+
1
|
15875 |
+
1
|
15876 |
+
1
|
15877 |
+
1
|
15878 |
+
1
|
15879 |
+
1
|
15880 |
+
1
|
15881 |
+
1
|
15882 |
+
1
|
15883 |
+
1
|
15884 |
+
1
|
15885 |
+
1
|
15886 |
+
1
|
15887 |
+
1
|
15888 |
+
1
|
15889 |
+
1
|
15890 |
+
1
|
15891 |
+
1
|
15892 |
+
1
|
15893 |
+
1
|
15894 |
+
1
|
15895 |
+
1
|
15896 |
+
1
|
15897 |
+
1
|
15898 |
+
1
|
15899 |
+
1
|
15900 |
+
1
|
15901 |
+
1
|
15902 |
+
1
|
15903 |
+
1
|
15904 |
+
1
|
15905 |
+
1
|
15906 |
+
1
|
15907 |
+
1
|
15908 |
+
1
|
15909 |
+
1
|
15910 |
+
1
|
15911 |
+
1
|
15912 |
+
1
|
15913 |
+
1
|
15914 |
+
1
|
15915 |
+
1
|
15916 |
+
1
|
15917 |
+
1
|
15918 |
+
1
|
15919 |
+
1
|
15920 |
+
1
|
15921 |
+
1
|
15922 |
+
1
|
15923 |
+
1
|
15924 |
+
1
|
15925 |
+
1
|
15926 |
+
1
|
15927 |
+
1
|
15928 |
+
1
|
15929 |
+
1
|
15930 |
+
1
|
15931 |
+
1
|
15932 |
+
1
|
15933 |
+
1
|
15934 |
+
1
|
15935 |
+
1
|
15936 |
+
1
|
15937 |
+
1
|
15938 |
+
1
|
15939 |
+
1
|
15940 |
+
1
|
15941 |
+
1
|
15942 |
+
1
|
15943 |
+
1
|
15944 |
+
1
|
15945 |
+
1
|
15946 |
+
1
|
15947 |
+
1
|
15948 |
+
1
|
15949 |
+
1
|
15950 |
+
1
|
15951 |
+
1
|
15952 |
+
1
|
15953 |
+
1
|
15954 |
+
1
|
15955 |
+
1
|
15956 |
+
1
|
15957 |
+
1
|
15958 |
+
1
|
15959 |
+
1
|
15960 |
+
1
|
15961 |
+
1
|
15962 |
+
1
|
15963 |
+
1
|
15964 |
+
1
|
15965 |
+
1
|
15966 |
+
1
|
15967 |
+
1
|
15968 |
+
1
|
15969 |
+
1
|
15970 |
+
1
|
15971 |
+
1
|
15972 |
+
1
|
15973 |
+
1
|
15974 |
+
1
|
15975 |
+
1
|
15976 |
+
1
|
15977 |
+
1
|
15978 |
+
1
|
15979 |
+
1
|
15980 |
+
1
|
15981 |
+
1
|
15982 |
+
1
|
15983 |
+
1
|
15984 |
+
1
|
15985 |
+
1
|
15986 |
+
1
|
15987 |
+
1
|
15988 |
+
1
|
15989 |
+
1
|
15990 |
+
1
|
15991 |
+
1
|
15992 |
+
1
|
15993 |
+
1
|
15994 |
+
1
|
15995 |
+
1
|
15996 |
+
1
|
15997 |
+
1
|
15998 |
+
1
|
15999 |
+
1
|
16000 |
+
1
|
16001 |
+
1
|
16002 |
+
1
|
16003 |
+
1
|
16004 |
+
1
|
16005 |
+
1
|
16006 |
+
1
|
16007 |
+
1
|
16008 |
+
1
|
16009 |
+
1
|
16010 |
+
1
|
16011 |
+
1
|
16012 |
+
1
|
16013 |
+
1
|
16014 |
+
1
|
16015 |
+
1
|
16016 |
+
1
|
16017 |
+
1
|
16018 |
+
1
|
16019 |
+
1
|
16020 |
+
1
|
16021 |
+
1
|
16022 |
+
1
|
16023 |
+
1
|
16024 |
+
1
|
16025 |
+
1
|
16026 |
+
1
|
16027 |
+
1
|
16028 |
+
1
|
16029 |
+
1
|
16030 |
+
1
|
16031 |
+
1
|
16032 |
+
1
|
16033 |
+
1
|
16034 |
+
1
|
16035 |
+
1
|
16036 |
+
1
|
16037 |
+
1
|
16038 |
+
1
|
16039 |
+
1
|
16040 |
+
1
|
16041 |
+
1
|
16042 |
+
1
|
16043 |
+
1
|
16044 |
+
1
|
16045 |
+
1
|
16046 |
+
1
|
16047 |
+
1
|
16048 |
+
1
|
16049 |
+
1
|
16050 |
+
1
|
16051 |
+
1
|
16052 |
+
1
|
16053 |
+
1
|
16054 |
+
1
|
16055 |
+
1
|
16056 |
+
1
|
16057 |
+
1
|
16058 |
+
1
|
16059 |
+
1
|
16060 |
+
1
|
16061 |
+
1
|
16062 |
+
1
|
16063 |
+
1
|
16064 |
+
1
|
16065 |
+
1
|
16066 |
+
1
|
16067 |
+
1
|
16068 |
+
1
|
16069 |
+
1
|
16070 |
+
1
|
16071 |
+
1
|
16072 |
+
1
|
16073 |
+
1
|
16074 |
+
1
|
16075 |
+
1
|
16076 |
+
1
|
16077 |
+
1
|
16078 |
+
1
|
16079 |
+
1
|
16080 |
+
1
|
16081 |
+
1
|
16082 |
+
1
|
16083 |
+
1
|
16084 |
+
1
|
16085 |
+
1
|
16086 |
+
1
|
16087 |
+
1
|
16088 |
+
1
|
16089 |
+
1
|
16090 |
+
1
|
16091 |
+
1
|
16092 |
+
1
|
16093 |
+
1
|
16094 |
+
1
|
16095 |
+
1
|
16096 |
+
1
|
16097 |
+
1
|
16098 |
+
1
|
16099 |
+
1
|
16100 |
+
1
|
16101 |
+
1
|
16102 |
+
1
|
16103 |
+
1
|
16104 |
+
1
|
16105 |
+
1
|
16106 |
+
1
|
16107 |
+
1
|
16108 |
+
1
|
16109 |
+
1
|
16110 |
+
1
|
16111 |
+
1
|
16112 |
+
1
|
16113 |
+
1
|
16114 |
+
1
|
16115 |
+
1
|
16116 |
+
1
|
16117 |
+
1
|
16118 |
+
1
|
16119 |
+
1
|
16120 |
+
1
|
16121 |
+
1
|
16122 |
+
1
|
16123 |
+
1
|
16124 |
+
1
|
16125 |
+
1
|
16126 |
+
1
|
16127 |
+
2
|
16128 |
+
2
|
16129 |
+
1
|
16130 |
+
1
|
16131 |
+
1
|
16132 |
+
1
|
16133 |
+
1
|
16134 |
+
1
|
16135 |
+
1
|
16136 |
+
1
|
16137 |
+
1
|
16138 |
+
1
|
16139 |
+
1
|
16140 |
+
1
|
16141 |
+
1
|
16142 |
+
1
|
16143 |
+
1
|
16144 |
+
1
|
16145 |
+
1
|
16146 |
+
1
|
16147 |
+
1
|
16148 |
+
1
|
16149 |
+
1
|
16150 |
+
1
|
16151 |
+
1
|
16152 |
+
1
|
16153 |
+
1
|
16154 |
+
1
|
16155 |
+
1
|
16156 |
+
1
|
16157 |
+
1
|
16158 |
+
1
|
16159 |
+
1
|
16160 |
+
1
|
16161 |
+
1
|
16162 |
+
1
|
16163 |
+
1
|
16164 |
+
1
|
16165 |
+
1
|
16166 |
+
1
|
16167 |
+
1
|
16168 |
+
1
|
16169 |
+
1
|
16170 |
+
1
|
16171 |
+
1
|
16172 |
+
1
|
16173 |
+
1
|
16174 |
+
1
|
16175 |
+
1
|
16176 |
+
1
|
16177 |
+
1
|
16178 |
+
1
|
16179 |
+
1
|
16180 |
+
1
|
16181 |
+
1
|
16182 |
+
1
|
16183 |
+
1
|
16184 |
+
1
|
16185 |
+
1
|
16186 |
+
1
|
16187 |
+
1
|
16188 |
+
1
|
16189 |
+
1
|
16190 |
+
1
|
16191 |
+
1
|
16192 |
+
1
|
16193 |
+
1
|
16194 |
+
1
|
16195 |
+
1
|
16196 |
+
1
|
16197 |
+
1
|
16198 |
+
1
|
16199 |
+
1
|
16200 |
+
1
|
16201 |
+
1
|
16202 |
+
1
|
16203 |
+
1
|
16204 |
+
1
|
16205 |
+
1
|
16206 |
+
1
|
16207 |
+
1
|
16208 |
+
1
|
16209 |
+
1
|
16210 |
+
1
|
16211 |
+
1
|
16212 |
+
1
|
16213 |
+
1
|
16214 |
+
1
|
16215 |
+
1
|
16216 |
+
1
|
16217 |
+
1
|
16218 |
+
1
|
16219 |
+
1
|
16220 |
+
1
|
16221 |
+
1
|
16222 |
+
1
|
16223 |
+
1
|
16224 |
+
1
|
16225 |
+
1
|
16226 |
+
1
|
16227 |
+
1
|
16228 |
+
1
|
16229 |
+
1
|
16230 |
+
1
|
16231 |
+
1
|
16232 |
+
1
|
16233 |
+
1
|
16234 |
+
1
|
16235 |
+
1
|
16236 |
+
1
|
16237 |
+
1
|
16238 |
+
1
|
16239 |
+
1
|
16240 |
+
1
|
16241 |
+
1
|
16242 |
+
1
|
16243 |
+
1
|
16244 |
+
1
|
16245 |
+
1
|
16246 |
+
1
|
16247 |
+
1
|
16248 |
+
1
|
16249 |
+
1
|
16250 |
+
1
|
16251 |
+
1
|
16252 |
+
1
|
16253 |
+
1
|
16254 |
+
1
|
16255 |
+
1
|
16256 |
+
1
|
16257 |
+
1
|
16258 |
+
1
|
16259 |
+
1
|
16260 |
+
1
|
16261 |
+
1
|
16262 |
+
1
|
16263 |
+
1
|
16264 |
+
1
|
16265 |
+
1
|
16266 |
+
1
|
16267 |
+
1
|
16268 |
+
1
|
16269 |
+
1
|
16270 |
+
1
|
16271 |
+
1
|
16272 |
+
1
|
16273 |
+
1
|
16274 |
+
1
|
16275 |
+
1
|
16276 |
+
1
|
16277 |
+
1
|
16278 |
+
1
|
16279 |
+
1
|
16280 |
+
1
|
16281 |
+
1
|
16282 |
+
1
|
16283 |
+
1
|
16284 |
+
1
|
16285 |
+
1
|
16286 |
+
1
|
16287 |
+
1
|
16288 |
+
1
|
16289 |
+
1
|
16290 |
+
1
|
16291 |
+
1
|
16292 |
+
1
|
16293 |
+
1
|
16294 |
+
1
|
16295 |
+
1
|
16296 |
+
1
|
16297 |
+
1
|
16298 |
+
1
|
16299 |
+
1
|
16300 |
+
1
|
16301 |
+
1
|
16302 |
+
1
|
16303 |
+
1
|
16304 |
+
1
|
16305 |
+
1
|
16306 |
+
1
|
16307 |
+
1
|
16308 |
+
1
|
16309 |
+
1
|
16310 |
+
1
|
16311 |
+
1
|
16312 |
+
1
|
16313 |
+
1
|
16314 |
+
1
|
16315 |
+
1
|
16316 |
+
1
|
16317 |
+
1
|
16318 |
+
1
|
16319 |
+
1
|
16320 |
+
1
|
16321 |
+
1
|
16322 |
+
1
|
16323 |
+
1
|
16324 |
+
1
|
16325 |
+
1
|
16326 |
+
1
|
16327 |
+
1
|
16328 |
+
1
|
16329 |
+
1
|
16330 |
+
1
|
16331 |
+
1
|
16332 |
+
1
|
16333 |
+
1
|
16334 |
+
1
|
16335 |
+
1
|
16336 |
+
1
|
16337 |
+
1
|
16338 |
+
1
|
16339 |
+
1
|
16340 |
+
1
|
16341 |
+
1
|
16342 |
+
1
|
16343 |
+
1
|
16344 |
+
1
|
16345 |
+
1
|
16346 |
+
1
|
16347 |
+
1
|
16348 |
+
1
|
16349 |
+
1
|
16350 |
+
1
|
16351 |
+
1
|
16352 |
+
1
|
16353 |
+
1
|
16354 |
+
1
|
16355 |
+
1
|
16356 |
+
1
|
16357 |
+
1
|
16358 |
+
1
|
16359 |
+
1
|
16360 |
+
1
|
16361 |
+
1
|
16362 |
+
1
|
16363 |
+
1
|
16364 |
+
1
|
16365 |
+
1
|
16366 |
+
1
|
16367 |
+
1
|
16368 |
+
1
|
16369 |
+
1
|
16370 |
+
1
|
16371 |
+
1
|
16372 |
+
1
|
16373 |
+
1
|
16374 |
+
1
|
16375 |
+
1
|
16376 |
+
1
|
16377 |
+
1
|
16378 |
+
1
|
16379 |
+
1
|
16380 |
+
1
|
16381 |
+
1
|
16382 |
+
1
|
16383 |
+
1
|
16384 |
+
1
|
16385 |
+
1
|
16386 |
+
1
|
16387 |
+
2
|
16388 |
+
1
|
16389 |
+
1
|
16390 |
+
1
|
16391 |
+
1
|
16392 |
+
1
|
16393 |
+
1
|
16394 |
+
1
|
16395 |
+
1
|
16396 |
+
1
|
16397 |
+
1
|
16398 |
+
1
|
16399 |
+
1
|
16400 |
+
1
|
16401 |
+
1
|
16402 |
+
1
|
16403 |
+
1
|
16404 |
+
1
|
16405 |
+
1
|
16406 |
+
1
|
16407 |
+
1
|
16408 |
+
1
|
16409 |
+
1
|
16410 |
+
1
|
16411 |
+
1
|
16412 |
+
1
|
16413 |
+
1
|
16414 |
+
1
|
16415 |
+
1
|
16416 |
+
1
|
16417 |
+
1
|
16418 |
+
1
|
16419 |
+
1
|
16420 |
+
1
|
16421 |
+
1
|
16422 |
+
1
|
16423 |
+
1
|
16424 |
+
1
|
16425 |
+
1
|
16426 |
+
1
|
16427 |
+
1
|
16428 |
+
1
|
16429 |
+
1
|
16430 |
+
1
|
16431 |
+
1
|
16432 |
+
1
|
16433 |
+
1
|
16434 |
+
1
|
16435 |
+
1
|
16436 |
+
1
|
16437 |
+
1
|
16438 |
+
1
|
16439 |
+
1
|
16440 |
+
1
|
16441 |
+
1
|
16442 |
+
1
|
16443 |
+
1
|
16444 |
+
1
|
16445 |
+
1
|
16446 |
+
1
|
16447 |
+
1
|
16448 |
+
1
|
16449 |
+
1
|
16450 |
+
1
|
16451 |
+
1
|
16452 |
+
1
|
16453 |
+
1
|
16454 |
+
1
|
16455 |
+
1
|
16456 |
+
1
|
16457 |
+
1
|
16458 |
+
1
|
16459 |
+
1
|
16460 |
+
1
|
16461 |
+
1
|
16462 |
+
1
|
16463 |
+
1
|
16464 |
+
1
|
16465 |
+
1
|
16466 |
+
1
|
16467 |
+
1
|
16468 |
+
1
|
16469 |
+
1
|
16470 |
+
1
|
16471 |
+
1
|
16472 |
+
1
|
16473 |
+
1
|
16474 |
+
1
|
16475 |
+
1
|
16476 |
+
1
|
16477 |
+
1
|
16478 |
+
1
|
16479 |
+
1
|
16480 |
+
1
|
16481 |
+
1
|
16482 |
+
1
|
16483 |
+
1
|
16484 |
+
1
|
16485 |
+
1
|
16486 |
+
1
|
16487 |
+
1
|
16488 |
+
1
|
16489 |
+
1
|
16490 |
+
1
|
16491 |
+
1
|
16492 |
+
1
|
16493 |
+
1
|
16494 |
+
1
|
16495 |
+
1
|
16496 |
+
1
|
16497 |
+
1
|
16498 |
+
1
|
16499 |
+
1
|
16500 |
+
1
|
16501 |
+
1
|
16502 |
+
1
|
16503 |
+
1
|
16504 |
+
1
|
16505 |
+
1
|
16506 |
+
1
|
16507 |
+
1
|
16508 |
+
1
|
16509 |
+
1
|
16510 |
+
1
|
16511 |
+
1
|
16512 |
+
1
|
16513 |
+
1
|
16514 |
+
1
|
16515 |
+
1
|
16516 |
+
1
|
16517 |
+
1
|
16518 |
+
1
|
16519 |
+
1
|
16520 |
+
1
|
16521 |
+
1
|
16522 |
+
1
|
16523 |
+
1
|
16524 |
+
1
|
16525 |
+
1
|
16526 |
+
1
|
16527 |
+
1
|
16528 |
+
1
|
16529 |
+
1
|
16530 |
+
1
|
16531 |
+
1
|
16532 |
+
1
|
16533 |
+
1
|
16534 |
+
1
|
16535 |
+
1
|
16536 |
+
1
|
16537 |
+
1
|
16538 |
+
1
|
16539 |
+
1
|
16540 |
+
1
|
16541 |
+
1
|
16542 |
+
1
|
16543 |
+
1
|
16544 |
+
1
|
16545 |
+
1
|
16546 |
+
1
|
16547 |
+
1
|
16548 |
+
1
|
16549 |
+
1
|
16550 |
+
1
|
16551 |
+
1
|
16552 |
+
1
|
16553 |
+
1
|
16554 |
+
1
|
16555 |
+
1
|
16556 |
+
1
|
16557 |
+
1
|
16558 |
+
1
|
16559 |
+
1
|
16560 |
+
1
|
16561 |
+
1
|
16562 |
+
1
|
16563 |
+
1
|
16564 |
+
1
|
16565 |
+
1
|
16566 |
+
1
|
16567 |
+
1
|
16568 |
+
1
|
16569 |
+
1
|
16570 |
+
1
|
16571 |
+
1
|
16572 |
+
1
|
16573 |
+
1
|
16574 |
+
1
|
16575 |
+
1
|
16576 |
+
1
|
16577 |
+
1
|
16578 |
+
1
|
16579 |
+
1
|
16580 |
+
1
|
16581 |
+
1
|
16582 |
+
1
|
16583 |
+
1
|
16584 |
+
1
|
16585 |
+
1
|
16586 |
+
1
|
16587 |
+
1
|
16588 |
+
1
|
16589 |
+
1
|
16590 |
+
1
|
16591 |
+
1
|
16592 |
+
1
|
16593 |
+
1
|
16594 |
+
1
|
16595 |
+
1
|
16596 |
+
1
|
16597 |
+
1
|
16598 |
+
1
|
16599 |
+
1
|
16600 |
+
1
|
16601 |
+
1
|
16602 |
+
1
|
16603 |
+
1
|
16604 |
+
1
|
16605 |
+
1
|
16606 |
+
1
|
16607 |
+
1
|
16608 |
+
1
|
16609 |
+
1
|
16610 |
+
1
|
16611 |
+
1
|
16612 |
+
1
|
16613 |
+
1
|
16614 |
+
1
|
16615 |
+
1
|
16616 |
+
1
|
16617 |
+
1
|
16618 |
+
1
|
16619 |
+
1
|
16620 |
+
1
|
16621 |
+
1
|
16622 |
+
1
|
16623 |
+
1
|
16624 |
+
1
|
16625 |
+
1
|
16626 |
+
1
|
16627 |
+
1
|
16628 |
+
1
|
16629 |
+
1
|
16630 |
+
1
|
16631 |
+
1
|
16632 |
+
1
|
16633 |
+
1
|
16634 |
+
2
|
16635 |
+
1
|
16636 |
+
1
|
16637 |
+
1
|
16638 |
+
1
|
16639 |
+
1
|
16640 |
+
1
|
16641 |
+
1
|
16642 |
+
1
|
16643 |
+
1
|
16644 |
+
1
|
16645 |
+
2
|
16646 |
+
1
|
16647 |
+
1
|
16648 |
+
1
|
16649 |
+
1
|
16650 |
+
1
|
16651 |
+
1
|
16652 |
+
2
|
16653 |
+
1
|
16654 |
+
1
|
16655 |
+
1
|
16656 |
+
1
|
16657 |
+
1
|
16658 |
+
1
|
16659 |
+
1
|
16660 |
+
1
|
16661 |
+
1
|
16662 |
+
1
|
16663 |
+
1
|
16664 |
+
1
|
16665 |
+
1
|
16666 |
+
1
|
16667 |
+
1
|
16668 |
+
1
|
16669 |
+
1
|
16670 |
+
1
|
16671 |
+
1
|
16672 |
+
1
|
16673 |
+
1
|
16674 |
+
1
|
16675 |
+
1
|
16676 |
+
1
|
16677 |
+
1
|
16678 |
+
1
|
16679 |
+
1
|
16680 |
+
1
|
16681 |
+
1
|
16682 |
+
1
|
16683 |
+
1
|
16684 |
+
1
|
16685 |
+
1
|
16686 |
+
1
|
16687 |
+
1
|
16688 |
+
1
|
16689 |
+
1
|
16690 |
+
1
|
16691 |
+
1
|
16692 |
+
1
|
16693 |
+
1
|
16694 |
+
1
|
16695 |
+
1
|
16696 |
+
1
|
16697 |
+
1
|
16698 |
+
1
|
16699 |
+
1
|
16700 |
+
1
|
16701 |
+
1
|
16702 |
+
1
|
16703 |
+
1
|
16704 |
+
1
|
16705 |
+
1
|
16706 |
+
1
|
16707 |
+
1
|
16708 |
+
1
|
16709 |
+
1
|
16710 |
+
1
|
16711 |
+
1
|
16712 |
+
1
|
16713 |
+
1
|
16714 |
+
1
|
16715 |
+
1
|
16716 |
+
1
|
16717 |
+
1
|
16718 |
+
1
|
16719 |
+
1
|
16720 |
+
1
|
16721 |
+
1
|
16722 |
+
1
|
16723 |
+
1
|
16724 |
+
1
|
16725 |
+
1
|
16726 |
+
1
|
16727 |
+
1
|
16728 |
+
1
|
16729 |
+
1
|
16730 |
+
1
|
16731 |
+
1
|
16732 |
+
1
|
16733 |
+
1
|
16734 |
+
1
|
16735 |
+
1
|
16736 |
+
1
|
16737 |
+
1
|
16738 |
+
1
|
16739 |
+
1
|
16740 |
+
1
|
16741 |
+
1
|
16742 |
+
1
|
16743 |
+
1
|
16744 |
+
1
|
16745 |
+
1
|
16746 |
+
1
|
16747 |
+
1
|
16748 |
+
1
|
16749 |
+
1
|
16750 |
+
1
|
16751 |
+
1
|
16752 |
+
1
|
16753 |
+
1
|
16754 |
+
1
|
16755 |
+
1
|
16756 |
+
1
|
16757 |
+
1
|
16758 |
+
1
|
16759 |
+
1
|
16760 |
+
1
|
16761 |
+
1
|
16762 |
+
1
|
16763 |
+
1
|
16764 |
+
1
|
16765 |
+
1
|
16766 |
+
1
|
16767 |
+
1
|
16768 |
+
1
|
16769 |
+
1
|
16770 |
+
1
|
16771 |
+
1
|
16772 |
+
1
|
16773 |
+
1
|
16774 |
+
1
|
16775 |
+
1
|
16776 |
+
1
|
16777 |
+
1
|
16778 |
+
1
|
16779 |
+
1
|
16780 |
+
1
|
16781 |
+
1
|
16782 |
+
1
|
16783 |
+
1
|
16784 |
+
1
|
16785 |
+
1
|
16786 |
+
1
|
16787 |
+
1
|
16788 |
+
1
|
16789 |
+
1
|
16790 |
+
1
|
16791 |
+
1
|
16792 |
+
1
|
16793 |
+
1
|
16794 |
+
1
|
16795 |
+
1
|
16796 |
+
1
|
16797 |
+
1
|
16798 |
+
1
|
16799 |
+
1
|
16800 |
+
1
|
16801 |
+
1
|
16802 |
+
1
|
16803 |
+
1
|
16804 |
+
1
|
16805 |
+
1
|
16806 |
+
1
|
16807 |
+
1
|
16808 |
+
1
|
16809 |
+
1
|
16810 |
+
1
|
16811 |
+
1
|
16812 |
+
1
|
16813 |
+
1
|
16814 |
+
1
|
16815 |
+
1
|
16816 |
+
1
|
16817 |
+
1
|
16818 |
+
1
|
16819 |
+
1
|
16820 |
+
1
|
16821 |
+
1
|
16822 |
+
1
|
16823 |
+
1
|
16824 |
+
1
|
16825 |
+
1
|
16826 |
+
1
|
16827 |
+
1
|
16828 |
+
1
|
16829 |
+
1
|
16830 |
+
1
|
16831 |
+
1
|
16832 |
+
1
|
16833 |
+
1
|
16834 |
+
1
|
16835 |
+
1
|
16836 |
+
1
|
16837 |
+
1
|
16838 |
+
1
|
16839 |
+
1
|
16840 |
+
1
|
16841 |
+
1
|
16842 |
+
1
|
16843 |
+
1
|
16844 |
+
1
|
16845 |
+
1
|
16846 |
+
1
|
16847 |
+
1
|
16848 |
+
1
|
16849 |
+
1
|
16850 |
+
1
|
16851 |
+
1
|
16852 |
+
1
|
16853 |
+
1
|
16854 |
+
1
|
16855 |
+
1
|
16856 |
+
1
|
16857 |
+
1
|
16858 |
+
1
|
16859 |
+
1
|
16860 |
+
1
|
16861 |
+
1
|
16862 |
+
1
|
16863 |
+
1
|
16864 |
+
1
|
16865 |
+
1
|
16866 |
+
1
|
16867 |
+
1
|
16868 |
+
1
|
16869 |
+
1
|
16870 |
+
1
|
16871 |
+
1
|
16872 |
+
1
|
16873 |
+
1
|
16874 |
+
1
|
16875 |
+
1
|
16876 |
+
1
|
16877 |
+
1
|
16878 |
+
1
|
16879 |
+
1
|
16880 |
+
1
|
16881 |
+
1
|
16882 |
+
1
|
16883 |
+
1
|
16884 |
+
1
|
16885 |
+
1
|
16886 |
+
1
|
16887 |
+
1
|
16888 |
+
1
|
16889 |
+
1
|
16890 |
+
1
|
16891 |
+
1
|
16892 |
+
1
|
16893 |
+
1
|
16894 |
+
1
|
16895 |
+
1
|
16896 |
+
1
|
16897 |
+
1
|
16898 |
+
1
|
16899 |
+
1
|
16900 |
+
1
|
16901 |
+
1
|
16902 |
+
1
|
16903 |
+
1
|
16904 |
+
1
|
16905 |
+
1
|
16906 |
+
1
|
16907 |
+
1
|
16908 |
+
1
|
16909 |
+
1
|
16910 |
+
1
|
16911 |
+
1
|
16912 |
+
1
|
16913 |
+
1
|
16914 |
+
1
|
16915 |
+
1
|
16916 |
+
1
|
16917 |
+
1
|
16918 |
+
1
|
16919 |
+
1
|
16920 |
+
1
|
16921 |
+
1
|
16922 |
+
1
|
16923 |
+
1
|
16924 |
+
1
|
16925 |
+
1
|
16926 |
+
1
|
16927 |
+
1
|
16928 |
+
1
|
16929 |
+
1
|
16930 |
+
1
|
16931 |
+
1
|
16932 |
+
1
|
16933 |
+
1
|
16934 |
+
1
|
16935 |
+
1
|
16936 |
+
1
|
16937 |
+
1
|
16938 |
+
1
|
16939 |
+
1
|
16940 |
+
1
|
16941 |
+
1
|
16942 |
+
1
|
16943 |
+
1
|
16944 |
+
1
|
16945 |
+
1
|
16946 |
+
1
|
16947 |
+
1
|
16948 |
+
1
|
16949 |
+
1
|
16950 |
+
1
|
16951 |
+
1
|
16952 |
+
1
|
16953 |
+
1
|
16954 |
+
1
|
16955 |
+
1
|
16956 |
+
1
|
16957 |
+
1
|
16958 |
+
1
|
16959 |
+
1
|
16960 |
+
1
|
16961 |
+
1
|
16962 |
+
1
|
16963 |
+
1
|
16964 |
+
1
|
16965 |
+
1
|
16966 |
+
1
|
16967 |
+
1
|
16968 |
+
1
|
16969 |
+
1
|
16970 |
+
1
|
16971 |
+
1
|
16972 |
+
1
|
16973 |
+
1
|
16974 |
+
1
|
16975 |
+
1
|
16976 |
+
1
|
16977 |
+
1
|
16978 |
+
1
|
16979 |
+
1
|
16980 |
+
1
|
16981 |
+
1
|
16982 |
+
1
|
16983 |
+
1
|
16984 |
+
1
|
16985 |
+
1
|
16986 |
+
1
|
16987 |
+
1
|
16988 |
+
1
|
16989 |
+
1
|
16990 |
+
1
|
16991 |
+
1
|
16992 |
+
1
|
16993 |
+
1
|
16994 |
+
1
|
16995 |
+
1
|
16996 |
+
1
|
16997 |
+
1
|
16998 |
+
1
|
16999 |
+
1
|
17000 |
+
1
|
17001 |
+
1
|
17002 |
+
1
|
17003 |
+
1
|
17004 |
+
1
|
17005 |
+
1
|
17006 |
+
1
|
17007 |
+
1
|
17008 |
+
1
|
17009 |
+
1
|
17010 |
+
1
|
17011 |
+
1
|
17012 |
+
1
|
17013 |
+
1
|
17014 |
+
1
|
17015 |
+
1
|
17016 |
+
1
|
17017 |
+
1
|
17018 |
+
1
|
17019 |
+
1
|
17020 |
+
1
|
17021 |
+
1
|
17022 |
+
1
|
17023 |
+
1
|
17024 |
+
1
|
17025 |
+
1
|
17026 |
+
1
|
17027 |
+
1
|
17028 |
+
1
|
17029 |
+
1
|
17030 |
+
1
|
17031 |
+
1
|
17032 |
+
1
|
17033 |
+
1
|
17034 |
+
1
|
17035 |
+
1
|
17036 |
+
1
|
17037 |
+
1
|
17038 |
+
1
|
17039 |
+
1
|
17040 |
+
1
|
17041 |
+
1
|
17042 |
+
1
|
17043 |
+
1
|
17044 |
+
1
|
17045 |
+
1
|
17046 |
+
1
|
17047 |
+
1
|
17048 |
+
1
|
17049 |
+
1
|
17050 |
+
1
|
17051 |
+
1
|
17052 |
+
1
|
17053 |
+
1
|
17054 |
+
1
|
17055 |
+
1
|
17056 |
+
1
|
17057 |
+
1
|
17058 |
+
1
|
17059 |
+
1
|
17060 |
+
1
|
17061 |
+
1
|
17062 |
+
1
|
17063 |
+
1
|
17064 |
+
1
|
17065 |
+
1
|
17066 |
+
1
|
17067 |
+
1
|
17068 |
+
1
|
17069 |
+
1
|
17070 |
+
1
|
17071 |
+
1
|
17072 |
+
1
|
17073 |
+
1
|
17074 |
+
1
|
17075 |
+
1
|
17076 |
+
1
|
17077 |
+
1
|
17078 |
+
1
|
17079 |
+
1
|
17080 |
+
1
|
17081 |
+
1
|
17082 |
+
1
|
17083 |
+
1
|
17084 |
+
1
|
17085 |
+
1
|
17086 |
+
1
|
17087 |
+
1
|
17088 |
+
1
|
17089 |
+
1
|
17090 |
+
1
|
17091 |
+
1
|
17092 |
+
1
|
17093 |
+
1
|
17094 |
+
1
|
17095 |
+
1
|
17096 |
+
1
|
17097 |
+
1
|
17098 |
+
1
|
17099 |
+
1
|
17100 |
+
1
|
17101 |
+
1
|
17102 |
+
1
|
17103 |
+
1
|
17104 |
+
1
|
17105 |
+
1
|
17106 |
+
1
|
17107 |
+
1
|
17108 |
+
1
|
17109 |
+
1
|
17110 |
+
1
|
17111 |
+
1
|
17112 |
+
1
|
17113 |
+
1
|
17114 |
+
1
|
17115 |
+
1
|
17116 |
+
1
|
17117 |
+
1
|
17118 |
+
1
|
17119 |
+
1
|
17120 |
+
1
|
17121 |
+
1
|
17122 |
+
1
|
17123 |
+
1
|
17124 |
+
1
|
17125 |
+
1
|
17126 |
+
1
|
17127 |
+
1
|
17128 |
+
1
|
17129 |
+
1
|
17130 |
+
1
|
17131 |
+
1
|
17132 |
+
1
|
17133 |
+
1
|
17134 |
+
1
|
17135 |
+
1
|
17136 |
+
1
|
17137 |
+
1
|
17138 |
+
1
|
17139 |
+
1
|
17140 |
+
1
|
17141 |
+
1
|
17142 |
+
1
|
17143 |
+
1
|
17144 |
+
1
|
17145 |
+
1
|
17146 |
+
1
|
17147 |
+
1
|
17148 |
+
1
|
17149 |
+
1
|
17150 |
+
1
|
17151 |
+
1
|
17152 |
+
1
|
17153 |
+
1
|
17154 |
+
1
|
17155 |
+
1
|
17156 |
+
1
|
17157 |
+
1
|
17158 |
+
1
|
17159 |
+
1
|
17160 |
+
1
|
17161 |
+
1
|
17162 |
+
1
|
17163 |
+
1
|
17164 |
+
1
|
17165 |
+
1
|
17166 |
+
1
|
17167 |
+
2
|
17168 |
+
1
|
17169 |
+
1
|
17170 |
+
2
|
17171 |
+
1
|
17172 |
+
1
|
17173 |
+
1
|
17174 |
+
1
|
17175 |
+
1
|
17176 |
+
1
|
17177 |
+
1
|
17178 |
+
1
|
17179 |
+
1
|
17180 |
+
1
|
17181 |
+
1
|
17182 |
+
1
|
17183 |
+
1
|
17184 |
+
1
|
17185 |
+
1
|
17186 |
+
1
|
17187 |
+
1
|
17188 |
+
1
|
17189 |
+
1
|
17190 |
+
1
|
17191 |
+
1
|
17192 |
+
1
|
17193 |
+
1
|
17194 |
+
1
|
17195 |
+
1
|
17196 |
+
1
|
17197 |
+
1
|
17198 |
+
1
|
17199 |
+
1
|
17200 |
+
1
|
17201 |
+
1
|
17202 |
+
1
|
17203 |
+
1
|
17204 |
+
1
|
17205 |
+
1
|
17206 |
+
1
|
17207 |
+
1
|
17208 |
+
1
|
17209 |
+
1
|
17210 |
+
1
|
17211 |
+
1
|
17212 |
+
1
|
17213 |
+
1
|
17214 |
+
1
|
17215 |
+
1
|
17216 |
+
1
|
17217 |
+
1
|
17218 |
+
1
|
17219 |
+
1
|
17220 |
+
1
|
17221 |
+
1
|
17222 |
+
1
|
17223 |
+
1
|
17224 |
+
1
|
17225 |
+
1
|
17226 |
+
1
|
17227 |
+
1
|
17228 |
+
1
|
17229 |
+
1
|
17230 |
+
1
|
17231 |
+
1
|
17232 |
+
1
|
17233 |
+
1
|
17234 |
+
1
|
17235 |
+
1
|
17236 |
+
1
|
17237 |
+
1
|
17238 |
+
1
|
17239 |
+
1
|
17240 |
+
1
|
17241 |
+
1
|
17242 |
+
1
|
17243 |
+
1
|
17244 |
+
1
|
17245 |
+
1
|
17246 |
+
1
|
17247 |
+
1
|
17248 |
+
1
|
17249 |
+
1
|
17250 |
+
1
|
17251 |
+
1
|
17252 |
+
1
|
17253 |
+
1
|
17254 |
+
1
|
17255 |
+
1
|
17256 |
+
1
|
17257 |
+
1
|
17258 |
+
1
|
17259 |
+
1
|
17260 |
+
1
|
17261 |
+
1
|
17262 |
+
1
|
17263 |
+
1
|
17264 |
+
1
|
17265 |
+
1
|
17266 |
+
1
|
17267 |
+
1
|
17268 |
+
1
|
17269 |
+
1
|
17270 |
+
1
|
17271 |
+
1
|
17272 |
+
1
|
17273 |
+
1
|
17274 |
+
1
|
17275 |
+
1
|
17276 |
+
1
|
17277 |
+
1
|
17278 |
+
1
|
17279 |
+
1
|
17280 |
+
1
|
17281 |
+
1
|
17282 |
+
1
|
17283 |
+
1
|
17284 |
+
1
|
17285 |
+
1
|
17286 |
+
1
|
17287 |
+
1
|
17288 |
+
1
|
17289 |
+
1
|
17290 |
+
1
|
17291 |
+
1
|
17292 |
+
1
|
17293 |
+
1
|
17294 |
+
1
|
17295 |
+
1
|
17296 |
+
1
|
17297 |
+
1
|
17298 |
+
1
|
17299 |
+
1
|
17300 |
+
1
|
17301 |
+
1
|
17302 |
+
1
|
17303 |
+
1
|
17304 |
+
1
|
17305 |
+
1
|
17306 |
+
1
|
17307 |
+
1
|
17308 |
+
1
|
17309 |
+
1
|
17310 |
+
1
|
17311 |
+
1
|
17312 |
+
1
|
17313 |
+
1
|
17314 |
+
1
|
17315 |
+
1
|
17316 |
+
1
|
17317 |
+
1
|
17318 |
+
1
|
17319 |
+
1
|
17320 |
+
1
|
17321 |
+
1
|
17322 |
+
1
|
17323 |
+
1
|
17324 |
+
1
|
17325 |
+
1
|
17326 |
+
1
|
17327 |
+
1
|
17328 |
+
1
|
17329 |
+
1
|
17330 |
+
1
|
17331 |
+
1
|
17332 |
+
1
|
17333 |
+
1
|
17334 |
+
1
|
17335 |
+
1
|
17336 |
+
1
|
17337 |
+
1
|
17338 |
+
1
|
17339 |
+
1
|
17340 |
+
1
|
17341 |
+
1
|
17342 |
+
1
|
17343 |
+
1
|
17344 |
+
1
|
17345 |
+
1
|
17346 |
+
1
|
17347 |
+
1
|
17348 |
+
1
|
17349 |
+
1
|
17350 |
+
1
|
17351 |
+
1
|
17352 |
+
1
|
17353 |
+
1
|
17354 |
+
1
|
17355 |
+
1
|
17356 |
+
1
|
17357 |
+
1
|
17358 |
+
1
|
17359 |
+
1
|
17360 |
+
1
|
17361 |
+
1
|
17362 |
+
1
|
17363 |
+
1
|
17364 |
+
1
|
17365 |
+
1
|
17366 |
+
1
|
17367 |
+
1
|
17368 |
+
1
|
17369 |
+
1
|
17370 |
+
1
|
17371 |
+
1
|
17372 |
+
1
|
17373 |
+
1
|
17374 |
+
1
|
17375 |
+
1
|
17376 |
+
1
|
17377 |
+
1
|
17378 |
+
1
|
17379 |
+
1
|
17380 |
+
1
|
17381 |
+
1
|
17382 |
+
1
|
17383 |
+
1
|
17384 |
+
1
|
17385 |
+
1
|
17386 |
+
1
|
17387 |
+
1
|
17388 |
+
1
|
17389 |
+
1
|
17390 |
+
1
|
17391 |
+
1
|
17392 |
+
1
|
17393 |
+
1
|
17394 |
+
1
|
17395 |
+
1
|
17396 |
+
1
|
17397 |
+
1
|
17398 |
+
1
|
17399 |
+
1
|
17400 |
+
1
|
17401 |
+
1
|
17402 |
+
1
|
17403 |
+
1
|
17404 |
+
1
|
17405 |
+
1
|
17406 |
+
1
|
17407 |
+
1
|
17408 |
+
1
|
17409 |
+
1
|
17410 |
+
1
|
17411 |
+
1
|
17412 |
+
1
|
17413 |
+
1
|
17414 |
+
1
|
17415 |
+
1
|
17416 |
+
1
|
17417 |
+
1
|
17418 |
+
1
|
17419 |
+
1
|
17420 |
+
1
|
17421 |
+
1
|
17422 |
+
1
|
17423 |
+
1
|
17424 |
+
1
|
17425 |
+
1
|
17426 |
+
1
|
17427 |
+
1
|
17428 |
+
1
|
17429 |
+
1
|
17430 |
+
1
|
17431 |
+
1
|
17432 |
+
1
|
17433 |
+
1
|
17434 |
+
1
|
17435 |
+
1
|
17436 |
+
1
|
17437 |
+
1
|
17438 |
+
1
|
17439 |
+
1
|
17440 |
+
1
|
17441 |
+
1
|
17442 |
+
1
|
17443 |
+
1
|
17444 |
+
1
|
17445 |
+
1
|
17446 |
+
1
|
17447 |
+
1
|
17448 |
+
1
|
17449 |
+
1
|
17450 |
+
1
|
17451 |
+
1
|
17452 |
+
1
|
17453 |
+
1
|
17454 |
+
1
|
17455 |
+
1
|
17456 |
+
1
|
17457 |
+
1
|
17458 |
+
1
|
17459 |
+
1
|
17460 |
+
1
|
17461 |
+
1
|
17462 |
+
1
|
17463 |
+
1
|
17464 |
+
1
|
17465 |
+
1
|
17466 |
+
1
|
17467 |
+
1
|
17468 |
+
1
|
17469 |
+
1
|
17470 |
+
1
|
17471 |
+
1
|
17472 |
+
1
|
17473 |
+
1
|
17474 |
+
1
|
17475 |
+
1
|
17476 |
+
1
|
17477 |
+
1
|
17478 |
+
1
|
17479 |
+
1
|
17480 |
+
1
|
17481 |
+
1
|
17482 |
+
1
|
17483 |
+
1
|
17484 |
+
1
|
17485 |
+
1
|
17486 |
+
1
|
17487 |
+
1
|
17488 |
+
1
|
17489 |
+
1
|
17490 |
+
1
|
17491 |
+
1
|
17492 |
+
1
|
17493 |
+
1
|
17494 |
+
1
|
17495 |
+
1
|
17496 |
+
1
|
17497 |
+
1
|
17498 |
+
1
|
17499 |
+
1
|
17500 |
+
1
|
17501 |
+
1
|
17502 |
+
1
|
17503 |
+
1
|
17504 |
+
1
|
17505 |
+
1
|
17506 |
+
1
|
17507 |
+
1
|
17508 |
+
1
|
17509 |
+
1
|
17510 |
+
1
|
17511 |
+
1
|
17512 |
+
1
|
17513 |
+
1
|
17514 |
+
1
|
17515 |
+
1
|
17516 |
+
1
|
17517 |
+
1
|
17518 |
+
1
|
17519 |
+
1
|
17520 |
+
1
|
17521 |
+
1
|
17522 |
+
1
|
17523 |
+
1
|
17524 |
+
1
|
17525 |
+
1
|
17526 |
+
1
|
17527 |
+
1
|
17528 |
+
1
|
17529 |
+
1
|
17530 |
+
1
|
17531 |
+
1
|
17532 |
+
1
|
17533 |
+
1
|
17534 |
+
1
|
17535 |
+
1
|
17536 |
+
1
|
17537 |
+
1
|
17538 |
+
1
|
17539 |
+
1
|
17540 |
+
1
|
17541 |
+
1
|
17542 |
+
1
|
17543 |
+
1
|
17544 |
+
1
|
17545 |
+
1
|
17546 |
+
1
|
17547 |
+
1
|
17548 |
+
1
|
17549 |
+
1
|
17550 |
+
1
|
17551 |
+
1
|
17552 |
+
1
|
17553 |
+
1
|
17554 |
+
1
|
17555 |
+
1
|
17556 |
+
1
|
17557 |
+
1
|
17558 |
+
1
|
17559 |
+
1
|
17560 |
+
1
|
17561 |
+
1
|
17562 |
+
1
|
17563 |
+
1
|
17564 |
+
1
|
17565 |
+
1
|
17566 |
+
1
|
17567 |
+
1
|
17568 |
+
1
|
17569 |
+
1
|
17570 |
+
1
|
17571 |
+
1
|
17572 |
+
1
|
17573 |
+
1
|
17574 |
+
1
|
17575 |
+
1
|
17576 |
+
1
|
17577 |
+
1
|
17578 |
+
1
|
17579 |
+
1
|
17580 |
+
1
|
17581 |
+
1
|
17582 |
+
1
|
17583 |
+
1
|
17584 |
+
1
|
17585 |
+
1
|
17586 |
+
1
|
17587 |
+
1
|
17588 |
+
1
|
17589 |
+
1
|
17590 |
+
1
|
17591 |
+
1
|
17592 |
+
1
|
17593 |
+
1
|
17594 |
+
1
|
17595 |
+
1
|
17596 |
+
1
|
17597 |
+
1
|
17598 |
+
1
|
17599 |
+
1
|
17600 |
+
1
|
17601 |
+
1
|
17602 |
+
1
|
17603 |
+
1
|
17604 |
+
1
|
17605 |
+
1
|
17606 |
+
1
|
17607 |
+
1
|
17608 |
+
1
|
17609 |
+
1
|
17610 |
+
1
|
17611 |
+
1
|
17612 |
+
1
|
17613 |
+
1
|
17614 |
+
1
|
17615 |
+
1
|
17616 |
+
1
|
17617 |
+
1
|
17618 |
+
1
|
17619 |
+
1
|
17620 |
+
1
|
17621 |
+
1
|
17622 |
+
1
|
17623 |
+
1
|
17624 |
+
1
|
17625 |
+
1
|
17626 |
+
1
|
17627 |
+
1
|
17628 |
+
1
|
17629 |
+
1
|
17630 |
+
1
|
17631 |
+
1
|
17632 |
+
1
|
17633 |
+
1
|
17634 |
+
1
|
17635 |
+
1
|
17636 |
+
1
|
17637 |
+
1
|
17638 |
+
1
|
17639 |
+
1
|
17640 |
+
1
|
17641 |
+
1
|
17642 |
+
1
|
17643 |
+
1
|
17644 |
+
1
|
17645 |
+
1
|
17646 |
+
1
|
17647 |
+
1
|
17648 |
+
1
|
17649 |
+
1
|
17650 |
+
1
|
17651 |
+
1
|
17652 |
+
1
|
17653 |
+
1
|
17654 |
+
1
|
17655 |
+
1
|
17656 |
+
1
|
17657 |
+
1
|
17658 |
+
1
|
17659 |
+
1
|
17660 |
+
1
|
17661 |
+
1
|
17662 |
+
1
|
17663 |
+
1
|
17664 |
+
1
|
17665 |
+
1
|
17666 |
+
1
|
17667 |
+
1
|
17668 |
+
1
|
17669 |
+
1
|
17670 |
+
1
|
17671 |
+
1
|
17672 |
+
1
|
17673 |
+
1
|
17674 |
+
1
|
17675 |
+
1
|
17676 |
+
1
|
17677 |
+
1
|
17678 |
+
1
|
17679 |
+
1
|
17680 |
+
1
|
17681 |
+
1
|
17682 |
+
1
|
17683 |
+
1
|
17684 |
+
1
|
17685 |
+
1
|
17686 |
+
1
|
17687 |
+
1
|
17688 |
+
1
|
17689 |
+
1
|
17690 |
+
1
|
17691 |
+
1
|
17692 |
+
1
|
17693 |
+
1
|
17694 |
+
1
|
17695 |
+
1
|
17696 |
+
1
|
17697 |
+
1
|
17698 |
+
1
|
17699 |
+
1
|
17700 |
+
1
|
17701 |
+
1
|
17702 |
+
1
|
17703 |
+
1
|
17704 |
+
1
|
17705 |
+
1
|
17706 |
+
1
|
17707 |
+
1
|
17708 |
+
1
|
17709 |
+
1
|
17710 |
+
1
|
17711 |
+
1
|
17712 |
+
1
|
17713 |
+
1
|
17714 |
+
1
|
17715 |
+
1
|
17716 |
+
1
|
17717 |
+
1
|
17718 |
+
1
|
17719 |
+
1
|
17720 |
+
1
|
17721 |
+
1
|
17722 |
+
1
|
17723 |
+
1
|
17724 |
+
1
|
17725 |
+
1
|
17726 |
+
1
|
17727 |
+
1
|
17728 |
+
1
|
17729 |
+
1
|
17730 |
+
1
|
17731 |
+
1
|
17732 |
+
1
|
17733 |
+
1
|
17734 |
+
1
|
17735 |
+
1
|
17736 |
+
1
|
17737 |
+
1
|
17738 |
+
1
|
17739 |
+
1
|
17740 |
+
1
|
17741 |
+
1
|
17742 |
+
1
|
17743 |
+
1
|
17744 |
+
1
|
17745 |
+
1
|
17746 |
+
1
|
17747 |
+
1
|
17748 |
+
1
|
17749 |
+
1
|
17750 |
+
1
|
17751 |
+
1
|
17752 |
+
1
|
17753 |
+
1
|
17754 |
+
1
|
17755 |
+
1
|
17756 |
+
1
|
17757 |
+
1
|
17758 |
+
1
|
17759 |
+
1
|
17760 |
+
1
|
17761 |
+
1
|
17762 |
+
1
|
17763 |
+
1
|
17764 |
+
1
|
17765 |
+
1
|
17766 |
+
1
|
17767 |
+
1
|
17768 |
+
1
|
17769 |
+
1
|
17770 |
+
1
|
17771 |
+
1
|
17772 |
+
1
|
17773 |
+
1
|
17774 |
+
1
|
17775 |
+
1
|
17776 |
+
1
|
17777 |
+
1
|
17778 |
+
1
|
17779 |
+
1
|
17780 |
+
1
|
17781 |
+
1
|
17782 |
+
1
|
17783 |
+
1
|
17784 |
+
1
|
17785 |
+
1
|
17786 |
+
1
|
17787 |
+
1
|
17788 |
+
1
|
17789 |
+
1
|
17790 |
+
1
|
17791 |
+
1
|
17792 |
+
1
|
17793 |
+
1
|
17794 |
+
1
|
17795 |
+
1
|
17796 |
+
1
|
17797 |
+
1
|
17798 |
+
1
|
17799 |
+
1
|
17800 |
+
1
|
17801 |
+
1
|
17802 |
+
1
|
17803 |
+
1
|
17804 |
+
1
|
17805 |
+
1
|
17806 |
+
1
|
17807 |
+
1
|
17808 |
+
1
|
17809 |
+
1
|
17810 |
+
1
|
17811 |
+
1
|
17812 |
+
1
|
17813 |
+
1
|
17814 |
+
1
|
17815 |
+
1
|
17816 |
+
1
|
17817 |
+
1
|
17818 |
+
1
|
17819 |
+
1
|
17820 |
+
1
|
17821 |
+
1
|
17822 |
+
1
|
17823 |
+
1
|
17824 |
+
1
|
17825 |
+
1
|
17826 |
+
1
|
17827 |
+
1
|
17828 |
+
1
|
17829 |
+
1
|
17830 |
+
1
|
17831 |
+
1
|
17832 |
+
1
|
17833 |
+
1
|
17834 |
+
1
|
17835 |
+
1
|
17836 |
+
1
|
17837 |
+
1
|
17838 |
+
1
|
17839 |
+
1
|
17840 |
+
1
|
17841 |
+
1
|
17842 |
+
1
|
17843 |
+
1
|
17844 |
+
1
|
17845 |
+
1
|
17846 |
+
1
|
17847 |
+
1
|
17848 |
+
1
|
17849 |
+
1
|
17850 |
+
1
|
17851 |
+
1
|
17852 |
+
1
|
17853 |
+
1
|
17854 |
+
1
|
17855 |
+
1
|
17856 |
+
1
|
17857 |
+
1
|
17858 |
+
1
|
17859 |
+
1
|
17860 |
+
1
|
17861 |
+
1
|
17862 |
+
1
|
17863 |
+
1
|
17864 |
+
1
|
17865 |
+
1
|
17866 |
+
1
|
17867 |
+
1
|
17868 |
+
1
|
17869 |
+
1
|
17870 |
+
1
|
17871 |
+
1
|
17872 |
+
1
|
17873 |
+
1
|
17874 |
+
1
|
17875 |
+
1
|
17876 |
+
1
|
17877 |
+
1
|
17878 |
+
1
|
17879 |
+
1
|
17880 |
+
1
|
17881 |
+
1
|
17882 |
+
1
|
17883 |
+
1
|
17884 |
+
1
|
17885 |
+
1
|
17886 |
+
1
|
17887 |
+
1
|
17888 |
+
1
|
17889 |
+
1
|
17890 |
+
1
|
17891 |
+
1
|
17892 |
+
1
|
17893 |
+
1
|
17894 |
+
1
|
17895 |
+
1
|
17896 |
+
1
|
17897 |
+
1
|
17898 |
+
1
|
17899 |
+
1
|
17900 |
+
1
|
17901 |
+
1
|
17902 |
+
1
|
17903 |
+
1
|
17904 |
+
1
|
17905 |
+
1
|
17906 |
+
1
|
17907 |
+
1
|
17908 |
+
1
|
17909 |
+
1
|
17910 |
+
1
|
17911 |
+
1
|
17912 |
+
1
|
17913 |
+
1
|
17914 |
+
1
|
17915 |
+
1
|
17916 |
+
1
|
17917 |
+
1
|
17918 |
+
1
|
17919 |
+
1
|
17920 |
+
1
|
17921 |
+
1
|
17922 |
+
1
|
17923 |
+
1
|
17924 |
+
1
|
17925 |
+
1
|
17926 |
+
1
|
17927 |
+
1
|
17928 |
+
1
|
17929 |
+
1
|
17930 |
+
1
|
17931 |
+
1
|
17932 |
+
1
|
17933 |
+
1
|
17934 |
+
1
|
17935 |
+
1
|
17936 |
+
1
|
17937 |
+
1
|
17938 |
+
1
|
17939 |
+
1
|
17940 |
+
1
|
17941 |
+
1
|
17942 |
+
1
|
17943 |
+
1
|
17944 |
+
1
|
17945 |
+
1
|
17946 |
+
1
|
17947 |
+
1
|
17948 |
+
1
|
17949 |
+
1
|
17950 |
+
1
|
17951 |
+
1
|
17952 |
+
1
|
17953 |
+
1
|
17954 |
+
1
|
17955 |
+
1
|
17956 |
+
1
|
17957 |
+
1
|
17958 |
+
1
|
17959 |
+
2
|
17960 |
+
2
|
17961 |
+
1
|
17962 |
+
1
|
17963 |
+
2
|
17964 |
+
1
|
17965 |
+
1
|
17966 |
+
1
|
17967 |
+
1
|
17968 |
+
1
|
17969 |
+
1
|
17970 |
+
1
|
17971 |
+
1
|
17972 |
+
1
|
17973 |
+
1
|
17974 |
+
1
|
17975 |
+
1
|
17976 |
+
1
|
17977 |
+
1
|
17978 |
+
1
|
17979 |
+
1
|
17980 |
+
1
|
17981 |
+
1
|
17982 |
+
1
|
17983 |
+
1
|
17984 |
+
1
|
17985 |
+
1
|
17986 |
+
1
|
17987 |
+
1
|
17988 |
+
1
|
17989 |
+
1
|
17990 |
+
1
|
17991 |
+
1
|
17992 |
+
1
|
17993 |
+
1
|
17994 |
+
1
|
17995 |
+
1
|
17996 |
+
1
|
17997 |
+
1
|
17998 |
+
1
|
17999 |
+
1
|
18000 |
+
1
|
18001 |
+
1
|
18002 |
+
1
|
18003 |
+
1
|
18004 |
+
1
|
18005 |
+
1
|
18006 |
+
1
|
18007 |
+
1
|
18008 |
+
1
|
18009 |
+
1
|
18010 |
+
1
|
18011 |
+
1
|
18012 |
+
1
|
18013 |
+
1
|
18014 |
+
1
|
18015 |
+
1
|
18016 |
+
1
|
18017 |
+
1
|
18018 |
+
1
|
18019 |
+
1
|
18020 |
+
1
|
18021 |
+
1
|
18022 |
+
1
|
18023 |
+
1
|
18024 |
+
1
|
18025 |
+
1
|
18026 |
+
1
|
18027 |
+
1
|
18028 |
+
1
|
18029 |
+
1
|
18030 |
+
1
|
18031 |
+
1
|
18032 |
+
1
|
18033 |
+
1
|
18034 |
+
1
|
18035 |
+
1
|
18036 |
+
1
|
18037 |
+
1
|
18038 |
+
1
|
18039 |
+
1
|
18040 |
+
1
|
18041 |
+
1
|
18042 |
+
1
|
18043 |
+
1
|
18044 |
+
1
|
18045 |
+
1
|
18046 |
+
1
|
18047 |
+
1
|
18048 |
+
1
|
18049 |
+
1
|
18050 |
+
1
|
18051 |
+
1
|
18052 |
+
1
|
18053 |
+
1
|
18054 |
+
1
|
18055 |
+
1
|
18056 |
+
1
|
18057 |
+
1
|
18058 |
+
1
|
18059 |
+
1
|
18060 |
+
1
|
18061 |
+
1
|
18062 |
+
1
|
18063 |
+
1
|
18064 |
+
1
|
18065 |
+
1
|
18066 |
+
1
|
18067 |
+
1
|
18068 |
+
1
|
18069 |
+
1
|
18070 |
+
1
|
18071 |
+
1
|
18072 |
+
1
|
18073 |
+
1
|
18074 |
+
1
|
18075 |
+
1
|
18076 |
+
1
|
18077 |
+
1
|
18078 |
+
1
|
18079 |
+
1
|
18080 |
+
1
|
18081 |
+
1
|
18082 |
+
1
|
18083 |
+
1
|
18084 |
+
1
|
18085 |
+
1
|
18086 |
+
1
|
18087 |
+
1
|
18088 |
+
1
|
18089 |
+
1
|
18090 |
+
1
|
18091 |
+
1
|
18092 |
+
1
|
18093 |
+
1
|
18094 |
+
1
|
18095 |
+
1
|
18096 |
+
1
|
18097 |
+
1
|
18098 |
+
1
|
18099 |
+
1
|
18100 |
+
1
|
18101 |
+
1
|
18102 |
+
1
|
18103 |
+
1
|
18104 |
+
1
|
18105 |
+
1
|
18106 |
+
1
|
18107 |
+
1
|
18108 |
+
1
|
18109 |
+
1
|
18110 |
+
1
|
18111 |
+
1
|
18112 |
+
1
|
18113 |
+
1
|
18114 |
+
1
|
18115 |
+
1
|
18116 |
+
1
|
18117 |
+
1
|
18118 |
+
1
|
18119 |
+
1
|
18120 |
+
1
|
18121 |
+
1
|
18122 |
+
1
|
18123 |
+
1
|
18124 |
+
1
|
18125 |
+
1
|
18126 |
+
1
|
18127 |
+
1
|
18128 |
+
1
|
18129 |
+
1
|
18130 |
+
1
|
18131 |
+
1
|
18132 |
+
1
|
18133 |
+
1
|
18134 |
+
1
|
18135 |
+
1
|
18136 |
+
1
|
18137 |
+
1
|
18138 |
+
1
|
18139 |
+
1
|
18140 |
+
1
|
18141 |
+
1
|
18142 |
+
1
|
18143 |
+
1
|
18144 |
+
1
|
18145 |
+
1
|
18146 |
+
1
|
18147 |
+
1
|
18148 |
+
1
|
18149 |
+
1
|
18150 |
+
1
|
18151 |
+
1
|
18152 |
+
1
|
18153 |
+
1
|
18154 |
+
1
|
18155 |
+
1
|
18156 |
+
1
|
18157 |
+
1
|
18158 |
+
1
|
18159 |
+
1
|
18160 |
+
1
|
18161 |
+
1
|
18162 |
+
1
|
18163 |
+
1
|
18164 |
+
1
|
18165 |
+
1
|
18166 |
+
1
|
18167 |
+
1
|
18168 |
+
1
|
18169 |
+
1
|
18170 |
+
1
|
18171 |
+
1
|
18172 |
+
1
|
18173 |
+
1
|
18174 |
+
1
|
18175 |
+
1
|
18176 |
+
1
|
18177 |
+
1
|
18178 |
+
1
|
18179 |
+
1
|
18180 |
+
1
|
18181 |
+
1
|
18182 |
+
1
|
18183 |
+
1
|
18184 |
+
1
|
18185 |
+
1
|
18186 |
+
1
|
18187 |
+
1
|
18188 |
+
1
|
18189 |
+
1
|
18190 |
+
1
|
18191 |
+
1
|
18192 |
+
1
|
18193 |
+
1
|
18194 |
+
1
|
18195 |
+
1
|
18196 |
+
1
|
18197 |
+
1
|
18198 |
+
1
|
18199 |
+
1
|
18200 |
+
1
|
18201 |
+
1
|
18202 |
+
1
|
18203 |
+
1
|
18204 |
+
1
|
18205 |
+
1
|
18206 |
+
1
|
18207 |
+
1
|
18208 |
+
1
|
18209 |
+
1
|
18210 |
+
1
|
18211 |
+
1
|
18212 |
+
1
|
18213 |
+
1
|
18214 |
+
1
|
18215 |
+
1
|
18216 |
+
1
|
18217 |
+
1
|
18218 |
+
1
|
18219 |
+
1
|
18220 |
+
1
|
18221 |
+
1
|
18222 |
+
1
|
18223 |
+
1
|
18224 |
+
1
|
18225 |
+
2
|
18226 |
+
1
|
18227 |
+
1
|
18228 |
+
1
|
18229 |
+
1
|
18230 |
+
1
|
18231 |
+
1
|
18232 |
+
1
|
18233 |
+
1
|
18234 |
+
1
|
18235 |
+
1
|
18236 |
+
1
|
18237 |
+
1
|
18238 |
+
1
|
18239 |
+
1
|
18240 |
+
1
|
18241 |
+
1
|
18242 |
+
1
|
18243 |
+
1
|
18244 |
+
1
|
18245 |
+
1
|
18246 |
+
1
|
18247 |
+
1
|
18248 |
+
1
|
18249 |
+
1
|
18250 |
+
1
|
18251 |
+
1
|
18252 |
+
1
|
18253 |
+
1
|
18254 |
+
1
|
18255 |
+
1
|
18256 |
+
1
|
18257 |
+
1
|
18258 |
+
1
|
18259 |
+
1
|
18260 |
+
1
|
18261 |
+
1
|
18262 |
+
1
|
18263 |
+
1
|
18264 |
+
1
|
18265 |
+
1
|
18266 |
+
1
|
18267 |
+
1
|
18268 |
+
1
|
18269 |
+
1
|
18270 |
+
1
|
18271 |
+
1
|
18272 |
+
1
|
18273 |
+
1
|
18274 |
+
1
|
18275 |
+
1
|
18276 |
+
1
|
18277 |
+
1
|
18278 |
+
1
|
18279 |
+
1
|
18280 |
+
1
|
18281 |
+
1
|
18282 |
+
1
|
18283 |
+
1
|
18284 |
+
1
|
18285 |
+
1
|
18286 |
+
1
|
18287 |
+
1
|
18288 |
+
1
|
18289 |
+
1
|
18290 |
+
1
|
18291 |
+
1
|
18292 |
+
1
|
18293 |
+
1
|
18294 |
+
1
|
18295 |
+
1
|
18296 |
+
1
|
18297 |
+
1
|
18298 |
+
1
|
18299 |
+
1
|
18300 |
+
1
|
18301 |
+
1
|
18302 |
+
1
|
18303 |
+
1
|
18304 |
+
1
|
18305 |
+
1
|
18306 |
+
1
|
18307 |
+
1
|
18308 |
+
1
|
18309 |
+
1
|
18310 |
+
1
|
18311 |
+
1
|
18312 |
+
1
|
18313 |
+
1
|
18314 |
+
1
|
18315 |
+
1
|
18316 |
+
1
|
18317 |
+
1
|
18318 |
+
1
|
18319 |
+
1
|
18320 |
+
1
|
18321 |
+
1
|
18322 |
+
1
|
18323 |
+
1
|
18324 |
+
1
|
18325 |
+
1
|
18326 |
+
1
|
18327 |
+
1
|
18328 |
+
1
|
18329 |
+
1
|
18330 |
+
1
|
18331 |
+
1
|
18332 |
+
1
|
18333 |
+
1
|
18334 |
+
1
|
18335 |
+
1
|
18336 |
+
1
|
18337 |
+
1
|
18338 |
+
1
|
18339 |
+
1
|
18340 |
+
1
|
18341 |
+
1
|
18342 |
+
1
|
18343 |
+
1
|
18344 |
+
1
|
18345 |
+
1
|
18346 |
+
1
|
18347 |
+
1
|
18348 |
+
1
|
18349 |
+
1
|
18350 |
+
1
|
18351 |
+
1
|
18352 |
+
1
|
18353 |
+
1
|
18354 |
+
1
|
18355 |
+
1
|
18356 |
+
1
|
18357 |
+
1
|
18358 |
+
1
|
18359 |
+
1
|
18360 |
+
1
|
18361 |
+
1
|
18362 |
+
1
|
18363 |
+
1
|
18364 |
+
1
|
18365 |
+
1
|
18366 |
+
1
|
18367 |
+
1
|
18368 |
+
1
|
18369 |
+
1
|
18370 |
+
1
|
18371 |
+
1
|
18372 |
+
1
|
18373 |
+
1
|
18374 |
+
1
|
18375 |
+
1
|
18376 |
+
1
|
18377 |
+
1
|
18378 |
+
1
|
18379 |
+
1
|
18380 |
+
1
|
18381 |
+
1
|
18382 |
+
1
|
18383 |
+
1
|
18384 |
+
1
|
18385 |
+
1
|
18386 |
+
1
|
18387 |
+
1
|
18388 |
+
1
|
18389 |
+
1
|
18390 |
+
1
|
18391 |
+
1
|
18392 |
+
1
|
18393 |
+
1
|
18394 |
+
1
|
18395 |
+
1
|
18396 |
+
1
|
18397 |
+
1
|
18398 |
+
1
|
18399 |
+
1
|
18400 |
+
1
|
18401 |
+
1
|
18402 |
+
1
|
18403 |
+
1
|
18404 |
+
1
|
18405 |
+
1
|
18406 |
+
1
|
18407 |
+
1
|
18408 |
+
1
|
18409 |
+
1
|
18410 |
+
1
|
18411 |
+
1
|
18412 |
+
1
|
18413 |
+
1
|
18414 |
+
1
|
18415 |
+
1
|
18416 |
+
1
|
18417 |
+
1
|
18418 |
+
1
|
18419 |
+
1
|
18420 |
+
1
|
18421 |
+
1
|
18422 |
+
1
|
18423 |
+
1
|
18424 |
+
1
|
18425 |
+
1
|
18426 |
+
1
|
18427 |
+
1
|
18428 |
+
1
|
18429 |
+
1
|
18430 |
+
1
|
18431 |
+
1
|
18432 |
+
1
|
18433 |
+
1
|
18434 |
+
1
|
18435 |
+
1
|
18436 |
+
1
|
18437 |
+
1
|
18438 |
+
1
|
18439 |
+
1
|
18440 |
+
1
|
18441 |
+
1
|
18442 |
+
1
|
18443 |
+
1
|
18444 |
+
1
|
18445 |
+
1
|
18446 |
+
1
|
18447 |
+
1
|
18448 |
+
1
|
18449 |
+
1
|
18450 |
+
1
|
18451 |
+
1
|
18452 |
+
1
|
18453 |
+
1
|
18454 |
+
1
|
18455 |
+
1
|
18456 |
+
1
|
18457 |
+
1
|
18458 |
+
1
|
18459 |
+
1
|
18460 |
+
1
|
18461 |
+
1
|
18462 |
+
1
|
18463 |
+
1
|
18464 |
+
1
|
18465 |
+
1
|
18466 |
+
1
|
18467 |
+
1
|
18468 |
+
1
|
18469 |
+
1
|
18470 |
+
1
|
18471 |
+
1
|
18472 |
+
1
|
18473 |
+
1
|
18474 |
+
1
|
18475 |
+
1
|
18476 |
+
1
|
18477 |
+
1
|
18478 |
+
1
|
18479 |
+
1
|
18480 |
+
1
|
18481 |
+
1
|
18482 |
+
1
|
18483 |
+
1
|
18484 |
+
1
|
18485 |
+
1
|
18486 |
+
1
|
18487 |
+
1
|
18488 |
+
1
|
18489 |
+
1
|
18490 |
+
1
|
18491 |
+
1
|
18492 |
+
1
|
18493 |
+
1
|
18494 |
+
1
|
18495 |
+
1
|
18496 |
+
1
|
18497 |
+
1
|
18498 |
+
1
|
18499 |
+
1
|
18500 |
+
1
|
18501 |
+
1
|
18502 |
+
1
|
18503 |
+
1
|
18504 |
+
1
|
18505 |
+
1
|
18506 |
+
1
|
18507 |
+
1
|
18508 |
+
1
|
18509 |
+
1
|
18510 |
+
1
|
18511 |
+
1
|
18512 |
+
1
|
18513 |
+
1
|
18514 |
+
1
|
18515 |
+
1
|
18516 |
+
1
|
18517 |
+
1
|
18518 |
+
1
|
18519 |
+
1
|
18520 |
+
1
|
18521 |
+
1
|
18522 |
+
1
|
18523 |
+
1
|
18524 |
+
1
|
18525 |
+
1
|
18526 |
+
1
|
18527 |
+
1
|
18528 |
+
1
|
18529 |
+
1
|
18530 |
+
1
|
18531 |
+
1
|
18532 |
+
1
|
18533 |
+
1
|
18534 |
+
1
|
18535 |
+
1
|
18536 |
+
1
|
18537 |
+
1
|
18538 |
+
1
|
18539 |
+
1
|
18540 |
+
1
|
18541 |
+
1
|
18542 |
+
1
|
18543 |
+
1
|
18544 |
+
1
|
18545 |
+
1
|
18546 |
+
1
|
18547 |
+
1
|
18548 |
+
1
|
18549 |
+
1
|
18550 |
+
1
|
18551 |
+
1
|
18552 |
+
1
|
18553 |
+
1
|
18554 |
+
1
|
18555 |
+
1
|
18556 |
+
1
|
18557 |
+
1
|
18558 |
+
1
|
18559 |
+
1
|
18560 |
+
1
|
18561 |
+
1
|
18562 |
+
1
|
18563 |
+
1
|
18564 |
+
1
|
18565 |
+
1
|
18566 |
+
1
|
18567 |
+
1
|
18568 |
+
1
|
18569 |
+
1
|
18570 |
+
1
|
18571 |
+
1
|
18572 |
+
1
|
18573 |
+
1
|
18574 |
+
1
|
18575 |
+
1
|
18576 |
+
1
|
18577 |
+
1
|
18578 |
+
1
|
18579 |
+
1
|
18580 |
+
1
|
18581 |
+
1
|
18582 |
+
1
|
18583 |
+
1
|
18584 |
+
1
|
18585 |
+
1
|
18586 |
+
1
|
18587 |
+
1
|
18588 |
+
1
|
18589 |
+
1
|
18590 |
+
1
|
18591 |
+
1
|
18592 |
+
1
|
18593 |
+
1
|
18594 |
+
1
|
18595 |
+
1
|
18596 |
+
1
|
18597 |
+
1
|
18598 |
+
1
|
18599 |
+
1
|
18600 |
+
1
|
18601 |
+
1
|
18602 |
+
1
|
18603 |
+
1
|
18604 |
+
1
|
18605 |
+
1
|
18606 |
+
1
|
18607 |
+
1
|
18608 |
+
1
|
18609 |
+
1
|
18610 |
+
1
|
18611 |
+
1
|
18612 |
+
1
|
18613 |
+
1
|
18614 |
+
1
|
18615 |
+
1
|
18616 |
+
1
|
18617 |
+
1
|
18618 |
+
1
|
18619 |
+
1
|
18620 |
+
1
|
18621 |
+
1
|
18622 |
+
1
|
18623 |
+
1
|
18624 |
+
1
|
18625 |
+
1
|
18626 |
+
1
|
18627 |
+
1
|
18628 |
+
1
|
18629 |
+
1
|
18630 |
+
1
|
18631 |
+
1
|
18632 |
+
1
|
18633 |
+
1
|
18634 |
+
1
|
18635 |
+
1
|
18636 |
+
1
|
18637 |
+
1
|
18638 |
+
1
|
18639 |
+
1
|
18640 |
+
1
|
18641 |
+
1
|
18642 |
+
1
|
18643 |
+
1
|
18644 |
+
1
|
18645 |
+
1
|
18646 |
+
1
|
18647 |
+
1
|
18648 |
+
1
|
18649 |
+
1
|
18650 |
+
1
|
18651 |
+
1
|
18652 |
+
1
|
18653 |
+
1
|
18654 |
+
1
|
18655 |
+
1
|
18656 |
+
1
|
18657 |
+
1
|
18658 |
+
1
|
18659 |
+
1
|
18660 |
+
1
|
18661 |
+
1
|
18662 |
+
1
|
18663 |
+
1
|
18664 |
+
1
|
18665 |
+
1
|
18666 |
+
1
|
18667 |
+
1
|
18668 |
+
1
|
18669 |
+
1
|
18670 |
+
1
|
18671 |
+
1
|
18672 |
+
1
|
18673 |
+
1
|
18674 |
+
1
|
18675 |
+
1
|
18676 |
+
1
|
18677 |
+
1
|
18678 |
+
1
|
18679 |
+
1
|
18680 |
+
1
|
18681 |
+
1
|
18682 |
+
1
|
18683 |
+
1
|
18684 |
+
1
|
18685 |
+
1
|
18686 |
+
1
|
18687 |
+
1
|
18688 |
+
1
|
18689 |
+
1
|
18690 |
+
1
|
18691 |
+
1
|
18692 |
+
1
|
18693 |
+
1
|
18694 |
+
1
|
18695 |
+
1
|
18696 |
+
1
|
18697 |
+
1
|
18698 |
+
1
|
18699 |
+
1
|
18700 |
+
1
|
18701 |
+
1
|
18702 |
+
1
|
18703 |
+
1
|
18704 |
+
1
|
18705 |
+
1
|
18706 |
+
1
|
18707 |
+
1
|
18708 |
+
1
|
18709 |
+
1
|
18710 |
+
1
|
18711 |
+
1
|
18712 |
+
1
|
18713 |
+
1
|
18714 |
+
1
|
18715 |
+
1
|
18716 |
+
1
|
18717 |
+
1
|
18718 |
+
1
|
18719 |
+
1
|
18720 |
+
1
|
18721 |
+
1
|
18722 |
+
1
|
18723 |
+
1
|
18724 |
+
1
|
18725 |
+
1
|
18726 |
+
1
|
18727 |
+
1
|
18728 |
+
1
|
18729 |
+
1
|
18730 |
+
1
|
18731 |
+
1
|
18732 |
+
1
|
18733 |
+
1
|
18734 |
+
1
|
18735 |
+
1
|
18736 |
+
1
|
18737 |
+
1
|
18738 |
+
1
|
18739 |
+
1
|
18740 |
+
1
|
18741 |
+
1
|
18742 |
+
1
|
18743 |
+
1
|
18744 |
+
1
|
18745 |
+
1
|
18746 |
+
1
|
18747 |
+
1
|
18748 |
+
1
|
18749 |
+
1
|
18750 |
+
1
|
18751 |
+
1
|
18752 |
+
1
|
18753 |
+
1
|
18754 |
+
1
|
18755 |
+
1
|
18756 |
+
1
|
18757 |
+
1
|
18758 |
+
1
|
18759 |
+
1
|
18760 |
+
1
|
18761 |
+
1
|
18762 |
+
1
|
18763 |
+
1
|
18764 |
+
1
|
18765 |
+
1
|
18766 |
+
1
|
18767 |
+
1
|
18768 |
+
1
|
18769 |
+
1
|
18770 |
+
1
|
18771 |
+
1
|
18772 |
+
1
|
18773 |
+
1
|
18774 |
+
1
|
18775 |
+
1
|
18776 |
+
1
|
18777 |
+
1
|
18778 |
+
1
|
18779 |
+
1
|
18780 |
+
1
|
18781 |
+
1
|
18782 |
+
1
|
18783 |
+
1
|
18784 |
+
1
|
18785 |
+
1
|
18786 |
+
1
|
18787 |
+
1
|
18788 |
+
1
|
18789 |
+
1
|
18790 |
+
1
|
18791 |
+
1
|
18792 |
+
1
|
18793 |
+
1
|
18794 |
+
1
|
18795 |
+
1
|
18796 |
+
1
|
18797 |
+
1
|
18798 |
+
1
|
18799 |
+
1
|
18800 |
+
1
|
18801 |
+
1
|
18802 |
+
1
|
18803 |
+
1
|
18804 |
+
1
|
18805 |
+
1
|
18806 |
+
1
|
18807 |
+
1
|
18808 |
+
1
|
18809 |
+
1
|
18810 |
+
1
|
18811 |
+
1
|
18812 |
+
1
|
18813 |
+
1
|
18814 |
+
1
|
18815 |
+
1
|
18816 |
+
1
|
18817 |
+
1
|
18818 |
+
1
|
18819 |
+
1
|
18820 |
+
1
|
18821 |
+
1
|
18822 |
+
1
|
18823 |
+
1
|
18824 |
+
1
|
18825 |
+
1
|
18826 |
+
1
|
18827 |
+
1
|
18828 |
+
1
|
18829 |
+
1
|
18830 |
+
1
|
18831 |
+
1
|
18832 |
+
1
|
18833 |
+
1
|
18834 |
+
1
|
18835 |
+
1
|
18836 |
+
1
|
18837 |
+
1
|
18838 |
+
1
|
18839 |
+
1
|
18840 |
+
1
|
18841 |
+
1
|
18842 |
+
1
|
18843 |
+
1
|
18844 |
+
1
|
18845 |
+
1
|
18846 |
+
1
|
18847 |
+
1
|
18848 |
+
1
|
18849 |
+
1
|
18850 |
+
1
|
18851 |
+
1
|
18852 |
+
1
|
18853 |
+
1
|
18854 |
+
1
|
18855 |
+
1
|
18856 |
+
1
|
18857 |
+
1
|
18858 |
+
1
|
18859 |
+
1
|
18860 |
+
1
|
18861 |
+
1
|
18862 |
+
1
|
18863 |
+
1
|
18864 |
+
1
|
18865 |
+
1
|
18866 |
+
1
|
18867 |
+
1
|
18868 |
+
1
|
18869 |
+
1
|
18870 |
+
1
|
18871 |
+
1
|
18872 |
+
1
|
18873 |
+
1
|
18874 |
+
1
|
18875 |
+
1
|
18876 |
+
1
|
18877 |
+
1
|
18878 |
+
1
|
18879 |
+
1
|
18880 |
+
1
|
18881 |
+
1
|
18882 |
+
1
|
18883 |
+
1
|
18884 |
+
1
|
18885 |
+
1
|
18886 |
+
1
|
18887 |
+
1
|
18888 |
+
1
|
18889 |
+
1
|
18890 |
+
1
|
18891 |
+
1
|
18892 |
+
1
|
18893 |
+
1
|
18894 |
+
1
|
18895 |
+
1
|
18896 |
+
1
|
18897 |
+
1
|
18898 |
+
1
|
18899 |
+
1
|
18900 |
+
1
|
18901 |
+
1
|
18902 |
+
1
|
18903 |
+
1
|
18904 |
+
1
|
18905 |
+
1
|
18906 |
+
1
|
18907 |
+
1
|
18908 |
+
1
|
18909 |
+
1
|
18910 |
+
1
|
18911 |
+
1
|
18912 |
+
1
|
18913 |
+
1
|
18914 |
+
1
|
18915 |
+
1
|
18916 |
+
1
|
18917 |
+
1
|
18918 |
+
1
|
18919 |
+
1
|
18920 |
+
1
|
18921 |
+
1
|
18922 |
+
1
|
18923 |
+
1
|
18924 |
+
1
|
18925 |
+
1
|
18926 |
+
1
|
18927 |
+
1
|
18928 |
+
1
|
18929 |
+
1
|
18930 |
+
1
|
18931 |
+
1
|
18932 |
+
1
|
18933 |
+
1
|
18934 |
+
1
|
18935 |
+
1
|
18936 |
+
1
|
18937 |
+
1
|
18938 |
+
1
|
18939 |
+
1
|
18940 |
+
1
|
18941 |
+
1
|
18942 |
+
1
|
18943 |
+
1
|
18944 |
+
1
|
18945 |
+
1
|
18946 |
+
1
|
18947 |
+
1
|
18948 |
+
1
|
18949 |
+
1
|
18950 |
+
1
|
18951 |
+
1
|
18952 |
+
1
|
18953 |
+
1
|
18954 |
+
1
|
18955 |
+
1
|
18956 |
+
1
|
18957 |
+
1
|
18958 |
+
1
|
18959 |
+
1
|
18960 |
+
1
|
18961 |
+
1
|
18962 |
+
1
|
18963 |
+
1
|
18964 |
+
1
|
18965 |
+
1
|
18966 |
+
1
|
18967 |
+
1
|
18968 |
+
1
|
18969 |
+
1
|
18970 |
+
1
|
18971 |
+
1
|
18972 |
+
1
|
18973 |
+
1
|
18974 |
+
1
|
18975 |
+
1
|
18976 |
+
1
|
18977 |
+
1
|
18978 |
+
1
|
18979 |
+
1
|
18980 |
+
1
|
18981 |
+
1
|
18982 |
+
1
|
18983 |
+
1
|
18984 |
+
1
|
18985 |
+
1
|
18986 |
+
1
|
18987 |
+
1
|
18988 |
+
1
|
18989 |
+
1
|
18990 |
+
1
|
18991 |
+
1
|
18992 |
+
1
|
18993 |
+
1
|
18994 |
+
1
|
18995 |
+
1
|
18996 |
+
1
|
18997 |
+
1
|
18998 |
+
1
|
18999 |
+
1
|
19000 |
+
1
|
19001 |
+
1
|
19002 |
+
1
|
19003 |
+
1
|
19004 |
+
1
|
19005 |
+
1
|
19006 |
+
1
|
19007 |
+
1
|
19008 |
+
1
|
19009 |
+
1
|
19010 |
+
1
|
19011 |
+
1
|
19012 |
+
1
|
19013 |
+
1
|
19014 |
+
1
|
19015 |
+
1
|
19016 |
+
1
|
19017 |
+
1
|
19018 |
+
1
|
19019 |
+
1
|
19020 |
+
1
|
19021 |
+
1
|
19022 |
+
1
|
19023 |
+
1
|
19024 |
+
1
|
19025 |
+
1
|
19026 |
+
1
|
19027 |
+
1
|
19028 |
+
1
|
19029 |
+
1
|
19030 |
+
1
|
19031 |
+
1
|
19032 |
+
1
|
19033 |
+
1
|
19034 |
+
1
|
19035 |
+
1
|
19036 |
+
1
|
19037 |
+
1
|
19038 |
+
1
|
19039 |
+
1
|
19040 |
+
1
|
19041 |
+
1
|
19042 |
+
1
|
19043 |
+
1
|
19044 |
+
1
|
19045 |
+
1
|
19046 |
+
1
|
19047 |
+
1
|
19048 |
+
1
|
19049 |
+
1
|
19050 |
+
1
|
19051 |
+
1
|
19052 |
+
1
|
19053 |
+
1
|
19054 |
+
1
|
19055 |
+
1
|
19056 |
+
1
|
19057 |
+
1
|
19058 |
+
1
|
19059 |
+
1
|
19060 |
+
1
|
19061 |
+
1
|
19062 |
+
1
|
19063 |
+
1
|
19064 |
+
1
|
19065 |
+
1
|
19066 |
+
1
|
19067 |
+
1
|
19068 |
+
1
|
19069 |
+
1
|
19070 |
+
1
|
19071 |
+
1
|
19072 |
+
1
|
19073 |
+
1
|
19074 |
+
1
|
19075 |
+
1
|
19076 |
+
1
|
19077 |
+
1
|
19078 |
+
1
|
19079 |
+
1
|
19080 |
+
1
|
19081 |
+
1
|
19082 |
+
1
|
19083 |
+
1
|
19084 |
+
1
|
19085 |
+
1
|
19086 |
+
1
|
19087 |
+
1
|
19088 |
+
1
|
19089 |
+
1
|
19090 |
+
1
|
19091 |
+
1
|
19092 |
+
1
|
19093 |
+
1
|
19094 |
+
1
|
19095 |
+
1
|
19096 |
+
1
|
19097 |
+
1
|
19098 |
+
1
|
19099 |
+
1
|
19100 |
+
1
|
19101 |
+
1
|
19102 |
+
1
|
19103 |
+
1
|
19104 |
+
1
|
19105 |
+
1
|
19106 |
+
1
|
19107 |
+
1
|
19108 |
+
1
|
19109 |
+
1
|
19110 |
+
1
|
19111 |
+
1
|
19112 |
+
1
|
19113 |
+
1
|
19114 |
+
1
|
19115 |
+
1
|
19116 |
+
1
|
19117 |
+
1
|
19118 |
+
1
|
19119 |
+
1
|
19120 |
+
1
|
19121 |
+
1
|
19122 |
+
1
|
19123 |
+
1
|
19124 |
+
1
|
19125 |
+
1
|
19126 |
+
1
|
19127 |
+
1
|
19128 |
+
1
|
19129 |
+
1
|
19130 |
+
1
|
19131 |
+
1
|
19132 |
+
1
|
19133 |
+
1
|
19134 |
+
1
|
19135 |
+
1
|
19136 |
+
1
|
19137 |
+
1
|
19138 |
+
1
|
19139 |
+
1
|
19140 |
+
1
|
19141 |
+
1
|
19142 |
+
1
|
19143 |
+
1
|
19144 |
+
1
|
19145 |
+
1
|
19146 |
+
1
|
19147 |
+
1
|
19148 |
+
1
|
19149 |
+
1
|
19150 |
+
1
|
19151 |
+
1
|
19152 |
+
1
|
19153 |
+
1
|
19154 |
+
1
|
19155 |
+
1
|
19156 |
+
1
|
19157 |
+
1
|
19158 |
+
1
|
19159 |
+
1
|
19160 |
+
1
|
19161 |
+
1
|
19162 |
+
1
|
19163 |
+
1
|
19164 |
+
1
|
19165 |
+
1
|
19166 |
+
1
|
19167 |
+
1
|
19168 |
+
1
|
19169 |
+
1
|
19170 |
+
1
|
19171 |
+
1
|
19172 |
+
1
|
19173 |
+
1
|
19174 |
+
1
|
19175 |
+
1
|
19176 |
+
1
|
19177 |
+
1
|
19178 |
+
1
|
19179 |
+
1
|
19180 |
+
1
|
19181 |
+
1
|
19182 |
+
1
|
19183 |
+
1
|
19184 |
+
1
|
19185 |
+
1
|
19186 |
+
1
|
19187 |
+
1
|
19188 |
+
1
|
19189 |
+
1
|
19190 |
+
1
|
19191 |
+
1
|
19192 |
+
1
|
19193 |
+
1
|
19194 |
+
1
|
19195 |
+
1
|
19196 |
+
1
|
19197 |
+
1
|
19198 |
+
1
|
19199 |
+
1
|
19200 |
+
1
|
19201 |
+
1
|
19202 |
+
1
|
19203 |
+
1
|
19204 |
+
1
|
19205 |
+
1
|
19206 |
+
1
|
19207 |
+
1
|
19208 |
+
1
|
19209 |
+
1
|
19210 |
+
1
|
19211 |
+
1
|
19212 |
+
1
|
19213 |
+
1
|
19214 |
+
1
|
19215 |
+
1
|
19216 |
+
1
|
19217 |
+
1
|
19218 |
+
1
|
19219 |
+
1
|
19220 |
+
1
|
19221 |
+
1
|
19222 |
+
1
|
19223 |
+
1
|
19224 |
+
1
|
19225 |
+
1
|
19226 |
+
1
|
19227 |
+
1
|
19228 |
+
1
|
19229 |
+
1
|
19230 |
+
1
|
19231 |
+
1
|
19232 |
+
1
|
19233 |
+
1
|
19234 |
+
1
|
19235 |
+
1
|
19236 |
+
1
|
19237 |
+
1
|
19238 |
+
1
|
19239 |
+
1
|
19240 |
+
1
|
19241 |
+
1
|
19242 |
+
1
|
19243 |
+
1
|
19244 |
+
1
|
19245 |
+
1
|
19246 |
+
1
|
19247 |
+
1
|
19248 |
+
1
|
19249 |
+
1
|
19250 |
+
1
|
19251 |
+
1
|
19252 |
+
1
|
19253 |
+
1
|
19254 |
+
1
|
19255 |
+
1
|
19256 |
+
1
|
19257 |
+
1
|
19258 |
+
1
|
19259 |
+
1
|
19260 |
+
1
|
19261 |
+
1
|
19262 |
+
1
|
19263 |
+
1
|
19264 |
+
1
|
19265 |
+
1
|
19266 |
+
1
|
19267 |
+
1
|
19268 |
+
1
|
19269 |
+
1
|
19270 |
+
1
|
19271 |
+
1
|
19272 |
+
1
|
19273 |
+
1
|
19274 |
+
1
|
19275 |
+
1
|
19276 |
+
1
|
19277 |
+
1
|
19278 |
+
1
|
19279 |
+
1
|
19280 |
+
1
|
19281 |
+
1
|
19282 |
+
1
|
19283 |
+
1
|
19284 |
+
1
|
19285 |
+
1
|
19286 |
+
1
|
19287 |
+
1
|
19288 |
+
1
|
19289 |
+
1
|
19290 |
+
1
|
19291 |
+
1
|
19292 |
+
1
|
19293 |
+
1
|
19294 |
+
1
|
19295 |
+
1
|
19296 |
+
1
|
19297 |
+
1
|
19298 |
+
1
|
19299 |
+
1
|
19300 |
+
1
|
19301 |
+
1
|
19302 |
+
1
|
19303 |
+
1
|
19304 |
+
1
|
19305 |
+
1
|
19306 |
+
1
|
19307 |
+
1
|
19308 |
+
1
|
19309 |
+
1
|
19310 |
+
1
|
19311 |
+
1
|
19312 |
+
1
|
19313 |
+
1
|
19314 |
+
1
|
19315 |
+
1
|
19316 |
+
1
|
19317 |
+
1
|
19318 |
+
1
|
19319 |
+
1
|
19320 |
+
1
|
19321 |
+
1
|
19322 |
+
1
|
19323 |
+
1
|
19324 |
+
1
|
19325 |
+
1
|
19326 |
+
1
|
19327 |
+
1
|
19328 |
+
1
|
19329 |
+
1
|
19330 |
+
1
|
19331 |
+
1
|
19332 |
+
1
|
19333 |
+
1
|
19334 |
+
1
|
19335 |
+
1
|
19336 |
+
1
|
19337 |
+
1
|
19338 |
+
1
|
19339 |
+
1
|
19340 |
+
1
|
19341 |
+
1
|
19342 |
+
1
|
19343 |
+
1
|
19344 |
+
1
|
19345 |
+
1
|
19346 |
+
1
|
19347 |
+
1
|
19348 |
+
1
|
19349 |
+
1
|
19350 |
+
1
|
19351 |
+
1
|
19352 |
+
1
|
19353 |
+
1
|
19354 |
+
1
|
19355 |
+
1
|
19356 |
+
1
|
19357 |
+
1
|
19358 |
+
1
|
19359 |
+
1
|
19360 |
+
1
|
19361 |
+
1
|
19362 |
+
1
|
19363 |
+
1
|
19364 |
+
1
|
19365 |
+
1
|
19366 |
+
1
|
19367 |
+
1
|
19368 |
+
1
|
19369 |
+
1
|
19370 |
+
1
|
19371 |
+
1
|
19372 |
+
1
|
19373 |
+
1
|
19374 |
+
1
|
19375 |
+
1
|
19376 |
+
1
|
19377 |
+
1
|
19378 |
+
1
|
19379 |
+
1
|
19380 |
+
1
|
19381 |
+
1
|
19382 |
+
1
|
19383 |
+
1
|
19384 |
+
1
|
19385 |
+
1
|
19386 |
+
1
|
19387 |
+
1
|
19388 |
+
1
|
19389 |
+
1
|
19390 |
+
1
|
19391 |
+
1
|
19392 |
+
1
|
19393 |
+
1
|
19394 |
+
1
|
19395 |
+
1
|
19396 |
+
1
|
19397 |
+
1
|
19398 |
+
1
|
19399 |
+
1
|
19400 |
+
1
|
19401 |
+
1
|
19402 |
+
1
|
19403 |
+
1
|
19404 |
+
1
|
19405 |
+
1
|
19406 |
+
1
|
19407 |
+
1
|
19408 |
+
1
|
19409 |
+
1
|
19410 |
+
1
|
19411 |
+
1
|
19412 |
+
1
|
19413 |
+
1
|
19414 |
+
1
|
19415 |
+
1
|
19416 |
+
1
|
19417 |
+
1
|
19418 |
+
1
|
19419 |
+
1
|
19420 |
+
1
|
19421 |
+
1
|
19422 |
+
1
|
19423 |
+
1
|
19424 |
+
1
|
19425 |
+
1
|
19426 |
+
1
|
19427 |
+
1
|
19428 |
+
1
|
19429 |
+
1
|
19430 |
+
1
|
19431 |
+
1
|
19432 |
+
1
|
19433 |
+
1
|
19434 |
+
1
|
19435 |
+
1
|
19436 |
+
1
|
19437 |
+
1
|
19438 |
+
1
|
19439 |
+
1
|
19440 |
+
1
|
19441 |
+
1
|
19442 |
+
1
|
19443 |
+
1
|
19444 |
+
1
|
19445 |
+
1
|
19446 |
+
1
|
19447 |
+
1
|
19448 |
+
1
|
19449 |
+
1
|
19450 |
+
1
|
19451 |
+
1
|
19452 |
+
1
|
19453 |
+
1
|
19454 |
+
1
|
19455 |
+
1
|
19456 |
+
1
|
19457 |
+
1
|
19458 |
+
1
|
19459 |
+
1
|
19460 |
+
1
|
19461 |
+
1
|
19462 |
+
1
|
19463 |
+
1
|
19464 |
+
1
|
19465 |
+
1
|
19466 |
+
1
|
19467 |
+
1
|
19468 |
+
1
|
19469 |
+
1
|
19470 |
+
1
|
19471 |
+
1
|
19472 |
+
1
|
19473 |
+
1
|
19474 |
+
1
|
19475 |
+
1
|
19476 |
+
1
|
19477 |
+
1
|
19478 |
+
1
|
19479 |
+
1
|
19480 |
+
1
|
19481 |
+
1
|
19482 |
+
1
|
19483 |
+
1
|
19484 |
+
1
|
19485 |
+
1
|
19486 |
+
1
|
19487 |
+
1
|
19488 |
+
1
|
19489 |
+
1
|
19490 |
+
1
|
19491 |
+
1
|
19492 |
+
1
|
19493 |
+
1
|
19494 |
+
1
|
19495 |
+
1
|
19496 |
+
1
|
19497 |
+
1
|
19498 |
+
1
|
19499 |
+
1
|
19500 |
+
1
|
19501 |
+
1
|
19502 |
+
1
|
19503 |
+
1
|
19504 |
+
1
|
19505 |
+
1
|
19506 |
+
1
|
19507 |
+
1
|
19508 |
+
1
|
19509 |
+
1
|
19510 |
+
1
|
19511 |
+
1
|
19512 |
+
1
|
19513 |
+
1
|
19514 |
+
1
|
19515 |
+
1
|
19516 |
+
1
|
19517 |
+
1
|
19518 |
+
1
|
19519 |
+
1
|
19520 |
+
1
|
19521 |
+
1
|
19522 |
+
1
|
19523 |
+
1
|
19524 |
+
1
|
19525 |
+
1
|
19526 |
+
1
|
19527 |
+
1
|
19528 |
+
1
|
19529 |
+
1
|
19530 |
+
1
|
19531 |
+
1
|
19532 |
+
1
|
19533 |
+
1
|
19534 |
+
1
|
19535 |
+
1
|
19536 |
+
1
|
19537 |
+
1
|
19538 |
+
1
|
19539 |
+
1
|
19540 |
+
1
|
19541 |
+
1
|
19542 |
+
1
|
19543 |
+
1
|
19544 |
+
1
|
19545 |
+
1
|
19546 |
+
1
|
19547 |
+
1
|
19548 |
+
1
|
19549 |
+
1
|
19550 |
+
1
|
19551 |
+
1
|
19552 |
+
1
|
19553 |
+
1
|
19554 |
+
1
|
19555 |
+
1
|
19556 |
+
1
|
19557 |
+
1
|
19558 |
+
1
|
19559 |
+
1
|
19560 |
+
1
|
19561 |
+
1
|
19562 |
+
1
|
19563 |
+
1
|
19564 |
+
1
|
19565 |
+
1
|
19566 |
+
1
|
19567 |
+
1
|
19568 |
+
1
|
19569 |
+
1
|
19570 |
+
1
|
19571 |
+
1
|
19572 |
+
1
|
19573 |
+
1
|
19574 |
+
1
|
19575 |
+
1
|
19576 |
+
1
|
19577 |
+
1
|
19578 |
+
1
|
19579 |
+
1
|
19580 |
+
1
|
19581 |
+
1
|
19582 |
+
1
|
19583 |
+
1
|
19584 |
+
1
|
19585 |
+
1
|
19586 |
+
1
|
19587 |
+
1
|
19588 |
+
1
|
19589 |
+
1
|
19590 |
+
1
|
19591 |
+
1
|
19592 |
+
1
|
19593 |
+
1
|
19594 |
+
1
|
19595 |
+
1
|
19596 |
+
1
|
19597 |
+
1
|
19598 |
+
1
|
19599 |
+
1
|
19600 |
+
1
|
19601 |
+
1
|
19602 |
+
1
|
19603 |
+
1
|
19604 |
+
1
|
19605 |
+
1
|
19606 |
+
1
|
19607 |
+
1
|
19608 |
+
1
|
19609 |
+
1
|
19610 |
+
1
|
19611 |
+
1
|
19612 |
+
1
|
19613 |
+
1
|
19614 |
+
1
|
19615 |
+
1
|
19616 |
+
1
|
19617 |
+
1
|
19618 |
+
1
|
19619 |
+
1
|
19620 |
+
1
|
19621 |
+
1
|
19622 |
+
1
|
19623 |
+
1
|
19624 |
+
1
|
19625 |
+
1
|
19626 |
+
1
|
19627 |
+
1
|
19628 |
+
1
|
19629 |
+
1
|
19630 |
+
1
|
19631 |
+
1
|
19632 |
+
1
|
19633 |
+
1
|
19634 |
+
1
|
19635 |
+
1
|
19636 |
+
1
|
19637 |
+
1
|
19638 |
+
1
|
19639 |
+
1
|
19640 |
+
1
|
19641 |
+
1
|
19642 |
+
1
|
19643 |
+
1
|
19644 |
+
1
|
19645 |
+
1
|
19646 |
+
1
|
19647 |
+
1
|
19648 |
+
1
|
19649 |
+
1
|
19650 |
+
1
|
19651 |
+
1
|
19652 |
+
1
|
19653 |
+
1
|
19654 |
+
1
|
19655 |
+
1
|
19656 |
+
1
|
19657 |
+
1
|
19658 |
+
1
|
19659 |
+
1
|
19660 |
+
1
|
19661 |
+
1
|
19662 |
+
1
|
19663 |
+
1
|
19664 |
+
1
|
19665 |
+
1
|
19666 |
+
1
|
19667 |
+
1
|
19668 |
+
1
|
19669 |
+
1
|
19670 |
+
1
|
19671 |
+
1
|
19672 |
+
1
|
19673 |
+
1
|
19674 |
+
1
|
19675 |
+
1
|
19676 |
+
1
|
19677 |
+
1
|
19678 |
+
1
|
19679 |
+
1
|
19680 |
+
1
|
19681 |
+
1
|
19682 |
+
1
|
19683 |
+
1
|
19684 |
+
1
|
19685 |
+
1
|
19686 |
+
1
|
19687 |
+
1
|
19688 |
+
1
|
19689 |
+
1
|
19690 |
+
1
|
19691 |
+
1
|
19692 |
+
1
|
19693 |
+
1
|
19694 |
+
1
|
19695 |
+
1
|
19696 |
+
1
|
19697 |
+
1
|
19698 |
+
1
|
19699 |
+
1
|
19700 |
+
1
|
19701 |
+
1
|
19702 |
+
1
|
19703 |
+
1
|
19704 |
+
1
|
19705 |
+
1
|
19706 |
+
1
|
19707 |
+
1
|
19708 |
+
1
|
19709 |
+
1
|
19710 |
+
1
|
19711 |
+
1
|
19712 |
+
1
|
19713 |
+
1
|
19714 |
+
1
|
19715 |
+
1
|
19716 |
+
1
|
19717 |
+
1
|
19718 |
+
1
|
19719 |
+
1
|
19720 |
+
1
|
19721 |
+
1
|
19722 |
+
1
|
19723 |
+
1
|
19724 |
+
1
|
19725 |
+
1
|
19726 |
+
1
|
19727 |
+
1
|
19728 |
+
1
|
19729 |
+
1
|
19730 |
+
1
|
19731 |
+
1
|
19732 |
+
1
|
19733 |
+
1
|
19734 |
+
1
|
19735 |
+
1
|
19736 |
+
1
|
19737 |
+
1
|
19738 |
+
1
|
19739 |
+
1
|
19740 |
+
1
|
19741 |
+
1
|
19742 |
+
1
|
19743 |
+
1
|
19744 |
+
1
|
19745 |
+
1
|
19746 |
+
1
|
19747 |
+
1
|
19748 |
+
1
|
19749 |
+
1
|
19750 |
+
1
|
19751 |
+
1
|
19752 |
+
1
|
19753 |
+
1
|
19754 |
+
1
|
19755 |
+
1
|
19756 |
+
1
|
19757 |
+
1
|
19758 |
+
1
|
19759 |
+
1
|
19760 |
+
1
|
19761 |
+
1
|
19762 |
+
1
|
19763 |
+
1
|
19764 |
+
1
|
19765 |
+
1
|
19766 |
+
1
|
19767 |
+
1
|
19768 |
+
1
|
19769 |
+
1
|
19770 |
+
1
|
19771 |
+
1
|
19772 |
+
1
|
19773 |
+
1
|
19774 |
+
1
|
19775 |
+
1
|
19776 |
+
1
|
19777 |
+
1
|
19778 |
+
1
|
19779 |
+
1
|
19780 |
+
1
|
19781 |
+
1
|
19782 |
+
1
|
19783 |
+
1
|
19784 |
+
1
|
19785 |
+
1
|
19786 |
+
1
|
19787 |
+
1
|
19788 |
+
1
|
19789 |
+
1
|
19790 |
+
1
|
19791 |
+
1
|
19792 |
+
1
|
19793 |
+
1
|
19794 |
+
1
|
19795 |
+
1
|
19796 |
+
1
|
19797 |
+
1
|
19798 |
+
1
|
19799 |
+
1
|
19800 |
+
1
|
19801 |
+
1
|
19802 |
+
1
|
19803 |
+
1
|
19804 |
+
1
|
19805 |
+
1
|
19806 |
+
1
|
19807 |
+
1
|
19808 |
+
1
|
19809 |
+
1
|
19810 |
+
1
|
19811 |
+
1
|
19812 |
+
1
|
19813 |
+
1
|
19814 |
+
1
|
19815 |
+
1
|
19816 |
+
1
|
19817 |
+
1
|
19818 |
+
1
|
19819 |
+
1
|
19820 |
+
1
|
19821 |
+
1
|
19822 |
+
1
|
19823 |
+
1
|
19824 |
+
1
|
19825 |
+
1
|
19826 |
+
1
|
19827 |
+
1
|
19828 |
+
1
|
19829 |
+
1
|
19830 |
+
1
|
19831 |
+
1
|
19832 |
+
1
|
19833 |
+
1
|
19834 |
+
1
|
19835 |
+
1
|
19836 |
+
1
|
19837 |
+
1
|
19838 |
+
1
|
19839 |
+
1
|
19840 |
+
1
|
19841 |
+
1
|
19842 |
+
1
|
19843 |
+
1
|
19844 |
+
1
|
19845 |
+
1
|
19846 |
+
1
|
19847 |
+
1
|
19848 |
+
1
|
19849 |
+
1
|
19850 |
+
1
|
19851 |
+
1
|
19852 |
+
1
|
19853 |
+
1
|
19854 |
+
1
|
19855 |
+
1
|
19856 |
+
1
|
19857 |
+
1
|
19858 |
+
1
|
19859 |
+
1
|
19860 |
+
1
|
19861 |
+
1
|
19862 |
+
1
|
19863 |
+
1
|
19864 |
+
1
|
19865 |
+
1
|
19866 |
+
1
|
19867 |
+
1
|
19868 |
+
1
|
19869 |
+
1
|
19870 |
+
1
|
19871 |
+
1
|
19872 |
+
1
|
19873 |
+
1
|
19874 |
+
1
|
19875 |
+
1
|
19876 |
+
1
|
19877 |
+
1
|
19878 |
+
1
|
19879 |
+
1
|
19880 |
+
1
|
19881 |
+
1
|
19882 |
+
1
|
19883 |
+
1
|
19884 |
+
1
|
19885 |
+
1
|
19886 |
+
1
|
19887 |
+
1
|
19888 |
+
1
|
19889 |
+
1
|
19890 |
+
1
|
19891 |
+
1
|
19892 |
+
1
|
19893 |
+
1
|
19894 |
+
1
|
19895 |
+
1
|
19896 |
+
1
|
19897 |
+
1
|
19898 |
+
1
|
19899 |
+
1
|
19900 |
+
1
|
19901 |
+
1
|
19902 |
+
1
|
19903 |
+
1
|
19904 |
+
1
|
19905 |
+
1
|
19906 |
+
1
|
19907 |
+
1
|
19908 |
+
1
|
19909 |
+
1
|
19910 |
+
1
|
19911 |
+
1
|
19912 |
+
1
|
19913 |
+
1
|
19914 |
+
1
|
19915 |
+
1
|
19916 |
+
1
|
19917 |
+
1
|
19918 |
+
1
|
19919 |
+
1
|
19920 |
+
1
|
19921 |
+
1
|
19922 |
+
1
|
19923 |
+
1
|
19924 |
+
1
|
19925 |
+
1
|
19926 |
+
1
|
19927 |
+
1
|
19928 |
+
1
|
19929 |
+
1
|
19930 |
+
1
|
19931 |
+
1
|
19932 |
+
1
|
19933 |
+
1
|
19934 |
+
1
|
19935 |
+
1
|
19936 |
+
1
|
19937 |
+
1
|
19938 |
+
1
|
19939 |
+
1
|
19940 |
+
1
|
19941 |
+
1
|
19942 |
+
1
|
19943 |
+
1
|
19944 |
+
1
|
19945 |
+
1
|
19946 |
+
1
|
19947 |
+
1
|
19948 |
+
1
|
19949 |
+
1
|
19950 |
+
1
|
19951 |
+
1
|
19952 |
+
1
|
19953 |
+
1
|
19954 |
+
1
|
19955 |
+
1
|
19956 |
+
1
|
19957 |
+
1
|
19958 |
+
1
|
19959 |
+
1
|
19960 |
+
1
|
19961 |
+
1
|
19962 |
+
1
|
19963 |
+
1
|
19964 |
+
1
|
19965 |
+
1
|
19966 |
+
1
|
19967 |
+
1
|
19968 |
+
1
|
19969 |
+
1
|
19970 |
+
1
|
19971 |
+
1
|
19972 |
+
1
|
19973 |
+
1
|
19974 |
+
1
|
19975 |
+
1
|
19976 |
+
1
|
19977 |
+
1
|
19978 |
+
1
|
19979 |
+
1
|
19980 |
+
1
|
19981 |
+
1
|
19982 |
+
1
|
19983 |
+
1
|
19984 |
+
1
|
19985 |
+
1
|
19986 |
+
1
|
19987 |
+
1
|
19988 |
+
1
|
19989 |
+
1
|
19990 |
+
1
|
19991 |
+
1
|
19992 |
+
1
|
19993 |
+
1
|
19994 |
+
1
|
19995 |
+
1
|
19996 |
+
1
|
19997 |
+
1
|
19998 |
+
1
|
19999 |
+
1
|
20000 |
+
1
|
20001 |
+
1
|
20002 |
+
1
|
20003 |
+
1
|
20004 |
+
1
|
20005 |
+
1
|
20006 |
+
1
|
20007 |
+
1
|
20008 |
+
1
|
20009 |
+
1
|
20010 |
+
1
|
20011 |
+
1
|
20012 |
+
1
|
20013 |
+
1
|
20014 |
+
1
|
20015 |
+
1
|
20016 |
+
1
|
20017 |
+
1
|
20018 |
+
1
|
20019 |
+
1
|
20020 |
+
1
|
20021 |
+
1
|
20022 |
+
1
|
20023 |
+
1
|
20024 |
+
1
|
20025 |
+
1
|
20026 |
+
1
|
20027 |
+
1
|
20028 |
+
1
|
20029 |
+
1
|
20030 |
+
1
|
20031 |
+
1
|
20032 |
+
1
|
20033 |
+
1
|
20034 |
+
1
|
20035 |
+
1
|
20036 |
+
1
|
20037 |
+
1
|
20038 |
+
1
|
20039 |
+
1
|
20040 |
+
1
|
20041 |
+
1
|
20042 |
+
1
|
20043 |
+
1
|
20044 |
+
1
|
20045 |
+
1
|
20046 |
+
1
|
20047 |
+
1
|
20048 |
+
1
|
20049 |
+
1
|
20050 |
+
1
|
20051 |
+
1
|
20052 |
+
1
|
20053 |
+
1
|
20054 |
+
1
|
20055 |
+
1
|
20056 |
+
1
|
20057 |
+
1
|
20058 |
+
1
|
20059 |
+
1
|
20060 |
+
1
|
20061 |
+
1
|
20062 |
+
1
|
20063 |
+
1
|
20064 |
+
1
|
20065 |
+
1
|
20066 |
+
1
|
20067 |
+
1
|
20068 |
+
1
|
20069 |
+
1
|
20070 |
+
1
|
20071 |
+
1
|
20072 |
+
1
|
20073 |
+
1
|
20074 |
+
1
|
20075 |
+
1
|
20076 |
+
1
|
20077 |
+
1
|
20078 |
+
1
|
20079 |
+
1
|
20080 |
+
1
|
20081 |
+
1
|
20082 |
+
1
|
20083 |
+
1
|
20084 |
+
1
|
20085 |
+
1
|
20086 |
+
1
|
20087 |
+
1
|
20088 |
+
1
|
20089 |
+
1
|
20090 |
+
1
|
20091 |
+
1
|
20092 |
+
1
|
20093 |
+
1
|
20094 |
+
1
|
20095 |
+
1
|
20096 |
+
1
|
20097 |
+
1
|
20098 |
+
1
|
20099 |
+
1
|
20100 |
+
1
|
20101 |
+
1
|
20102 |
+
1
|
20103 |
+
1
|
20104 |
+
1
|
20105 |
+
1
|
20106 |
+
1
|
20107 |
+
1
|
20108 |
+
1
|
20109 |
+
1
|
20110 |
+
1
|
20111 |
+
1
|
20112 |
+
1
|
20113 |
+
1
|
20114 |
+
1
|
20115 |
+
1
|
20116 |
+
1
|
20117 |
+
1
|
20118 |
+
1
|
20119 |
+
1
|
20120 |
+
1
|
20121 |
+
1
|
20122 |
+
1
|
20123 |
+
1
|
20124 |
+
1
|
20125 |
+
1
|
20126 |
+
1
|
20127 |
+
1
|
20128 |
+
1
|
20129 |
+
1
|
20130 |
+
1
|
20131 |
+
1
|
20132 |
+
1
|
20133 |
+
1
|
20134 |
+
1
|
20135 |
+
1
|
20136 |
+
1
|
20137 |
+
1
|
20138 |
+
1
|
20139 |
+
1
|
20140 |
+
1
|
20141 |
+
1
|
20142 |
+
1
|
20143 |
+
1
|
20144 |
+
1
|
20145 |
+
1
|
20146 |
+
1
|
20147 |
+
1
|
20148 |
+
1
|
20149 |
+
1
|
20150 |
+
1
|
20151 |
+
1
|
20152 |
+
1
|
20153 |
+
1
|
20154 |
+
1
|
20155 |
+
1
|
20156 |
+
1
|
20157 |
+
1
|
20158 |
+
1
|
20159 |
+
1
|
20160 |
+
1
|
20161 |
+
1
|
20162 |
+
1
|
20163 |
+
1
|
20164 |
+
1
|
20165 |
+
1
|
20166 |
+
1
|
20167 |
+
1
|
20168 |
+
1
|
20169 |
+
1
|
20170 |
+
1
|
20171 |
+
1
|
20172 |
+
1
|
20173 |
+
1
|
20174 |
+
1
|
20175 |
+
1
|
20176 |
+
1
|
20177 |
+
1
|
20178 |
+
1
|
20179 |
+
1
|
20180 |
+
1
|
20181 |
+
1
|
20182 |
+
1
|
20183 |
+
1
|
20184 |
+
1
|
20185 |
+
1
|
20186 |
+
1
|
20187 |
+
1
|
20188 |
+
1
|
20189 |
+
1
|
20190 |
+
1
|
20191 |
+
1
|
20192 |
+
1
|
20193 |
+
1
|
20194 |
+
1
|
20195 |
+
1
|
20196 |
+
1
|
20197 |
+
1
|
20198 |
+
1
|
20199 |
+
1
|
20200 |
+
1
|
20201 |
+
1
|
20202 |
+
1
|
20203 |
+
1
|
20204 |
+
1
|
20205 |
+
1
|
20206 |
+
1
|
20207 |
+
1
|
20208 |
+
1
|
20209 |
+
1
|
20210 |
+
1
|
20211 |
+
1
|
20212 |
+
1
|
20213 |
+
1
|
20214 |
+
1
|
20215 |
+
1
|
20216 |
+
1
|
20217 |
+
1
|
20218 |
+
1
|
20219 |
+
1
|
20220 |
+
1
|
20221 |
+
1
|
20222 |
+
1
|
20223 |
+
1
|
20224 |
+
1
|
20225 |
+
1
|
20226 |
+
1
|
20227 |
+
1
|
20228 |
+
1
|
20229 |
+
1
|
20230 |
+
1
|
20231 |
+
1
|
20232 |
+
1
|
20233 |
+
1
|
20234 |
+
1
|
20235 |
+
1
|
20236 |
+
1
|
20237 |
+
1
|
20238 |
+
1
|
20239 |
+
1
|
20240 |
+
1
|
20241 |
+
1
|
20242 |
+
1
|
20243 |
+
1
|
20244 |
+
1
|
20245 |
+
1
|
20246 |
+
1
|
20247 |
+
1
|
20248 |
+
1
|
20249 |
+
1
|
20250 |
+
1
|
20251 |
+
1
|
20252 |
+
1
|
20253 |
+
1
|
20254 |
+
1
|
20255 |
+
1
|
20256 |
+
1
|
20257 |
+
1
|
20258 |
+
1
|
20259 |
+
1
|
20260 |
+
1
|
20261 |
+
1
|
20262 |
+
1
|
20263 |
+
1
|
20264 |
+
1
|
20265 |
+
1
|
20266 |
+
1
|
20267 |
+
1
|
20268 |
+
1
|
20269 |
+
1
|
20270 |
+
1
|
20271 |
+
1
|
20272 |
+
1
|
20273 |
+
1
|
20274 |
+
1
|
20275 |
+
1
|
20276 |
+
1
|
20277 |
+
1
|
20278 |
+
1
|
20279 |
+
1
|
20280 |
+
1
|
20281 |
+
1
|
20282 |
+
1
|
20283 |
+
1
|
20284 |
+
1
|
20285 |
+
1
|
20286 |
+
1
|
20287 |
+
1
|
20288 |
+
1
|
20289 |
+
1
|
20290 |
+
1
|
20291 |
+
1
|
20292 |
+
1
|
20293 |
+
1
|
20294 |
+
1
|
20295 |
+
1
|
20296 |
+
1
|
20297 |
+
1
|
20298 |
+
1
|
20299 |
+
1
|
20300 |
+
1
|
20301 |
+
1
|
20302 |
+
1
|
20303 |
+
1
|
20304 |
+
1
|
20305 |
+
1
|
20306 |
+
1
|
20307 |
+
1
|
20308 |
+
1
|
20309 |
+
1
|
20310 |
+
1
|
20311 |
+
1
|
20312 |
+
1
|
20313 |
+
1
|
20314 |
+
1
|
20315 |
+
1
|
20316 |
+
1
|
20317 |
+
1
|
20318 |
+
1
|
20319 |
+
1
|
20320 |
+
1
|
20321 |
+
1
|
20322 |
+
1
|
20323 |
+
1
|
20324 |
+
1
|
20325 |
+
1
|
20326 |
+
1
|
20327 |
+
1
|
20328 |
+
1
|
20329 |
+
1
|
20330 |
+
1
|
20331 |
+
1
|
20332 |
+
1
|
20333 |
+
1
|
20334 |
+
1
|
20335 |
+
1
|
20336 |
+
1
|
20337 |
+
1
|
20338 |
+
1
|
20339 |
+
1
|
20340 |
+
1
|
20341 |
+
1
|
20342 |
+
1
|
20343 |
+
1
|
20344 |
+
1
|
20345 |
+
1
|
20346 |
+
1
|
20347 |
+
1
|
20348 |
+
1
|
20349 |
+
1
|
20350 |
+
1
|
20351 |
+
1
|
20352 |
+
1
|
20353 |
+
1
|
20354 |
+
1
|
20355 |
+
1
|
20356 |
+
1
|
20357 |
+
1
|
20358 |
+
1
|
20359 |
+
1
|
20360 |
+
1
|
20361 |
+
1
|
20362 |
+
1
|
20363 |
+
1
|
20364 |
+
1
|
20365 |
+
1
|
20366 |
+
1
|
20367 |
+
1
|
20368 |
+
1
|
20369 |
+
1
|
20370 |
+
1
|
20371 |
+
1
|
20372 |
+
1
|
20373 |
+
1
|
20374 |
+
1
|
20375 |
+
1
|
20376 |
+
1
|
20377 |
+
1
|
20378 |
+
1
|
20379 |
+
1
|
20380 |
+
1
|
20381 |
+
1
|
20382 |
+
1
|
20383 |
+
1
|
20384 |
+
1
|
20385 |
+
1
|
20386 |
+
1
|
20387 |
+
1
|
20388 |
+
1
|
20389 |
+
1
|
20390 |
+
1
|
20391 |
+
1
|
20392 |
+
1
|
20393 |
+
1
|
20394 |
+
1
|
20395 |
+
1
|
20396 |
+
1
|
20397 |
+
1
|
20398 |
+
1
|
20399 |
+
1
|
20400 |
+
1
|
20401 |
+
1
|
20402 |
+
1
|
20403 |
+
1
|
20404 |
+
1
|
20405 |
+
1
|
20406 |
+
1
|
20407 |
+
1
|
20408 |
+
1
|
20409 |
+
1
|
20410 |
+
1
|
20411 |
+
1
|
20412 |
+
1
|
20413 |
+
1
|
20414 |
+
1
|
20415 |
+
1
|
20416 |
+
1
|
20417 |
+
1
|
20418 |
+
1
|
20419 |
+
1
|
20420 |
+
1
|
20421 |
+
1
|
20422 |
+
1
|
20423 |
+
1
|
20424 |
+
1
|
20425 |
+
1
|
20426 |
+
1
|
20427 |
+
1
|
20428 |
+
1
|
20429 |
+
1
|
20430 |
+
1
|
20431 |
+
1
|
20432 |
+
1
|
20433 |
+
1
|
20434 |
+
1
|
20435 |
+
1
|
20436 |
+
1
|
20437 |
+
1
|
20438 |
+
1
|
20439 |
+
1
|
20440 |
+
1
|
20441 |
+
1
|
20442 |
+
1
|
20443 |
+
1
|
20444 |
+
1
|
20445 |
+
1
|
20446 |
+
1
|
20447 |
+
1
|
20448 |
+
1
|
20449 |
+
1
|
20450 |
+
1
|
20451 |
+
1
|
20452 |
+
1
|
20453 |
+
1
|
20454 |
+
1
|
20455 |
+
1
|
20456 |
+
1
|
20457 |
+
1
|
20458 |
+
1
|
20459 |
+
1
|
20460 |
+
1
|
20461 |
+
1
|
20462 |
+
1
|
20463 |
+
1
|
20464 |
+
1
|
20465 |
+
1
|
20466 |
+
1
|
20467 |
+
1
|
20468 |
+
1
|
20469 |
+
1
|
20470 |
+
1
|
20471 |
+
1
|
20472 |
+
1
|
20473 |
+
1
|
20474 |
+
1
|
20475 |
+
1
|
20476 |
+
1
|
20477 |
+
1
|
20478 |
+
1
|
20479 |
+
1
|
20480 |
+
1
|
20481 |
+
1
|
20482 |
+
1
|
20483 |
+
1
|
20484 |
+
1
|
20485 |
+
1
|
20486 |
+
1
|
20487 |
+
1
|
20488 |
+
1
|
20489 |
+
1
|
20490 |
+
1
|
20491 |
+
1
|
20492 |
+
1
|
20493 |
+
1
|
20494 |
+
1
|
20495 |
+
1
|
20496 |
+
1
|
20497 |
+
1
|
20498 |
+
1
|
20499 |
+
1
|
20500 |
+
1
|
20501 |
+
1
|
20502 |
+
1
|
20503 |
+
1
|
20504 |
+
1
|
20505 |
+
1
|
20506 |
+
1
|
20507 |
+
1
|
20508 |
+
1
|
20509 |
+
1
|
20510 |
+
1
|
20511 |
+
1
|
20512 |
+
1
|
20513 |
+
1
|
20514 |
+
1
|
20515 |
+
1
|
20516 |
+
1
|
20517 |
+
1
|
20518 |
+
1
|
20519 |
+
1
|
20520 |
+
1
|
20521 |
+
1
|
20522 |
+
1
|
20523 |
+
1
|
20524 |
+
1
|
20525 |
+
1
|
20526 |
+
1
|
20527 |
+
1
|
20528 |
+
1
|
20529 |
+
1
|
20530 |
+
1
|
20531 |
+
1
|
20532 |
+
1
|
20533 |
+
1
|
20534 |
+
1
|
20535 |
+
1
|
20536 |
+
1
|
20537 |
+
1
|
20538 |
+
1
|
20539 |
+
1
|
20540 |
+
1
|
20541 |
+
1
|
20542 |
+
1
|
20543 |
+
1
|
20544 |
+
1
|
20545 |
+
1
|
20546 |
+
1
|
20547 |
+
1
|
20548 |
+
1
|
20549 |
+
1
|
20550 |
+
1
|
20551 |
+
1
|
20552 |
+
1
|
20553 |
+
1
|
20554 |
+
1
|
20555 |
+
1
|
20556 |
+
1
|
20557 |
+
1
|
20558 |
+
1
|
20559 |
+
1
|
20560 |
+
1
|
20561 |
+
1
|
20562 |
+
1
|
20563 |
+
1
|
20564 |
+
1
|
20565 |
+
1
|
20566 |
+
1
|
20567 |
+
1
|
20568 |
+
1
|
20569 |
+
1
|
20570 |
+
1
|
20571 |
+
1
|
20572 |
+
1
|
20573 |
+
1
|
20574 |
+
1
|
20575 |
+
1
|
20576 |
+
1
|
20577 |
+
1
|
20578 |
+
1
|
20579 |
+
1
|
20580 |
+
1
|
20581 |
+
1
|
20582 |
+
1
|
20583 |
+
1
|
20584 |
+
1
|
20585 |
+
1
|
20586 |
+
1
|
20587 |
+
1
|
20588 |
+
1
|
20589 |
+
1
|
20590 |
+
1
|
20591 |
+
1
|
20592 |
+
1
|
20593 |
+
1
|
20594 |
+
1
|
20595 |
+
1
|
20596 |
+
1
|
20597 |
+
1
|
20598 |
+
1
|
20599 |
+
1
|
20600 |
+
1
|
20601 |
+
1
|
20602 |
+
1
|
20603 |
+
1
|
20604 |
+
1
|
20605 |
+
1
|
20606 |
+
1
|
20607 |
+
1
|
20608 |
+
1
|
20609 |
+
1
|
20610 |
+
1
|
20611 |
+
1
|
20612 |
+
1
|
20613 |
+
1
|
20614 |
+
1
|
20615 |
+
1
|
20616 |
+
1
|
20617 |
+
1
|
20618 |
+
1
|
20619 |
+
1
|
20620 |
+
1
|
20621 |
+
1
|
20622 |
+
1
|
20623 |
+
1
|
20624 |
+
1
|
20625 |
+
1
|
20626 |
+
1
|
20627 |
+
1
|
20628 |
+
1
|
20629 |
+
1
|
20630 |
+
1
|
20631 |
+
1
|
20632 |
+
1
|
20633 |
+
1
|
20634 |
+
1
|
20635 |
+
1
|
20636 |
+
1
|
20637 |
+
1
|
20638 |
+
1
|
20639 |
+
1
|
20640 |
+
1
|
20641 |
+
1
|
20642 |
+
1
|
20643 |
+
1
|
20644 |
+
1
|
20645 |
+
1
|
20646 |
+
1
|
20647 |
+
1
|
20648 |
+
1
|
20649 |
+
1
|
20650 |
+
1
|
20651 |
+
1
|
20652 |
+
1
|
20653 |
+
1
|
20654 |
+
1
|
20655 |
+
1
|
20656 |
+
1
|
20657 |
+
1
|
20658 |
+
1
|
20659 |
+
1
|
20660 |
+
1
|
20661 |
+
1
|
20662 |
+
1
|
20663 |
+
1
|
20664 |
+
1
|
20665 |
+
1
|
20666 |
+
1
|
20667 |
+
1
|
20668 |
+
1
|
20669 |
+
1
|
20670 |
+
1
|
20671 |
+
1
|
20672 |
+
1
|
20673 |
+
1
|
20674 |
+
1
|
20675 |
+
1
|
20676 |
+
1
|
20677 |
+
1
|
20678 |
+
1
|
20679 |
+
1
|
20680 |
+
1
|
20681 |
+
1
|
20682 |
+
1
|
20683 |
+
1
|
20684 |
+
1
|
20685 |
+
1
|
20686 |
+
1
|
20687 |
+
1
|
20688 |
+
1
|
20689 |
+
1
|
20690 |
+
1
|
20691 |
+
1
|
20692 |
+
1
|
20693 |
+
1
|
20694 |
+
1
|
20695 |
+
1
|
20696 |
+
1
|
20697 |
+
1
|
20698 |
+
1
|
20699 |
+
1
|
20700 |
+
1
|
20701 |
+
1
|
20702 |
+
1
|
20703 |
+
1
|
20704 |
+
1
|
20705 |
+
1
|
20706 |
+
1
|
20707 |
+
1
|
20708 |
+
1
|
20709 |
+
1
|
20710 |
+
1
|
20711 |
+
1
|
20712 |
+
1
|
20713 |
+
1
|
20714 |
+
1
|
20715 |
+
1
|
20716 |
+
1
|
20717 |
+
1
|
20718 |
+
1
|
20719 |
+
1
|
20720 |
+
1
|
20721 |
+
1
|
20722 |
+
1
|
20723 |
+
1
|
20724 |
+
1
|
20725 |
+
1
|
20726 |
+
1
|
20727 |
+
1
|
20728 |
+
1
|
20729 |
+
1
|
20730 |
+
1
|
20731 |
+
1
|
20732 |
+
1
|
20733 |
+
1
|
20734 |
+
1
|
20735 |
+
1
|
20736 |
+
1
|
20737 |
+
1
|
20738 |
+
1
|
20739 |
+
1
|
20740 |
+
1
|
20741 |
+
1
|
20742 |
+
1
|
20743 |
+
1
|
20744 |
+
1
|
20745 |
+
1
|
20746 |
+
1
|
20747 |
+
1
|
20748 |
+
1
|
20749 |
+
1
|
20750 |
+
1
|
20751 |
+
1
|
20752 |
+
1
|
20753 |
+
1
|
20754 |
+
1
|
20755 |
+
1
|
20756 |
+
1
|
20757 |
+
1
|
20758 |
+
1
|
20759 |
+
1
|
20760 |
+
1
|
20761 |
+
1
|
20762 |
+
1
|
20763 |
+
1
|
20764 |
+
1
|
20765 |
+
1
|
20766 |
+
1
|
20767 |
+
1
|
20768 |
+
1
|
20769 |
+
1
|
20770 |
+
1
|
20771 |
+
1
|
20772 |
+
1
|
20773 |
+
1
|
20774 |
+
1
|
20775 |
+
1
|
20776 |
+
1
|
20777 |
+
1
|
20778 |
+
1
|
20779 |
+
1
|
20780 |
+
1
|
20781 |
+
1
|
20782 |
+
1
|
20783 |
+
1
|
20784 |
+
1
|
20785 |
+
1
|
20786 |
+
1
|
20787 |
+
1
|
20788 |
+
1
|
20789 |
+
1
|
20790 |
+
1
|
20791 |
+
1
|
20792 |
+
1
|
20793 |
+
1
|
20794 |
+
1
|
20795 |
+
1
|
20796 |
+
1
|
20797 |
+
1
|
20798 |
+
1
|
20799 |
+
1
|
20800 |
+
1
|
20801 |
+
1
|
20802 |
+
1
|
20803 |
+
1
|
20804 |
+
1
|
20805 |
+
1
|
20806 |
+
1
|
20807 |
+
1
|
20808 |
+
1
|
20809 |
+
1
|
20810 |
+
1
|
20811 |
+
1
|
20812 |
+
1
|
20813 |
+
1
|
20814 |
+
1
|
20815 |
+
1
|
20816 |
+
1
|
20817 |
+
1
|
20818 |
+
1
|
20819 |
+
1
|
20820 |
+
1
|
20821 |
+
1
|
20822 |
+
1
|
20823 |
+
1
|
20824 |
+
1
|
20825 |
+
1
|
20826 |
+
1
|
20827 |
+
1
|
20828 |
+
1
|
20829 |
+
1
|
20830 |
+
1
|
20831 |
+
1
|
20832 |
+
1
|
20833 |
+
1
|
20834 |
+
1
|
20835 |
+
1
|
20836 |
+
1
|
20837 |
+
1
|
20838 |
+
1
|
20839 |
+
1
|
20840 |
+
1
|
20841 |
+
1
|
20842 |
+
1
|
20843 |
+
1
|
20844 |
+
1
|
20845 |
+
1
|
20846 |
+
1
|
20847 |
+
1
|
20848 |
+
1
|
20849 |
+
1
|
20850 |
+
1
|
20851 |
+
1
|
20852 |
+
1
|
20853 |
+
1
|
20854 |
+
1
|
20855 |
+
1
|
20856 |
+
1
|
20857 |
+
1
|
20858 |
+
1
|
20859 |
+
1
|
20860 |
+
1
|
20861 |
+
1
|
20862 |
+
1
|
20863 |
+
1
|
20864 |
+
1
|
20865 |
+
1
|
20866 |
+
1
|
20867 |
+
1
|
20868 |
+
1
|
20869 |
+
1
|
20870 |
+
1
|
20871 |
+
1
|
20872 |
+
1
|
20873 |
+
1
|
20874 |
+
1
|
20875 |
+
1
|
20876 |
+
1
|
20877 |
+
1
|
20878 |
+
1
|
20879 |
+
1
|
20880 |
+
1
|
20881 |
+
1
|
20882 |
+
1
|
20883 |
+
1
|
20884 |
+
1
|
20885 |
+
1
|
20886 |
+
1
|
20887 |
+
1
|
20888 |
+
1
|
20889 |
+
1
|
20890 |
+
1
|
20891 |
+
1
|
20892 |
+
1
|
20893 |
+
1
|
20894 |
+
1
|
20895 |
+
1
|
20896 |
+
1
|
20897 |
+
1
|
20898 |
+
1
|
20899 |
+
1
|
20900 |
+
1
|
20901 |
+
1
|
20902 |
+
1
|
20903 |
+
1
|
20904 |
+
1
|
20905 |
+
1
|
20906 |
+
1
|
20907 |
+
1
|
20908 |
+
1
|
20909 |
+
1
|
20910 |
+
1
|
20911 |
+
1
|
20912 |
+
1
|
20913 |
+
1
|
20914 |
+
1
|
20915 |
+
1
|
20916 |
+
1
|
20917 |
+
1
|
20918 |
+
1
|
20919 |
+
1
|
20920 |
+
1
|
20921 |
+
1
|
20922 |
+
1
|
20923 |
+
1
|
20924 |
+
1
|
20925 |
+
1
|
20926 |
+
1
|
20927 |
+
1
|
20928 |
+
1
|
20929 |
+
1
|
20930 |
+
1
|
20931 |
+
1
|
20932 |
+
1
|
20933 |
+
1
|
20934 |
+
1
|
20935 |
+
1
|
20936 |
+
1
|
20937 |
+
1
|
20938 |
+
1
|
20939 |
+
1
|
20940 |
+
1
|
20941 |
+
1
|
20942 |
+
1
|
20943 |
+
1
|
20944 |
+
1
|
20945 |
+
1
|
20946 |
+
1
|
20947 |
+
1
|
20948 |
+
1
|
20949 |
+
1
|
20950 |
+
1
|
20951 |
+
1
|
20952 |
+
1
|
20953 |
+
1
|
20954 |
+
1
|
20955 |
+
1
|
20956 |
+
1
|
20957 |
+
1
|
20958 |
+
1
|
20959 |
+
1
|
20960 |
+
1
|
20961 |
+
1
|
20962 |
+
1
|
20963 |
+
1
|
20964 |
+
1
|
20965 |
+
1
|
20966 |
+
1
|
20967 |
+
1
|
20968 |
+
1
|
20969 |
+
1
|
20970 |
+
1
|
20971 |
+
1
|
20972 |
+
1
|
20973 |
+
1
|
20974 |
+
1
|
20975 |
+
1
|
20976 |
+
1
|
20977 |
+
1
|
20978 |
+
1
|
20979 |
+
1
|
20980 |
+
1
|
20981 |
+
1
|
20982 |
+
1
|
20983 |
+
1
|
20984 |
+
1
|
20985 |
+
1
|
20986 |
+
1
|
20987 |
+
1
|
20988 |
+
1
|
20989 |
+
1
|
20990 |
+
1
|
20991 |
+
1
|
20992 |
+
1
|
20993 |
+
1
|
20994 |
+
1
|
20995 |
+
1
|
20996 |
+
1
|
20997 |
+
1
|
20998 |
+
1
|
20999 |
+
1
|
21000 |
+
1
|
21001 |
+
1
|
21002 |
+
1
|
21003 |
+
1
|
21004 |
+
1
|
21005 |
+
1
|
21006 |
+
1
|
21007 |
+
1
|
21008 |
+
1
|
21009 |
+
1
|
21010 |
+
1
|
21011 |
+
1
|
21012 |
+
1
|
21013 |
+
1
|
21014 |
+
1
|
21015 |
+
1
|
21016 |
+
1
|
21017 |
+
1
|
21018 |
+
1
|
21019 |
+
1
|
21020 |
+
1
|
21021 |
+
1
|
21022 |
+
1
|
21023 |
+
1
|
21024 |
+
1
|
21025 |
+
1
|
21026 |
+
1
|
21027 |
+
1
|
21028 |
+
1
|
21029 |
+
1
|
21030 |
+
1
|
21031 |
+
1
|
21032 |
+
1
|
21033 |
+
1
|
21034 |
+
1
|
21035 |
+
1
|
21036 |
+
1
|
21037 |
+
1
|
21038 |
+
1
|
21039 |
+
1
|
21040 |
+
1
|
21041 |
+
1
|
21042 |
+
1
|
21043 |
+
1
|
21044 |
+
1
|
21045 |
+
1
|
21046 |
+
1
|
21047 |
+
1
|
21048 |
+
1
|
21049 |
+
1
|
21050 |
+
1
|
21051 |
+
1
|
21052 |
+
1
|
21053 |
+
1
|
21054 |
+
1
|
21055 |
+
1
|
21056 |
+
1
|
21057 |
+
1
|
21058 |
+
1
|
21059 |
+
1
|
21060 |
+
1
|
21061 |
+
1
|
21062 |
+
1
|
21063 |
+
1
|
21064 |
+
1
|
21065 |
+
1
|
21066 |
+
1
|
21067 |
+
1
|
21068 |
+
1
|
21069 |
+
1
|
21070 |
+
1
|
21071 |
+
1
|
21072 |
+
1
|
21073 |
+
1
|
21074 |
+
1
|
21075 |
+
1
|
21076 |
+
1
|
21077 |
+
1
|
21078 |
+
1
|
21079 |
+
1
|
21080 |
+
1
|
21081 |
+
1
|
21082 |
+
1
|
21083 |
+
1
|
21084 |
+
1
|
21085 |
+
1
|
21086 |
+
1
|
21087 |
+
1
|
21088 |
+
1
|
21089 |
+
1
|
21090 |
+
1
|
21091 |
+
1
|
21092 |
+
1
|
21093 |
+
1
|
21094 |
+
1
|
21095 |
+
1
|
21096 |
+
1
|
21097 |
+
1
|
21098 |
+
1
|
21099 |
+
1
|
21100 |
+
1
|
21101 |
+
1
|
21102 |
+
1
|
21103 |
+
1
|
21104 |
+
1
|
21105 |
+
1
|
21106 |
+
1
|
21107 |
+
1
|
21108 |
+
1
|
21109 |
+
1
|
21110 |
+
1
|
21111 |
+
1
|
21112 |
+
1
|
21113 |
+
1
|
21114 |
+
1
|
21115 |
+
1
|
21116 |
+
1
|
21117 |
+
1
|
21118 |
+
1
|
21119 |
+
1
|
21120 |
+
1
|
21121 |
+
1
|
21122 |
+
1
|
21123 |
+
1
|
21124 |
+
1
|
21125 |
+
1
|
21126 |
+
1
|
21127 |
+
1
|
21128 |
+
1
|
21129 |
+
1
|
21130 |
+
1
|
21131 |
+
1
|
21132 |
+
1
|
21133 |
+
1
|
21134 |
+
1
|
21135 |
+
1
|
21136 |
+
1
|
21137 |
+
1
|
21138 |
+
1
|
21139 |
+
1
|
21140 |
+
1
|
21141 |
+
1
|
21142 |
+
1
|
21143 |
+
1
|
21144 |
+
1
|
21145 |
+
1
|
21146 |
+
1
|
21147 |
+
1
|
21148 |
+
1
|
21149 |
+
1
|
21150 |
+
1
|
21151 |
+
1
|
21152 |
+
1
|
21153 |
+
1
|
21154 |
+
1
|
21155 |
+
1
|
21156 |
+
1
|
21157 |
+
1
|
21158 |
+
1
|
21159 |
+
1
|
21160 |
+
1
|
21161 |
+
1
|
21162 |
+
1
|
21163 |
+
1
|
21164 |
+
1
|
21165 |
+
1
|
21166 |
+
1
|
21167 |
+
1
|
21168 |
+
1
|
21169 |
+
1
|
21170 |
+
1
|
21171 |
+
1
|
21172 |
+
1
|
21173 |
+
1
|
21174 |
+
1
|
21175 |
+
1
|
21176 |
+
1
|
21177 |
+
2
|
21178 |
+
1
|
21179 |
+
1
|
21180 |
+
1
|
21181 |
+
2
|
21182 |
+
1
|
21183 |
+
1
|
21184 |
+
1
|
21185 |
+
1
|
21186 |
+
1
|
21187 |
+
1
|
21188 |
+
1
|
21189 |
+
1
|
21190 |
+
1
|
21191 |
+
2
|
21192 |
+
1
|
21193 |
+
1
|
21194 |
+
1
|
21195 |
+
1
|
21196 |
+
1
|
21197 |
+
1
|
21198 |
+
1
|
21199 |
+
1
|
21200 |
+
1
|
21201 |
+
1
|
21202 |
+
1
|
21203 |
+
1
|
21204 |
+
1
|
21205 |
+
1
|
21206 |
+
1
|
21207 |
+
1
|
21208 |
+
1
|
21209 |
+
1
|
21210 |
+
1
|
21211 |
+
1
|
21212 |
+
1
|
21213 |
+
1
|
21214 |
+
1
|
21215 |
+
1
|
21216 |
+
1
|
21217 |
+
1
|
21218 |
+
1
|
21219 |
+
1
|
21220 |
+
1
|
21221 |
+
1
|
21222 |
+
1
|
21223 |
+
1
|
21224 |
+
1
|
21225 |
+
1
|
21226 |
+
1
|
21227 |
+
1
|
21228 |
+
1
|
21229 |
+
1
|
21230 |
+
1
|
21231 |
+
1
|
21232 |
+
1
|
21233 |
+
1
|
21234 |
+
1
|
21235 |
+
1
|
21236 |
+
1
|
21237 |
+
1
|
21238 |
+
1
|
21239 |
+
1
|
21240 |
+
1
|
21241 |
+
1
|
21242 |
+
1
|
21243 |
+
1
|
21244 |
+
1
|
21245 |
+
1
|
21246 |
+
1
|
21247 |
+
1
|
21248 |
+
1
|
21249 |
+
1
|
21250 |
+
1
|
21251 |
+
1
|
21252 |
+
1
|
21253 |
+
1
|
21254 |
+
1
|
21255 |
+
1
|
21256 |
+
1
|
21257 |
+
1
|
21258 |
+
1
|
21259 |
+
1
|
21260 |
+
1
|
21261 |
+
1
|
21262 |
+
1
|
21263 |
+
1
|
21264 |
+
1
|
21265 |
+
1
|
21266 |
+
1
|
21267 |
+
1
|
21268 |
+
1
|
21269 |
+
1
|
21270 |
+
1
|
21271 |
+
1
|
21272 |
+
1
|
21273 |
+
1
|
21274 |
+
1
|
21275 |
+
1
|
21276 |
+
1
|
21277 |
+
1
|
21278 |
+
1
|
21279 |
+
1
|
21280 |
+
1
|
21281 |
+
1
|
21282 |
+
1
|
21283 |
+
1
|
21284 |
+
1
|
21285 |
+
1
|
21286 |
+
1
|
21287 |
+
1
|
21288 |
+
1
|
21289 |
+
1
|
21290 |
+
1
|
21291 |
+
1
|
21292 |
+
1
|
21293 |
+
1
|
21294 |
+
1
|
21295 |
+
1
|
21296 |
+
1
|
21297 |
+
1
|
21298 |
+
1
|
21299 |
+
1
|
21300 |
+
1
|
21301 |
+
1
|
21302 |
+
1
|
21303 |
+
1
|
21304 |
+
1
|
21305 |
+
1
|
21306 |
+
1
|
21307 |
+
1
|
21308 |
+
1
|
21309 |
+
1
|
21310 |
+
1
|
21311 |
+
1
|
21312 |
+
1
|
21313 |
+
1
|
21314 |
+
1
|
21315 |
+
1
|
21316 |
+
1
|
21317 |
+
1
|
21318 |
+
1
|
21319 |
+
1
|
21320 |
+
1
|
21321 |
+
1
|
21322 |
+
1
|
21323 |
+
1
|
21324 |
+
1
|
21325 |
+
1
|
21326 |
+
1
|
21327 |
+
1
|
21328 |
+
1
|
21329 |
+
1
|
21330 |
+
1
|
21331 |
+
1
|
21332 |
+
1
|
21333 |
+
1
|
21334 |
+
1
|
21335 |
+
1
|
21336 |
+
1
|
21337 |
+
1
|
21338 |
+
1
|
21339 |
+
1
|
21340 |
+
1
|
21341 |
+
1
|
21342 |
+
1
|
21343 |
+
1
|
21344 |
+
1
|
21345 |
+
1
|
21346 |
+
1
|
21347 |
+
1
|
21348 |
+
1
|
21349 |
+
1
|
21350 |
+
1
|
21351 |
+
1
|
21352 |
+
1
|
21353 |
+
1
|
21354 |
+
1
|
21355 |
+
1
|
21356 |
+
1
|
21357 |
+
1
|
21358 |
+
1
|
21359 |
+
1
|
21360 |
+
1
|
21361 |
+
1
|
21362 |
+
1
|
21363 |
+
1
|
21364 |
+
1
|
21365 |
+
1
|
21366 |
+
1
|
21367 |
+
1
|
21368 |
+
1
|
21369 |
+
1
|
21370 |
+
1
|
21371 |
+
1
|
21372 |
+
1
|
21373 |
+
1
|
21374 |
+
1
|
21375 |
+
1
|
21376 |
+
1
|
21377 |
+
1
|
21378 |
+
1
|
21379 |
+
1
|
21380 |
+
1
|
21381 |
+
1
|
21382 |
+
1
|
21383 |
+
1
|
21384 |
+
1
|
21385 |
+
1
|
21386 |
+
1
|
21387 |
+
1
|
21388 |
+
1
|
21389 |
+
1
|
21390 |
+
1
|
21391 |
+
1
|
21392 |
+
1
|
21393 |
+
1
|
21394 |
+
1
|
21395 |
+
1
|
21396 |
+
1
|
21397 |
+
1
|
21398 |
+
1
|
21399 |
+
1
|
21400 |
+
1
|
21401 |
+
1
|
21402 |
+
1
|
21403 |
+
1
|
21404 |
+
1
|
21405 |
+
1
|
21406 |
+
1
|
21407 |
+
1
|
21408 |
+
1
|
21409 |
+
1
|
21410 |
+
1
|
21411 |
+
1
|
21412 |
+
1
|
21413 |
+
1
|
21414 |
+
1
|
21415 |
+
1
|
21416 |
+
1
|
21417 |
+
1
|
21418 |
+
1
|
21419 |
+
1
|
21420 |
+
1
|
21421 |
+
1
|
21422 |
+
1
|
21423 |
+
1
|
21424 |
+
1
|
21425 |
+
1
|
21426 |
+
1
|
21427 |
+
1
|
21428 |
+
1
|
21429 |
+
1
|
21430 |
+
1
|
21431 |
+
1
|
21432 |
+
1
|
21433 |
+
1
|
21434 |
+
1
|
21435 |
+
1
|
21436 |
+
1
|
21437 |
+
1
|
21438 |
+
1
|
21439 |
+
1
|
21440 |
+
1
|
21441 |
+
1
|
21442 |
+
1
|
21443 |
+
1
|
21444 |
+
1
|
21445 |
+
1
|
21446 |
+
1
|
21447 |
+
1
|
21448 |
+
1
|
21449 |
+
1
|
21450 |
+
1
|
21451 |
+
1
|
21452 |
+
1
|
21453 |
+
1
|
21454 |
+
1
|
21455 |
+
1
|
21456 |
+
1
|
21457 |
+
1
|
21458 |
+
1
|
21459 |
+
1
|
21460 |
+
1
|
21461 |
+
1
|
21462 |
+
1
|
21463 |
+
1
|
21464 |
+
1
|
21465 |
+
1
|
21466 |
+
1
|
21467 |
+
1
|
21468 |
+
1
|
21469 |
+
1
|
21470 |
+
1
|
21471 |
+
1
|
21472 |
+
1
|
21473 |
+
1
|
21474 |
+
1
|
21475 |
+
1
|
21476 |
+
1
|
21477 |
+
1
|
21478 |
+
1
|
21479 |
+
1
|
21480 |
+
1
|
21481 |
+
1
|
21482 |
+
1
|
21483 |
+
1
|
21484 |
+
1
|
21485 |
+
1
|
21486 |
+
1
|
21487 |
+
1
|
21488 |
+
1
|
21489 |
+
1
|
21490 |
+
1
|
21491 |
+
1
|
21492 |
+
1
|
21493 |
+
1
|
21494 |
+
1
|
21495 |
+
1
|
21496 |
+
1
|
21497 |
+
1
|
21498 |
+
1
|
21499 |
+
1
|
21500 |
+
1
|
21501 |
+
1
|
21502 |
+
1
|
21503 |
+
1
|
21504 |
+
1
|
21505 |
+
1
|
21506 |
+
1
|
21507 |
+
1
|
21508 |
+
1
|
21509 |
+
1
|
21510 |
+
1
|
21511 |
+
1
|
21512 |
+
1
|
21513 |
+
1
|
21514 |
+
1
|
21515 |
+
1
|
21516 |
+
1
|
21517 |
+
1
|
21518 |
+
1
|
21519 |
+
1
|
21520 |
+
1
|
21521 |
+
1
|
21522 |
+
1
|
21523 |
+
1
|
21524 |
+
1
|
21525 |
+
1
|
21526 |
+
1
|
21527 |
+
1
|
21528 |
+
1
|
21529 |
+
1
|
21530 |
+
1
|
21531 |
+
1
|
21532 |
+
1
|
21533 |
+
1
|
21534 |
+
1
|
21535 |
+
1
|
21536 |
+
1
|
21537 |
+
1
|
21538 |
+
1
|
21539 |
+
1
|
21540 |
+
1
|
21541 |
+
1
|
21542 |
+
1
|
21543 |
+
1
|
21544 |
+
1
|
21545 |
+
1
|
21546 |
+
1
|
21547 |
+
1
|
21548 |
+
1
|
21549 |
+
1
|
21550 |
+
1
|
21551 |
+
1
|
21552 |
+
1
|
21553 |
+
1
|
21554 |
+
1
|
21555 |
+
1
|
21556 |
+
1
|
21557 |
+
1
|
21558 |
+
1
|
21559 |
+
1
|
21560 |
+
1
|
21561 |
+
1
|
21562 |
+
1
|
21563 |
+
1
|
21564 |
+
1
|
21565 |
+
1
|
21566 |
+
1
|
21567 |
+
1
|
21568 |
+
1
|
21569 |
+
1
|
21570 |
+
1
|
21571 |
+
1
|
21572 |
+
1
|
21573 |
+
1
|
21574 |
+
1
|
21575 |
+
1
|
21576 |
+
1
|
21577 |
+
1
|
21578 |
+
1
|
21579 |
+
1
|
21580 |
+
1
|
21581 |
+
1
|
21582 |
+
1
|
21583 |
+
1
|
21584 |
+
1
|
21585 |
+
1
|
21586 |
+
1
|
21587 |
+
1
|
21588 |
+
1
|
21589 |
+
1
|
21590 |
+
1
|
21591 |
+
1
|
21592 |
+
1
|
21593 |
+
1
|
21594 |
+
1
|
21595 |
+
1
|
21596 |
+
1
|
21597 |
+
1
|
21598 |
+
1
|
21599 |
+
1
|
21600 |
+
1
|
21601 |
+
1
|
21602 |
+
1
|
21603 |
+
1
|
21604 |
+
1
|
21605 |
+
1
|
21606 |
+
1
|
21607 |
+
1
|
21608 |
+
1
|
21609 |
+
1
|
21610 |
+
1
|
21611 |
+
1
|
21612 |
+
1
|
21613 |
+
1
|
21614 |
+
1
|
21615 |
+
1
|
21616 |
+
1
|
21617 |
+
1
|
21618 |
+
1
|
21619 |
+
1
|
21620 |
+
1
|
21621 |
+
1
|
21622 |
+
1
|
21623 |
+
1
|
21624 |
+
1
|
21625 |
+
1
|
21626 |
+
1
|
21627 |
+
1
|
21628 |
+
1
|
21629 |
+
1
|
21630 |
+
1
|
21631 |
+
1
|
21632 |
+
1
|
21633 |
+
1
|
21634 |
+
1
|
21635 |
+
1
|
21636 |
+
1
|
21637 |
+
1
|
21638 |
+
1
|
21639 |
+
1
|
21640 |
+
1
|
21641 |
+
1
|
21642 |
+
1
|
21643 |
+
1
|
21644 |
+
1
|
21645 |
+
1
|
21646 |
+
1
|
21647 |
+
1
|
21648 |
+
1
|
21649 |
+
1
|
21650 |
+
1
|
21651 |
+
1
|
21652 |
+
1
|
21653 |
+
1
|
21654 |
+
1
|
21655 |
+
1
|
21656 |
+
1
|
21657 |
+
1
|
21658 |
+
1
|
21659 |
+
1
|
21660 |
+
1
|
21661 |
+
1
|
21662 |
+
1
|
21663 |
+
1
|
21664 |
+
1
|
21665 |
+
1
|
21666 |
+
1
|
21667 |
+
1
|
21668 |
+
1
|
21669 |
+
1
|
21670 |
+
1
|
21671 |
+
1
|
21672 |
+
1
|
21673 |
+
1
|
21674 |
+
1
|
21675 |
+
1
|
21676 |
+
1
|
21677 |
+
1
|
21678 |
+
1
|
21679 |
+
1
|
21680 |
+
1
|
21681 |
+
1
|
21682 |
+
1
|
21683 |
+
1
|
21684 |
+
1
|
21685 |
+
1
|
21686 |
+
1
|
21687 |
+
1
|
21688 |
+
1
|
21689 |
+
1
|
21690 |
+
1
|
21691 |
+
1
|
21692 |
+
1
|
21693 |
+
1
|
21694 |
+
1
|
21695 |
+
1
|
21696 |
+
1
|
21697 |
+
1
|
21698 |
+
1
|
21699 |
+
1
|
21700 |
+
1
|
21701 |
+
1
|
21702 |
+
1
|
21703 |
+
1
|
21704 |
+
1
|
21705 |
+
1
|
21706 |
+
1
|
21707 |
+
1
|
21708 |
+
1
|
21709 |
+
1
|
21710 |
+
1
|
21711 |
+
1
|
21712 |
+
1
|
21713 |
+
1
|
21714 |
+
1
|
21715 |
+
1
|
21716 |
+
1
|
21717 |
+
1
|
21718 |
+
1
|
21719 |
+
1
|
21720 |
+
1
|
21721 |
+
1
|
21722 |
+
1
|
21723 |
+
1
|
21724 |
+
1
|
21725 |
+
1
|
21726 |
+
1
|
21727 |
+
1
|
21728 |
+
1
|
21729 |
+
1
|
21730 |
+
1
|
21731 |
+
1
|
21732 |
+
1
|
21733 |
+
1
|
21734 |
+
1
|
21735 |
+
1
|
21736 |
+
1
|
21737 |
+
1
|
21738 |
+
1
|
21739 |
+
1
|
21740 |
+
1
|
21741 |
+
1
|
21742 |
+
1
|
21743 |
+
1
|
21744 |
+
1
|
21745 |
+
1
|
21746 |
+
1
|
21747 |
+
1
|
21748 |
+
1
|
21749 |
+
1
|
21750 |
+
1
|
21751 |
+
1
|
21752 |
+
1
|
21753 |
+
1
|
21754 |
+
1
|
21755 |
+
1
|
21756 |
+
1
|
21757 |
+
1
|
21758 |
+
1
|
21759 |
+
1
|
21760 |
+
1
|
21761 |
+
1
|
21762 |
+
1
|
21763 |
+
1
|
21764 |
+
1
|
21765 |
+
1
|
21766 |
+
1
|
21767 |
+
1
|
21768 |
+
1
|
21769 |
+
1
|
21770 |
+
1
|
21771 |
+
1
|
21772 |
+
1
|
21773 |
+
1
|
21774 |
+
1
|
21775 |
+
1
|
21776 |
+
1
|
21777 |
+
1
|
21778 |
+
1
|
21779 |
+
1
|
21780 |
+
1
|
21781 |
+
1
|
21782 |
+
1
|
21783 |
+
1
|
21784 |
+
1
|
21785 |
+
1
|
21786 |
+
1
|
21787 |
+
1
|
21788 |
+
1
|
21789 |
+
1
|
21790 |
+
1
|
21791 |
+
1
|
21792 |
+
1
|
21793 |
+
1
|
21794 |
+
1
|
21795 |
+
1
|
21796 |
+
1
|
21797 |
+
1
|
21798 |
+
1
|
21799 |
+
1
|
21800 |
+
1
|
21801 |
+
1
|
21802 |
+
1
|
21803 |
+
2
|
21804 |
+
2
|
21805 |
+
1
|
21806 |
+
1
|
21807 |
+
2
|
21808 |
+
1
|
21809 |
+
1
|
21810 |
+
1
|
21811 |
+
1
|
21812 |
+
1
|
21813 |
+
1
|
21814 |
+
1
|
21815 |
+
1
|
21816 |
+
1
|
21817 |
+
1
|
21818 |
+
1
|
21819 |
+
1
|
21820 |
+
1
|
21821 |
+
1
|
21822 |
+
1
|
21823 |
+
1
|
21824 |
+
1
|
21825 |
+
1
|
21826 |
+
1
|
21827 |
+
1
|
21828 |
+
1
|
21829 |
+
1
|
21830 |
+
1
|
21831 |
+
1
|
21832 |
+
1
|
21833 |
+
1
|
21834 |
+
1
|
21835 |
+
1
|
21836 |
+
1
|
21837 |
+
1
|
21838 |
+
1
|
21839 |
+
1
|
21840 |
+
1
|
21841 |
+
1
|
21842 |
+
1
|
21843 |
+
1
|
21844 |
+
1
|
21845 |
+
1
|
21846 |
+
1
|
21847 |
+
1
|
21848 |
+
1
|
21849 |
+
1
|
21850 |
+
1
|
21851 |
+
1
|
21852 |
+
1
|
21853 |
+
1
|
21854 |
+
1
|
21855 |
+
1
|
21856 |
+
1
|
21857 |
+
1
|
21858 |
+
1
|
21859 |
+
1
|
21860 |
+
1
|
21861 |
+
1
|
21862 |
+
1
|
21863 |
+
1
|
21864 |
+
1
|
21865 |
+
1
|
21866 |
+
1
|
21867 |
+
1
|
21868 |
+
1
|
21869 |
+
1
|
21870 |
+
1
|
21871 |
+
1
|
21872 |
+
1
|
21873 |
+
1
|
21874 |
+
1
|
21875 |
+
1
|
21876 |
+
1
|
21877 |
+
1
|
21878 |
+
1
|
21879 |
+
1
|
21880 |
+
1
|
21881 |
+
1
|
21882 |
+
1
|
21883 |
+
1
|
21884 |
+
1
|
21885 |
+
1
|
21886 |
+
1
|
21887 |
+
1
|
21888 |
+
1
|
21889 |
+
1
|
21890 |
+
1
|
21891 |
+
1
|
21892 |
+
1
|
21893 |
+
1
|
21894 |
+
1
|
21895 |
+
1
|
21896 |
+
1
|
21897 |
+
1
|
21898 |
+
1
|
21899 |
+
1
|
21900 |
+
1
|
21901 |
+
1
|
21902 |
+
1
|
21903 |
+
1
|
21904 |
+
1
|
21905 |
+
1
|
21906 |
+
1
|
21907 |
+
1
|
21908 |
+
1
|
21909 |
+
1
|
21910 |
+
1
|
21911 |
+
1
|
21912 |
+
1
|
21913 |
+
1
|
21914 |
+
1
|
21915 |
+
1
|
21916 |
+
1
|
21917 |
+
1
|
21918 |
+
1
|
21919 |
+
1
|
21920 |
+
1
|
21921 |
+
1
|
21922 |
+
1
|
21923 |
+
1
|
21924 |
+
1
|
21925 |
+
1
|
21926 |
+
1
|
21927 |
+
1
|
21928 |
+
1
|
21929 |
+
1
|
21930 |
+
1
|
21931 |
+
1
|
21932 |
+
1
|
21933 |
+
1
|
21934 |
+
1
|
21935 |
+
1
|
21936 |
+
1
|
21937 |
+
1
|
21938 |
+
1
|
21939 |
+
1
|
21940 |
+
1
|
21941 |
+
1
|
21942 |
+
1
|
21943 |
+
1
|
21944 |
+
1
|
21945 |
+
1
|
21946 |
+
1
|
21947 |
+
1
|
21948 |
+
1
|
21949 |
+
1
|
21950 |
+
1
|
21951 |
+
1
|
21952 |
+
1
|
21953 |
+
1
|
21954 |
+
1
|
21955 |
+
1
|
21956 |
+
1
|
21957 |
+
1
|
21958 |
+
1
|
21959 |
+
1
|
21960 |
+
1
|
21961 |
+
1
|
21962 |
+
1
|
21963 |
+
1
|
21964 |
+
1
|
21965 |
+
1
|
21966 |
+
1
|
21967 |
+
1
|
21968 |
+
1
|
21969 |
+
1
|
21970 |
+
1
|
21971 |
+
1
|
21972 |
+
1
|
21973 |
+
1
|
21974 |
+
1
|
21975 |
+
1
|
21976 |
+
1
|
21977 |
+
1
|
21978 |
+
1
|
21979 |
+
1
|
21980 |
+
1
|
21981 |
+
1
|
21982 |
+
1
|
21983 |
+
1
|
21984 |
+
1
|
21985 |
+
1
|
21986 |
+
1
|
21987 |
+
1
|
21988 |
+
1
|
21989 |
+
1
|
21990 |
+
1
|
21991 |
+
1
|
21992 |
+
1
|
21993 |
+
1
|
21994 |
+
1
|
21995 |
+
1
|
21996 |
+
1
|
21997 |
+
1
|
21998 |
+
1
|
21999 |
+
1
|
22000 |
+
1
|
22001 |
+
1
|
22002 |
+
1
|
22003 |
+
1
|
22004 |
+
1
|
22005 |
+
1
|
22006 |
+
1
|
22007 |
+
1
|
22008 |
+
1
|
22009 |
+
1
|
22010 |
+
1
|
22011 |
+
1
|
22012 |
+
1
|
22013 |
+
1
|
22014 |
+
1
|
22015 |
+
1
|
22016 |
+
1
|
22017 |
+
1
|
22018 |
+
1
|
22019 |
+
1
|
22020 |
+
1
|
22021 |
+
1
|
22022 |
+
1
|
22023 |
+
1
|
22024 |
+
1
|
22025 |
+
1
|
22026 |
+
1
|
22027 |
+
1
|
22028 |
+
1
|
22029 |
+
1
|
22030 |
+
1
|
22031 |
+
1
|
22032 |
+
1
|
22033 |
+
1
|
22034 |
+
1
|
22035 |
+
1
|
22036 |
+
1
|
22037 |
+
1
|
22038 |
+
1
|
22039 |
+
1
|
22040 |
+
1
|
22041 |
+
1
|
22042 |
+
1
|
22043 |
+
1
|
22044 |
+
1
|
22045 |
+
1
|
22046 |
+
1
|
22047 |
+
1
|
22048 |
+
1
|
22049 |
+
1
|
22050 |
+
1
|
22051 |
+
1
|
22052 |
+
1
|
22053 |
+
1
|
22054 |
+
1
|
22055 |
+
1
|
22056 |
+
1
|
22057 |
+
1
|
22058 |
+
1
|
22059 |
+
1
|
22060 |
+
1
|
22061 |
+
1
|
22062 |
+
1
|
22063 |
+
1
|
22064 |
+
1
|
22065 |
+
1
|
22066 |
+
1
|
22067 |
+
1
|
22068 |
+
1
|
22069 |
+
1
|
22070 |
+
1
|
22071 |
+
1
|
22072 |
+
1
|
22073 |
+
1
|
22074 |
+
1
|
22075 |
+
1
|
22076 |
+
1
|
22077 |
+
1
|
22078 |
+
1
|
22079 |
+
1
|
22080 |
+
1
|
22081 |
+
1
|
22082 |
+
1
|
22083 |
+
1
|
22084 |
+
1
|
22085 |
+
1
|
22086 |
+
1
|
22087 |
+
1
|
22088 |
+
1
|
22089 |
+
1
|
22090 |
+
1
|
22091 |
+
1
|
22092 |
+
1
|
22093 |
+
1
|
22094 |
+
1
|
22095 |
+
1
|
22096 |
+
1
|
22097 |
+
1
|
22098 |
+
1
|
22099 |
+
1
|
22100 |
+
1
|
22101 |
+
1
|
22102 |
+
1
|
22103 |
+
1
|
22104 |
+
1
|
22105 |
+
1
|
22106 |
+
1
|
22107 |
+
1
|
22108 |
+
1
|
22109 |
+
1
|
22110 |
+
1
|
22111 |
+
1
|
22112 |
+
1
|
22113 |
+
1
|
22114 |
+
1
|
22115 |
+
1
|
22116 |
+
1
|
22117 |
+
1
|
22118 |
+
1
|
22119 |
+
1
|
22120 |
+
1
|
22121 |
+
1
|
22122 |
+
1
|
22123 |
+
1
|
22124 |
+
1
|
22125 |
+
1
|
22126 |
+
1
|
22127 |
+
1
|
22128 |
+
1
|
22129 |
+
1
|
22130 |
+
1
|
22131 |
+
1
|
22132 |
+
1
|
22133 |
+
1
|
22134 |
+
1
|
22135 |
+
1
|
22136 |
+
1
|
22137 |
+
1
|
22138 |
+
1
|
22139 |
+
1
|
22140 |
+
1
|
22141 |
+
1
|
22142 |
+
1
|
22143 |
+
1
|
22144 |
+
1
|
22145 |
+
1
|
22146 |
+
1
|
22147 |
+
1
|
22148 |
+
1
|
22149 |
+
1
|
22150 |
+
1
|
22151 |
+
1
|
22152 |
+
1
|
22153 |
+
1
|
22154 |
+
1
|
22155 |
+
1
|
22156 |
+
1
|
22157 |
+
1
|
22158 |
+
1
|
22159 |
+
1
|
22160 |
+
1
|
22161 |
+
1
|
22162 |
+
1
|
22163 |
+
1
|
22164 |
+
1
|
22165 |
+
1
|
22166 |
+
1
|
22167 |
+
1
|
22168 |
+
1
|
22169 |
+
1
|
22170 |
+
1
|
22171 |
+
1
|
22172 |
+
1
|
22173 |
+
1
|
22174 |
+
1
|
22175 |
+
1
|
22176 |
+
1
|
22177 |
+
1
|
22178 |
+
1
|
22179 |
+
1
|
22180 |
+
1
|
22181 |
+
1
|
22182 |
+
1
|
22183 |
+
1
|
22184 |
+
1
|
22185 |
+
1
|
22186 |
+
1
|
22187 |
+
1
|
22188 |
+
1
|
22189 |
+
1
|
22190 |
+
1
|
22191 |
+
1
|
22192 |
+
1
|
22193 |
+
1
|
22194 |
+
1
|
22195 |
+
1
|
22196 |
+
1
|
22197 |
+
1
|
22198 |
+
1
|
22199 |
+
1
|
22200 |
+
1
|
22201 |
+
1
|
22202 |
+
1
|
22203 |
+
1
|
22204 |
+
1
|
22205 |
+
1
|
22206 |
+
1
|
22207 |
+
1
|
22208 |
+
1
|
22209 |
+
1
|
22210 |
+
1
|
22211 |
+
1
|
22212 |
+
1
|
22213 |
+
1
|
22214 |
+
1
|
22215 |
+
1
|
22216 |
+
1
|
22217 |
+
1
|
22218 |
+
1
|
22219 |
+
1
|
22220 |
+
1
|
22221 |
+
1
|
22222 |
+
1
|
22223 |
+
1
|
22224 |
+
1
|
22225 |
+
1
|
22226 |
+
1
|
22227 |
+
1
|
22228 |
+
1
|
22229 |
+
1
|
22230 |
+
1
|
22231 |
+
1
|
22232 |
+
1
|
22233 |
+
1
|
22234 |
+
1
|
22235 |
+
1
|
22236 |
+
1
|
22237 |
+
1
|
22238 |
+
1
|
22239 |
+
1
|
22240 |
+
1
|
22241 |
+
1
|
22242 |
+
1
|
22243 |
+
1
|
22244 |
+
1
|
22245 |
+
1
|
22246 |
+
1
|
22247 |
+
1
|
22248 |
+
1
|
22249 |
+
1
|
22250 |
+
1
|
22251 |
+
1
|
22252 |
+
1
|
22253 |
+
1
|
22254 |
+
1
|
22255 |
+
1
|
22256 |
+
1
|
22257 |
+
1
|
22258 |
+
1
|
22259 |
+
1
|
22260 |
+
1
|
22261 |
+
1
|
22262 |
+
1
|
22263 |
+
1
|
22264 |
+
1
|
22265 |
+
1
|
22266 |
+
1
|
22267 |
+
1
|
22268 |
+
1
|
22269 |
+
1
|
22270 |
+
1
|
22271 |
+
1
|
22272 |
+
1
|
22273 |
+
1
|
22274 |
+
1
|
22275 |
+
1
|
22276 |
+
1
|
22277 |
+
1
|
22278 |
+
1
|
22279 |
+
1
|
22280 |
+
1
|
22281 |
+
1
|
22282 |
+
1
|
22283 |
+
1
|
22284 |
+
1
|
22285 |
+
1
|
22286 |
+
1
|
22287 |
+
1
|
22288 |
+
1
|
22289 |
+
1
|
22290 |
+
1
|
22291 |
+
1
|
22292 |
+
1
|
22293 |
+
1
|
22294 |
+
1
|
22295 |
+
1
|
22296 |
+
1
|
22297 |
+
1
|
22298 |
+
1
|
22299 |
+
1
|
22300 |
+
1
|
22301 |
+
1
|
22302 |
+
1
|
22303 |
+
1
|
22304 |
+
1
|
22305 |
+
1
|
22306 |
+
1
|
22307 |
+
1
|
22308 |
+
1
|
22309 |
+
1
|
22310 |
+
1
|
22311 |
+
1
|
22312 |
+
1
|
22313 |
+
1
|
22314 |
+
1
|
22315 |
+
1
|
22316 |
+
1
|
22317 |
+
1
|
22318 |
+
1
|
22319 |
+
1
|
22320 |
+
1
|
22321 |
+
1
|
22322 |
+
1
|
22323 |
+
1
|
22324 |
+
1
|
22325 |
+
1
|
22326 |
+
1
|
22327 |
+
1
|
22328 |
+
1
|
22329 |
+
1
|
22330 |
+
1
|
22331 |
+
1
|
22332 |
+
1
|
22333 |
+
1
|
22334 |
+
1
|
22335 |
+
1
|
22336 |
+
1
|
22337 |
+
1
|
22338 |
+
1
|
22339 |
+
1
|
22340 |
+
1
|
22341 |
+
1
|
22342 |
+
1
|
22343 |
+
1
|
22344 |
+
1
|
22345 |
+
1
|
22346 |
+
1
|
22347 |
+
1
|
22348 |
+
1
|
22349 |
+
1
|
22350 |
+
1
|
22351 |
+
1
|
22352 |
+
1
|
22353 |
+
1
|
22354 |
+
1
|
22355 |
+
1
|
22356 |
+
1
|
22357 |
+
1
|
22358 |
+
1
|
22359 |
+
1
|
22360 |
+
1
|
22361 |
+
1
|
22362 |
+
1
|
22363 |
+
1
|
22364 |
+
1
|
22365 |
+
1
|
22366 |
+
1
|
22367 |
+
1
|
22368 |
+
1
|
22369 |
+
1
|
22370 |
+
1
|
22371 |
+
1
|
22372 |
+
1
|
22373 |
+
1
|
22374 |
+
1
|
22375 |
+
1
|
22376 |
+
1
|
22377 |
+
1
|
22378 |
+
1
|
22379 |
+
1
|
22380 |
+
1
|
22381 |
+
1
|
22382 |
+
1
|
22383 |
+
1
|
22384 |
+
1
|
22385 |
+
1
|
22386 |
+
1
|
22387 |
+
1
|
22388 |
+
1
|
22389 |
+
1
|
22390 |
+
1
|
22391 |
+
1
|
22392 |
+
1
|
22393 |
+
1
|
22394 |
+
1
|
22395 |
+
1
|
22396 |
+
1
|
22397 |
+
1
|
22398 |
+
1
|
22399 |
+
1
|
22400 |
+
1
|
22401 |
+
1
|
22402 |
+
1
|
22403 |
+
1
|
22404 |
+
1
|
22405 |
+
1
|
22406 |
+
1
|
22407 |
+
1
|
22408 |
+
1
|
22409 |
+
1
|
22410 |
+
1
|
22411 |
+
1
|
22412 |
+
1
|
22413 |
+
1
|
22414 |
+
1
|
22415 |
+
1
|
22416 |
+
1
|
22417 |
+
1
|
22418 |
+
1
|
22419 |
+
1
|
22420 |
+
1
|
22421 |
+
1
|
22422 |
+
1
|
22423 |
+
1
|
22424 |
+
1
|
22425 |
+
1
|
22426 |
+
1
|
22427 |
+
1
|
22428 |
+
1
|
22429 |
+
1
|
22430 |
+
1
|
22431 |
+
1
|
22432 |
+
1
|
22433 |
+
1
|
22434 |
+
1
|
22435 |
+
1
|
22436 |
+
1
|
22437 |
+
1
|
22438 |
+
1
|
22439 |
+
1
|
22440 |
+
1
|
22441 |
+
1
|
22442 |
+
1
|
22443 |
+
1
|
22444 |
+
1
|
22445 |
+
1
|
22446 |
+
1
|
22447 |
+
1
|
22448 |
+
1
|
22449 |
+
1
|
22450 |
+
1
|
22451 |
+
1
|
22452 |
+
1
|
22453 |
+
1
|
22454 |
+
1
|
22455 |
+
1
|
22456 |
+
1
|
22457 |
+
1
|
22458 |
+
1
|
22459 |
+
1
|
22460 |
+
1
|
22461 |
+
1
|
22462 |
+
1
|
22463 |
+
1
|
22464 |
+
1
|
22465 |
+
1
|
22466 |
+
1
|
22467 |
+
1
|
22468 |
+
1
|
22469 |
+
1
|
22470 |
+
1
|
22471 |
+
1
|
22472 |
+
1
|
22473 |
+
1
|
22474 |
+
1
|
22475 |
+
1
|
22476 |
+
1
|
22477 |
+
1
|
22478 |
+
1
|
22479 |
+
1
|
22480 |
+
1
|
22481 |
+
1
|
22482 |
+
1
|
22483 |
+
1
|
22484 |
+
1
|
22485 |
+
1
|
22486 |
+
1
|
22487 |
+
1
|
22488 |
+
1
|
22489 |
+
1
|
22490 |
+
1
|
22491 |
+
1
|
22492 |
+
1
|
22493 |
+
1
|
22494 |
+
1
|
22495 |
+
1
|
22496 |
+
1
|
22497 |
+
1
|
22498 |
+
1
|
22499 |
+
1
|
22500 |
+
1
|
22501 |
+
1
|
22502 |
+
1
|
22503 |
+
1
|
22504 |
+
1
|
22505 |
+
1
|
22506 |
+
1
|
22507 |
+
1
|
22508 |
+
1
|
22509 |
+
1
|
22510 |
+
1
|
22511 |
+
1
|
22512 |
+
1
|
22513 |
+
1
|
22514 |
+
1
|
22515 |
+
1
|
22516 |
+
1
|
22517 |
+
1
|
22518 |
+
1
|
22519 |
+
1
|
22520 |
+
1
|
22521 |
+
1
|
22522 |
+
1
|
22523 |
+
1
|
22524 |
+
1
|
22525 |
+
1
|
22526 |
+
1
|
22527 |
+
1
|
22528 |
+
1
|
22529 |
+
1
|
22530 |
+
1
|
22531 |
+
1
|
22532 |
+
1
|
22533 |
+
1
|
22534 |
+
1
|
22535 |
+
1
|
22536 |
+
1
|
22537 |
+
1
|
22538 |
+
1
|
22539 |
+
1
|
22540 |
+
1
|
22541 |
+
1
|
22542 |
+
1
|
22543 |
+
1
|
22544 |
+
1
|
22545 |
+
1
|
22546 |
+
1
|
22547 |
+
1
|
22548 |
+
1
|
22549 |
+
1
|
22550 |
+
1
|
22551 |
+
1
|
22552 |
+
1
|
22553 |
+
1
|
22554 |
+
1
|
22555 |
+
1
|
22556 |
+
1
|
22557 |
+
1
|
22558 |
+
1
|
22559 |
+
1
|
22560 |
+
1
|
22561 |
+
1
|
22562 |
+
1
|
22563 |
+
1
|
22564 |
+
1
|
22565 |
+
1
|
22566 |
+
1
|
22567 |
+
1
|
22568 |
+
1
|
22569 |
+
1
|
22570 |
+
1
|
22571 |
+
1
|
22572 |
+
1
|
22573 |
+
1
|
22574 |
+
1
|
22575 |
+
1
|
22576 |
+
1
|
22577 |
+
1
|
22578 |
+
1
|
22579 |
+
1
|
22580 |
+
1
|
22581 |
+
1
|
22582 |
+
1
|
22583 |
+
1
|
22584 |
+
1
|
22585 |
+
2
|
22586 |
+
1
|
22587 |
+
1
|
22588 |
+
1
|
22589 |
+
1
|
22590 |
+
1
|
22591 |
+
1
|
22592 |
+
1
|
22593 |
+
1
|
22594 |
+
1
|
22595 |
+
1
|
22596 |
+
1
|
22597 |
+
1
|
22598 |
+
1
|
22599 |
+
1
|
22600 |
+
1
|
22601 |
+
1
|
22602 |
+
1
|
22603 |
+
1
|
22604 |
+
1
|
22605 |
+
1
|
22606 |
+
1
|
22607 |
+
1
|
22608 |
+
1
|
22609 |
+
1
|
22610 |
+
1
|
22611 |
+
1
|
22612 |
+
1
|
22613 |
+
1
|
22614 |
+
1
|
22615 |
+
1
|
22616 |
+
1
|
22617 |
+
1
|
22618 |
+
1
|
22619 |
+
1
|
22620 |
+
1
|
22621 |
+
1
|
22622 |
+
1
|
22623 |
+
1
|
22624 |
+
1
|
22625 |
+
1
|
22626 |
+
1
|
22627 |
+
1
|
22628 |
+
1
|
22629 |
+
1
|
22630 |
+
1
|
22631 |
+
1
|
22632 |
+
1
|
22633 |
+
1
|
22634 |
+
1
|
22635 |
+
1
|
22636 |
+
1
|
22637 |
+
1
|
22638 |
+
1
|
22639 |
+
1
|
22640 |
+
1
|
22641 |
+
1
|
22642 |
+
1
|
22643 |
+
1
|
22644 |
+
1
|
22645 |
+
1
|
22646 |
+
1
|
22647 |
+
1
|
22648 |
+
1
|
22649 |
+
1
|
22650 |
+
1
|
22651 |
+
1
|
22652 |
+
1
|
22653 |
+
1
|
22654 |
+
1
|
22655 |
+
1
|
22656 |
+
1
|
22657 |
+
1
|
22658 |
+
1
|
22659 |
+
1
|
22660 |
+
1
|
22661 |
+
1
|
22662 |
+
1
|
22663 |
+
1
|
22664 |
+
1
|
22665 |
+
1
|
22666 |
+
1
|
22667 |
+
1
|
22668 |
+
1
|
22669 |
+
1
|
22670 |
+
1
|
22671 |
+
1
|
22672 |
+
1
|
22673 |
+
1
|
22674 |
+
1
|
22675 |
+
1
|
22676 |
+
1
|
22677 |
+
1
|
22678 |
+
1
|
22679 |
+
1
|
22680 |
+
1
|
22681 |
+
1
|
22682 |
+
1
|
22683 |
+
1
|
22684 |
+
1
|
22685 |
+
1
|
22686 |
+
1
|
22687 |
+
1
|
22688 |
+
1
|
22689 |
+
1
|
22690 |
+
1
|
22691 |
+
1
|
22692 |
+
1
|
22693 |
+
1
|
22694 |
+
1
|
22695 |
+
1
|
22696 |
+
1
|
22697 |
+
1
|
22698 |
+
1
|
22699 |
+
1
|
22700 |
+
1
|
22701 |
+
1
|
22702 |
+
1
|
22703 |
+
1
|
22704 |
+
1
|
22705 |
+
1
|
22706 |
+
1
|
22707 |
+
1
|
22708 |
+
1
|
22709 |
+
1
|
22710 |
+
1
|
22711 |
+
1
|
22712 |
+
1
|
22713 |
+
1
|
22714 |
+
1
|
22715 |
+
1
|
22716 |
+
1
|
22717 |
+
1
|
22718 |
+
1
|
22719 |
+
1
|
22720 |
+
1
|
22721 |
+
1
|
22722 |
+
1
|
22723 |
+
1
|
22724 |
+
1
|
22725 |
+
1
|
22726 |
+
1
|
22727 |
+
1
|
22728 |
+
1
|
22729 |
+
1
|
22730 |
+
1
|
22731 |
+
1
|
22732 |
+
1
|
22733 |
+
1
|
22734 |
+
1
|
22735 |
+
1
|
22736 |
+
1
|
22737 |
+
1
|
22738 |
+
1
|
22739 |
+
1
|
22740 |
+
1
|
22741 |
+
1
|
22742 |
+
1
|
22743 |
+
1
|
22744 |
+
1
|
22745 |
+
1
|
22746 |
+
1
|
22747 |
+
1
|
22748 |
+
1
|
22749 |
+
1
|
22750 |
+
1
|
22751 |
+
1
|
22752 |
+
1
|
22753 |
+
1
|
22754 |
+
1
|
22755 |
+
1
|
22756 |
+
1
|
22757 |
+
1
|
22758 |
+
1
|
22759 |
+
1
|
22760 |
+
1
|
22761 |
+
1
|
22762 |
+
1
|
22763 |
+
1
|
22764 |
+
1
|
22765 |
+
1
|
22766 |
+
1
|
22767 |
+
1
|
22768 |
+
1
|
22769 |
+
1
|
22770 |
+
1
|
22771 |
+
1
|
22772 |
+
1
|
22773 |
+
1
|
22774 |
+
1
|
22775 |
+
1
|
22776 |
+
1
|
22777 |
+
1
|
22778 |
+
1
|
22779 |
+
1
|
22780 |
+
1
|
22781 |
+
1
|
22782 |
+
1
|
22783 |
+
1
|
22784 |
+
1
|
22785 |
+
1
|
22786 |
+
1
|
22787 |
+
1
|
22788 |
+
1
|
22789 |
+
1
|
22790 |
+
1
|
22791 |
+
1
|
22792 |
+
1
|
22793 |
+
1
|
22794 |
+
1
|
22795 |
+
1
|
22796 |
+
1
|
22797 |
+
1
|
22798 |
+
1
|
22799 |
+
1
|
22800 |
+
1
|
22801 |
+
1
|
22802 |
+
1
|
22803 |
+
1
|
22804 |
+
1
|
22805 |
+
1
|
22806 |
+
1
|
22807 |
+
1
|
22808 |
+
1
|
22809 |
+
1
|
22810 |
+
1
|
22811 |
+
1
|
22812 |
+
1
|
22813 |
+
1
|
22814 |
+
1
|
22815 |
+
1
|
22816 |
+
1
|
22817 |
+
1
|
22818 |
+
1
|
22819 |
+
1
|
22820 |
+
1
|
22821 |
+
1
|
22822 |
+
1
|
22823 |
+
1
|
22824 |
+
1
|
22825 |
+
1
|
22826 |
+
1
|
22827 |
+
1
|
22828 |
+
1
|
22829 |
+
1
|
22830 |
+
1
|
22831 |
+
1
|
22832 |
+
1
|
22833 |
+
1
|
22834 |
+
1
|
22835 |
+
1
|
22836 |
+
1
|
22837 |
+
1
|
22838 |
+
1
|
22839 |
+
1
|
22840 |
+
1
|
22841 |
+
1
|
22842 |
+
1
|
22843 |
+
1
|
22844 |
+
1
|
22845 |
+
1
|
22846 |
+
1
|
22847 |
+
1
|
22848 |
+
1
|
22849 |
+
1
|
22850 |
+
1
|
22851 |
+
1
|
22852 |
+
1
|
22853 |
+
1
|
22854 |
+
1
|
22855 |
+
1
|
22856 |
+
1
|
22857 |
+
1
|
22858 |
+
2
|
22859 |
+
2
|
22860 |
+
1
|
22861 |
+
1
|
22862 |
+
1
|
22863 |
+
1
|
22864 |
+
1
|
22865 |
+
1
|
22866 |
+
1
|
22867 |
+
2
|
22868 |
+
1
|
22869 |
+
1
|
22870 |
+
1
|
22871 |
+
1
|
22872 |
+
1
|
vtoonify/model/raft/core/__init__.py
ADDED
File without changes
|
vtoonify/model/raft/core/corr.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
from model.raft.core.utils.utils import bilinear_sampler, coords_grid
|
4 |
+
|
5 |
+
try:
|
6 |
+
import alt_cuda_corr
|
7 |
+
except:
|
8 |
+
# alt_cuda_corr is not compiled
|
9 |
+
pass
|
10 |
+
|
11 |
+
|
12 |
+
class CorrBlock:
|
13 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
14 |
+
self.num_levels = num_levels
|
15 |
+
self.radius = radius
|
16 |
+
self.corr_pyramid = []
|
17 |
+
|
18 |
+
# all pairs correlation
|
19 |
+
corr = CorrBlock.corr(fmap1, fmap2)
|
20 |
+
|
21 |
+
batch, h1, w1, dim, h2, w2 = corr.shape
|
22 |
+
corr = corr.reshape(batch*h1*w1, dim, h2, w2)
|
23 |
+
|
24 |
+
self.corr_pyramid.append(corr)
|
25 |
+
for i in range(self.num_levels-1):
|
26 |
+
corr = F.avg_pool2d(corr, 2, stride=2)
|
27 |
+
self.corr_pyramid.append(corr)
|
28 |
+
|
29 |
+
def __call__(self, coords):
|
30 |
+
r = self.radius
|
31 |
+
coords = coords.permute(0, 2, 3, 1)
|
32 |
+
batch, h1, w1, _ = coords.shape
|
33 |
+
|
34 |
+
out_pyramid = []
|
35 |
+
for i in range(self.num_levels):
|
36 |
+
corr = self.corr_pyramid[i]
|
37 |
+
dx = torch.linspace(-r, r, 2*r+1, device=coords.device)
|
38 |
+
dy = torch.linspace(-r, r, 2*r+1, device=coords.device)
|
39 |
+
delta = torch.stack(torch.meshgrid(dy, dx), axis=-1)
|
40 |
+
|
41 |
+
centroid_lvl = coords.reshape(batch*h1*w1, 1, 1, 2) / 2**i
|
42 |
+
delta_lvl = delta.view(1, 2*r+1, 2*r+1, 2)
|
43 |
+
coords_lvl = centroid_lvl + delta_lvl
|
44 |
+
|
45 |
+
corr = bilinear_sampler(corr, coords_lvl)
|
46 |
+
corr = corr.view(batch, h1, w1, -1)
|
47 |
+
out_pyramid.append(corr)
|
48 |
+
|
49 |
+
out = torch.cat(out_pyramid, dim=-1)
|
50 |
+
return out.permute(0, 3, 1, 2).contiguous().float()
|
51 |
+
|
52 |
+
@staticmethod
|
53 |
+
def corr(fmap1, fmap2):
|
54 |
+
batch, dim, ht, wd = fmap1.shape
|
55 |
+
fmap1 = fmap1.view(batch, dim, ht*wd)
|
56 |
+
fmap2 = fmap2.view(batch, dim, ht*wd)
|
57 |
+
|
58 |
+
corr = torch.matmul(fmap1.transpose(1,2), fmap2)
|
59 |
+
corr = corr.view(batch, ht, wd, 1, ht, wd)
|
60 |
+
return corr / torch.sqrt(torch.tensor(dim).float())
|
61 |
+
|
62 |
+
|
63 |
+
class AlternateCorrBlock:
|
64 |
+
def __init__(self, fmap1, fmap2, num_levels=4, radius=4):
|
65 |
+
self.num_levels = num_levels
|
66 |
+
self.radius = radius
|
67 |
+
|
68 |
+
self.pyramid = [(fmap1, fmap2)]
|
69 |
+
for i in range(self.num_levels):
|
70 |
+
fmap1 = F.avg_pool2d(fmap1, 2, stride=2)
|
71 |
+
fmap2 = F.avg_pool2d(fmap2, 2, stride=2)
|
72 |
+
self.pyramid.append((fmap1, fmap2))
|
73 |
+
|
74 |
+
def __call__(self, coords):
|
75 |
+
coords = coords.permute(0, 2, 3, 1)
|
76 |
+
B, H, W, _ = coords.shape
|
77 |
+
dim = self.pyramid[0][0].shape[1]
|
78 |
+
|
79 |
+
corr_list = []
|
80 |
+
for i in range(self.num_levels):
|
81 |
+
r = self.radius
|
82 |
+
fmap1_i = self.pyramid[0][0].permute(0, 2, 3, 1).contiguous()
|
83 |
+
fmap2_i = self.pyramid[i][1].permute(0, 2, 3, 1).contiguous()
|
84 |
+
|
85 |
+
coords_i = (coords / 2**i).reshape(B, 1, H, W, 2).contiguous()
|
86 |
+
corr, = alt_cuda_corr.forward(fmap1_i, fmap2_i, coords_i, r)
|
87 |
+
corr_list.append(corr.squeeze(1))
|
88 |
+
|
89 |
+
corr = torch.stack(corr_list, dim=1)
|
90 |
+
corr = corr.reshape(B, -1, H, W)
|
91 |
+
return corr / torch.sqrt(torch.tensor(dim).float())
|
vtoonify/model/raft/core/datasets.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Data loading based on https://github.com/NVIDIA/flownet2-pytorch
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.utils.data as data
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
import os
|
9 |
+
import math
|
10 |
+
import random
|
11 |
+
from glob import glob
|
12 |
+
import os.path as osp
|
13 |
+
|
14 |
+
from model.raft.core.utils import frame_utils
|
15 |
+
from model.raft.core.utils.augmentor import FlowAugmentor, SparseFlowAugmentor
|
16 |
+
|
17 |
+
|
18 |
+
class FlowDataset(data.Dataset):
|
19 |
+
def __init__(self, aug_params=None, sparse=False):
|
20 |
+
self.augmentor = None
|
21 |
+
self.sparse = sparse
|
22 |
+
if aug_params is not None:
|
23 |
+
if sparse:
|
24 |
+
self.augmentor = SparseFlowAugmentor(**aug_params)
|
25 |
+
else:
|
26 |
+
self.augmentor = FlowAugmentor(**aug_params)
|
27 |
+
|
28 |
+
self.is_test = False
|
29 |
+
self.init_seed = False
|
30 |
+
self.flow_list = []
|
31 |
+
self.image_list = []
|
32 |
+
self.extra_info = []
|
33 |
+
|
34 |
+
def __getitem__(self, index):
|
35 |
+
|
36 |
+
if self.is_test:
|
37 |
+
img1 = frame_utils.read_gen(self.image_list[index][0])
|
38 |
+
img2 = frame_utils.read_gen(self.image_list[index][1])
|
39 |
+
img1 = np.array(img1).astype(np.uint8)[..., :3]
|
40 |
+
img2 = np.array(img2).astype(np.uint8)[..., :3]
|
41 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
42 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
43 |
+
return img1, img2, self.extra_info[index]
|
44 |
+
|
45 |
+
if not self.init_seed:
|
46 |
+
worker_info = torch.utils.data.get_worker_info()
|
47 |
+
if worker_info is not None:
|
48 |
+
torch.manual_seed(worker_info.id)
|
49 |
+
np.random.seed(worker_info.id)
|
50 |
+
random.seed(worker_info.id)
|
51 |
+
self.init_seed = True
|
52 |
+
|
53 |
+
index = index % len(self.image_list)
|
54 |
+
valid = None
|
55 |
+
if self.sparse:
|
56 |
+
flow, valid = frame_utils.readFlowKITTI(self.flow_list[index])
|
57 |
+
else:
|
58 |
+
flow = frame_utils.read_gen(self.flow_list[index])
|
59 |
+
|
60 |
+
img1 = frame_utils.read_gen(self.image_list[index][0])
|
61 |
+
img2 = frame_utils.read_gen(self.image_list[index][1])
|
62 |
+
|
63 |
+
flow = np.array(flow).astype(np.float32)
|
64 |
+
img1 = np.array(img1).astype(np.uint8)
|
65 |
+
img2 = np.array(img2).astype(np.uint8)
|
66 |
+
|
67 |
+
# grayscale images
|
68 |
+
if len(img1.shape) == 2:
|
69 |
+
img1 = np.tile(img1[...,None], (1, 1, 3))
|
70 |
+
img2 = np.tile(img2[...,None], (1, 1, 3))
|
71 |
+
else:
|
72 |
+
img1 = img1[..., :3]
|
73 |
+
img2 = img2[..., :3]
|
74 |
+
|
75 |
+
if self.augmentor is not None:
|
76 |
+
if self.sparse:
|
77 |
+
img1, img2, flow, valid = self.augmentor(img1, img2, flow, valid)
|
78 |
+
else:
|
79 |
+
img1, img2, flow = self.augmentor(img1, img2, flow)
|
80 |
+
|
81 |
+
img1 = torch.from_numpy(img1).permute(2, 0, 1).float()
|
82 |
+
img2 = torch.from_numpy(img2).permute(2, 0, 1).float()
|
83 |
+
flow = torch.from_numpy(flow).permute(2, 0, 1).float()
|
84 |
+
|
85 |
+
if valid is not None:
|
86 |
+
valid = torch.from_numpy(valid)
|
87 |
+
else:
|
88 |
+
valid = (flow[0].abs() < 1000) & (flow[1].abs() < 1000)
|
89 |
+
|
90 |
+
return img1, img2, flow, valid.float()
|
91 |
+
|
92 |
+
|
93 |
+
def __rmul__(self, v):
|
94 |
+
self.flow_list = v * self.flow_list
|
95 |
+
self.image_list = v * self.image_list
|
96 |
+
return self
|
97 |
+
|
98 |
+
def __len__(self):
|
99 |
+
return len(self.image_list)
|
100 |
+
|
101 |
+
|
102 |
+
class MpiSintel(FlowDataset):
|
103 |
+
def __init__(self, aug_params=None, split='training', root='datasets/Sintel', dstype='clean'):
|
104 |
+
super(MpiSintel, self).__init__(aug_params)
|
105 |
+
flow_root = osp.join(root, split, 'flow')
|
106 |
+
image_root = osp.join(root, split, dstype)
|
107 |
+
|
108 |
+
if split == 'test':
|
109 |
+
self.is_test = True
|
110 |
+
|
111 |
+
for scene in os.listdir(image_root):
|
112 |
+
image_list = sorted(glob(osp.join(image_root, scene, '*.png')))
|
113 |
+
for i in range(len(image_list)-1):
|
114 |
+
self.image_list += [ [image_list[i], image_list[i+1]] ]
|
115 |
+
self.extra_info += [ (scene, i) ] # scene and frame_id
|
116 |
+
|
117 |
+
if split != 'test':
|
118 |
+
self.flow_list += sorted(glob(osp.join(flow_root, scene, '*.flo')))
|
119 |
+
|
120 |
+
|
121 |
+
class FlyingChairs(FlowDataset):
|
122 |
+
def __init__(self, aug_params=None, split='train', root='datasets/FlyingChairs_release/data'):
|
123 |
+
super(FlyingChairs, self).__init__(aug_params)
|
124 |
+
|
125 |
+
images = sorted(glob(osp.join(root, '*.ppm')))
|
126 |
+
flows = sorted(glob(osp.join(root, '*.flo')))
|
127 |
+
assert (len(images)//2 == len(flows))
|
128 |
+
|
129 |
+
split_list = np.loadtxt('chairs_split.txt', dtype=np.int32)
|
130 |
+
for i in range(len(flows)):
|
131 |
+
xid = split_list[i]
|
132 |
+
if (split=='training' and xid==1) or (split=='validation' and xid==2):
|
133 |
+
self.flow_list += [ flows[i] ]
|
134 |
+
self.image_list += [ [images[2*i], images[2*i+1]] ]
|
135 |
+
|
136 |
+
|
137 |
+
class FlyingThings3D(FlowDataset):
|
138 |
+
def __init__(self, aug_params=None, root='datasets/FlyingThings3D', dstype='frames_cleanpass'):
|
139 |
+
super(FlyingThings3D, self).__init__(aug_params)
|
140 |
+
|
141 |
+
for cam in ['left']:
|
142 |
+
for direction in ['into_future', 'into_past']:
|
143 |
+
image_dirs = sorted(glob(osp.join(root, dstype, 'TRAIN/*/*')))
|
144 |
+
image_dirs = sorted([osp.join(f, cam) for f in image_dirs])
|
145 |
+
|
146 |
+
flow_dirs = sorted(glob(osp.join(root, 'optical_flow/TRAIN/*/*')))
|
147 |
+
flow_dirs = sorted([osp.join(f, direction, cam) for f in flow_dirs])
|
148 |
+
|
149 |
+
for idir, fdir in zip(image_dirs, flow_dirs):
|
150 |
+
images = sorted(glob(osp.join(idir, '*.png')) )
|
151 |
+
flows = sorted(glob(osp.join(fdir, '*.pfm')) )
|
152 |
+
for i in range(len(flows)-1):
|
153 |
+
if direction == 'into_future':
|
154 |
+
self.image_list += [ [images[i], images[i+1]] ]
|
155 |
+
self.flow_list += [ flows[i] ]
|
156 |
+
elif direction == 'into_past':
|
157 |
+
self.image_list += [ [images[i+1], images[i]] ]
|
158 |
+
self.flow_list += [ flows[i+1] ]
|
159 |
+
|
160 |
+
|
161 |
+
class KITTI(FlowDataset):
|
162 |
+
def __init__(self, aug_params=None, split='training', root='datasets/KITTI'):
|
163 |
+
super(KITTI, self).__init__(aug_params, sparse=True)
|
164 |
+
if split == 'testing':
|
165 |
+
self.is_test = True
|
166 |
+
|
167 |
+
root = osp.join(root, split)
|
168 |
+
images1 = sorted(glob(osp.join(root, 'image_2/*_10.png')))
|
169 |
+
images2 = sorted(glob(osp.join(root, 'image_2/*_11.png')))
|
170 |
+
|
171 |
+
for img1, img2 in zip(images1, images2):
|
172 |
+
frame_id = img1.split('/')[-1]
|
173 |
+
self.extra_info += [ [frame_id] ]
|
174 |
+
self.image_list += [ [img1, img2] ]
|
175 |
+
|
176 |
+
if split == 'training':
|
177 |
+
self.flow_list = sorted(glob(osp.join(root, 'flow_occ/*_10.png')))
|
178 |
+
|
179 |
+
|
180 |
+
class HD1K(FlowDataset):
|
181 |
+
def __init__(self, aug_params=None, root='datasets/HD1k'):
|
182 |
+
super(HD1K, self).__init__(aug_params, sparse=True)
|
183 |
+
|
184 |
+
seq_ix = 0
|
185 |
+
while 1:
|
186 |
+
flows = sorted(glob(os.path.join(root, 'hd1k_flow_gt', 'flow_occ/%06d_*.png' % seq_ix)))
|
187 |
+
images = sorted(glob(os.path.join(root, 'hd1k_input', 'image_2/%06d_*.png' % seq_ix)))
|
188 |
+
|
189 |
+
if len(flows) == 0:
|
190 |
+
break
|
191 |
+
|
192 |
+
for i in range(len(flows)-1):
|
193 |
+
self.flow_list += [flows[i]]
|
194 |
+
self.image_list += [ [images[i], images[i+1]] ]
|
195 |
+
|
196 |
+
seq_ix += 1
|
197 |
+
|
198 |
+
|
199 |
+
def fetch_dataloader(args, TRAIN_DS='C+T+K+S+H'):
|
200 |
+
""" Create the data loader for the corresponding trainign set """
|
201 |
+
|
202 |
+
if args.stage == 'chairs':
|
203 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.1, 'max_scale': 1.0, 'do_flip': True}
|
204 |
+
train_dataset = FlyingChairs(aug_params, split='training')
|
205 |
+
|
206 |
+
elif args.stage == 'things':
|
207 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.4, 'max_scale': 0.8, 'do_flip': True}
|
208 |
+
clean_dataset = FlyingThings3D(aug_params, dstype='frames_cleanpass')
|
209 |
+
final_dataset = FlyingThings3D(aug_params, dstype='frames_finalpass')
|
210 |
+
train_dataset = clean_dataset + final_dataset
|
211 |
+
|
212 |
+
elif args.stage == 'sintel':
|
213 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.6, 'do_flip': True}
|
214 |
+
things = FlyingThings3D(aug_params, dstype='frames_cleanpass')
|
215 |
+
sintel_clean = MpiSintel(aug_params, split='training', dstype='clean')
|
216 |
+
sintel_final = MpiSintel(aug_params, split='training', dstype='final')
|
217 |
+
|
218 |
+
if TRAIN_DS == 'C+T+K+S+H':
|
219 |
+
kitti = KITTI({'crop_size': args.image_size, 'min_scale': -0.3, 'max_scale': 0.5, 'do_flip': True})
|
220 |
+
hd1k = HD1K({'crop_size': args.image_size, 'min_scale': -0.5, 'max_scale': 0.2, 'do_flip': True})
|
221 |
+
train_dataset = 100*sintel_clean + 100*sintel_final + 200*kitti + 5*hd1k + things
|
222 |
+
|
223 |
+
elif TRAIN_DS == 'C+T+K/S':
|
224 |
+
train_dataset = 100*sintel_clean + 100*sintel_final + things
|
225 |
+
|
226 |
+
elif args.stage == 'kitti':
|
227 |
+
aug_params = {'crop_size': args.image_size, 'min_scale': -0.2, 'max_scale': 0.4, 'do_flip': False}
|
228 |
+
train_dataset = KITTI(aug_params, split='training')
|
229 |
+
|
230 |
+
train_loader = data.DataLoader(train_dataset, batch_size=args.batch_size,
|
231 |
+
pin_memory=False, shuffle=True, num_workers=4, drop_last=True)
|
232 |
+
|
233 |
+
print('Training with %d image pairs' % len(train_dataset))
|
234 |
+
return train_loader
|
235 |
+
|
vtoonify/model/raft/core/extractor.py
ADDED
@@ -0,0 +1,267 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class ResidualBlock(nn.Module):
|
7 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
8 |
+
super(ResidualBlock, self).__init__()
|
9 |
+
|
10 |
+
self.conv1 = nn.Conv2d(in_planes, planes, kernel_size=3, padding=1, stride=stride)
|
11 |
+
self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, padding=1)
|
12 |
+
self.relu = nn.ReLU(inplace=True)
|
13 |
+
|
14 |
+
num_groups = planes // 8
|
15 |
+
|
16 |
+
if norm_fn == 'group':
|
17 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
18 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
19 |
+
if not stride == 1:
|
20 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
21 |
+
|
22 |
+
elif norm_fn == 'batch':
|
23 |
+
self.norm1 = nn.BatchNorm2d(planes)
|
24 |
+
self.norm2 = nn.BatchNorm2d(planes)
|
25 |
+
if not stride == 1:
|
26 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
27 |
+
|
28 |
+
elif norm_fn == 'instance':
|
29 |
+
self.norm1 = nn.InstanceNorm2d(planes)
|
30 |
+
self.norm2 = nn.InstanceNorm2d(planes)
|
31 |
+
if not stride == 1:
|
32 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
33 |
+
|
34 |
+
elif norm_fn == 'none':
|
35 |
+
self.norm1 = nn.Sequential()
|
36 |
+
self.norm2 = nn.Sequential()
|
37 |
+
if not stride == 1:
|
38 |
+
self.norm3 = nn.Sequential()
|
39 |
+
|
40 |
+
if stride == 1:
|
41 |
+
self.downsample = None
|
42 |
+
|
43 |
+
else:
|
44 |
+
self.downsample = nn.Sequential(
|
45 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm3)
|
46 |
+
|
47 |
+
|
48 |
+
def forward(self, x):
|
49 |
+
y = x
|
50 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
51 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
52 |
+
|
53 |
+
if self.downsample is not None:
|
54 |
+
x = self.downsample(x)
|
55 |
+
|
56 |
+
return self.relu(x+y)
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
class BottleneckBlock(nn.Module):
|
61 |
+
def __init__(self, in_planes, planes, norm_fn='group', stride=1):
|
62 |
+
super(BottleneckBlock, self).__init__()
|
63 |
+
|
64 |
+
self.conv1 = nn.Conv2d(in_planes, planes//4, kernel_size=1, padding=0)
|
65 |
+
self.conv2 = nn.Conv2d(planes//4, planes//4, kernel_size=3, padding=1, stride=stride)
|
66 |
+
self.conv3 = nn.Conv2d(planes//4, planes, kernel_size=1, padding=0)
|
67 |
+
self.relu = nn.ReLU(inplace=True)
|
68 |
+
|
69 |
+
num_groups = planes // 8
|
70 |
+
|
71 |
+
if norm_fn == 'group':
|
72 |
+
self.norm1 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
73 |
+
self.norm2 = nn.GroupNorm(num_groups=num_groups, num_channels=planes//4)
|
74 |
+
self.norm3 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
75 |
+
if not stride == 1:
|
76 |
+
self.norm4 = nn.GroupNorm(num_groups=num_groups, num_channels=planes)
|
77 |
+
|
78 |
+
elif norm_fn == 'batch':
|
79 |
+
self.norm1 = nn.BatchNorm2d(planes//4)
|
80 |
+
self.norm2 = nn.BatchNorm2d(planes//4)
|
81 |
+
self.norm3 = nn.BatchNorm2d(planes)
|
82 |
+
if not stride == 1:
|
83 |
+
self.norm4 = nn.BatchNorm2d(planes)
|
84 |
+
|
85 |
+
elif norm_fn == 'instance':
|
86 |
+
self.norm1 = nn.InstanceNorm2d(planes//4)
|
87 |
+
self.norm2 = nn.InstanceNorm2d(planes//4)
|
88 |
+
self.norm3 = nn.InstanceNorm2d(planes)
|
89 |
+
if not stride == 1:
|
90 |
+
self.norm4 = nn.InstanceNorm2d(planes)
|
91 |
+
|
92 |
+
elif norm_fn == 'none':
|
93 |
+
self.norm1 = nn.Sequential()
|
94 |
+
self.norm2 = nn.Sequential()
|
95 |
+
self.norm3 = nn.Sequential()
|
96 |
+
if not stride == 1:
|
97 |
+
self.norm4 = nn.Sequential()
|
98 |
+
|
99 |
+
if stride == 1:
|
100 |
+
self.downsample = None
|
101 |
+
|
102 |
+
else:
|
103 |
+
self.downsample = nn.Sequential(
|
104 |
+
nn.Conv2d(in_planes, planes, kernel_size=1, stride=stride), self.norm4)
|
105 |
+
|
106 |
+
|
107 |
+
def forward(self, x):
|
108 |
+
y = x
|
109 |
+
y = self.relu(self.norm1(self.conv1(y)))
|
110 |
+
y = self.relu(self.norm2(self.conv2(y)))
|
111 |
+
y = self.relu(self.norm3(self.conv3(y)))
|
112 |
+
|
113 |
+
if self.downsample is not None:
|
114 |
+
x = self.downsample(x)
|
115 |
+
|
116 |
+
return self.relu(x+y)
|
117 |
+
|
118 |
+
class BasicEncoder(nn.Module):
|
119 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
120 |
+
super(BasicEncoder, self).__init__()
|
121 |
+
self.norm_fn = norm_fn
|
122 |
+
|
123 |
+
if self.norm_fn == 'group':
|
124 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=64)
|
125 |
+
|
126 |
+
elif self.norm_fn == 'batch':
|
127 |
+
self.norm1 = nn.BatchNorm2d(64)
|
128 |
+
|
129 |
+
elif self.norm_fn == 'instance':
|
130 |
+
self.norm1 = nn.InstanceNorm2d(64)
|
131 |
+
|
132 |
+
elif self.norm_fn == 'none':
|
133 |
+
self.norm1 = nn.Sequential()
|
134 |
+
|
135 |
+
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)
|
136 |
+
self.relu1 = nn.ReLU(inplace=True)
|
137 |
+
|
138 |
+
self.in_planes = 64
|
139 |
+
self.layer1 = self._make_layer(64, stride=1)
|
140 |
+
self.layer2 = self._make_layer(96, stride=2)
|
141 |
+
self.layer3 = self._make_layer(128, stride=2)
|
142 |
+
|
143 |
+
# output convolution
|
144 |
+
self.conv2 = nn.Conv2d(128, output_dim, kernel_size=1)
|
145 |
+
|
146 |
+
self.dropout = None
|
147 |
+
if dropout > 0:
|
148 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
149 |
+
|
150 |
+
for m in self.modules():
|
151 |
+
if isinstance(m, nn.Conv2d):
|
152 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
153 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
154 |
+
if m.weight is not None:
|
155 |
+
nn.init.constant_(m.weight, 1)
|
156 |
+
if m.bias is not None:
|
157 |
+
nn.init.constant_(m.bias, 0)
|
158 |
+
|
159 |
+
def _make_layer(self, dim, stride=1):
|
160 |
+
layer1 = ResidualBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
161 |
+
layer2 = ResidualBlock(dim, dim, self.norm_fn, stride=1)
|
162 |
+
layers = (layer1, layer2)
|
163 |
+
|
164 |
+
self.in_planes = dim
|
165 |
+
return nn.Sequential(*layers)
|
166 |
+
|
167 |
+
|
168 |
+
def forward(self, x):
|
169 |
+
|
170 |
+
# if input is list, combine batch dimension
|
171 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
172 |
+
if is_list:
|
173 |
+
batch_dim = x[0].shape[0]
|
174 |
+
x = torch.cat(x, dim=0)
|
175 |
+
|
176 |
+
x = self.conv1(x)
|
177 |
+
x = self.norm1(x)
|
178 |
+
x = self.relu1(x)
|
179 |
+
|
180 |
+
x = self.layer1(x)
|
181 |
+
x = self.layer2(x)
|
182 |
+
x = self.layer3(x)
|
183 |
+
|
184 |
+
x = self.conv2(x)
|
185 |
+
|
186 |
+
if self.training and self.dropout is not None:
|
187 |
+
x = self.dropout(x)
|
188 |
+
|
189 |
+
if is_list:
|
190 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
191 |
+
|
192 |
+
return x
|
193 |
+
|
194 |
+
|
195 |
+
class SmallEncoder(nn.Module):
|
196 |
+
def __init__(self, output_dim=128, norm_fn='batch', dropout=0.0):
|
197 |
+
super(SmallEncoder, self).__init__()
|
198 |
+
self.norm_fn = norm_fn
|
199 |
+
|
200 |
+
if self.norm_fn == 'group':
|
201 |
+
self.norm1 = nn.GroupNorm(num_groups=8, num_channels=32)
|
202 |
+
|
203 |
+
elif self.norm_fn == 'batch':
|
204 |
+
self.norm1 = nn.BatchNorm2d(32)
|
205 |
+
|
206 |
+
elif self.norm_fn == 'instance':
|
207 |
+
self.norm1 = nn.InstanceNorm2d(32)
|
208 |
+
|
209 |
+
elif self.norm_fn == 'none':
|
210 |
+
self.norm1 = nn.Sequential()
|
211 |
+
|
212 |
+
self.conv1 = nn.Conv2d(3, 32, kernel_size=7, stride=2, padding=3)
|
213 |
+
self.relu1 = nn.ReLU(inplace=True)
|
214 |
+
|
215 |
+
self.in_planes = 32
|
216 |
+
self.layer1 = self._make_layer(32, stride=1)
|
217 |
+
self.layer2 = self._make_layer(64, stride=2)
|
218 |
+
self.layer3 = self._make_layer(96, stride=2)
|
219 |
+
|
220 |
+
self.dropout = None
|
221 |
+
if dropout > 0:
|
222 |
+
self.dropout = nn.Dropout2d(p=dropout)
|
223 |
+
|
224 |
+
self.conv2 = nn.Conv2d(96, output_dim, kernel_size=1)
|
225 |
+
|
226 |
+
for m in self.modules():
|
227 |
+
if isinstance(m, nn.Conv2d):
|
228 |
+
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
|
229 |
+
elif isinstance(m, (nn.BatchNorm2d, nn.InstanceNorm2d, nn.GroupNorm)):
|
230 |
+
if m.weight is not None:
|
231 |
+
nn.init.constant_(m.weight, 1)
|
232 |
+
if m.bias is not None:
|
233 |
+
nn.init.constant_(m.bias, 0)
|
234 |
+
|
235 |
+
def _make_layer(self, dim, stride=1):
|
236 |
+
layer1 = BottleneckBlock(self.in_planes, dim, self.norm_fn, stride=stride)
|
237 |
+
layer2 = BottleneckBlock(dim, dim, self.norm_fn, stride=1)
|
238 |
+
layers = (layer1, layer2)
|
239 |
+
|
240 |
+
self.in_planes = dim
|
241 |
+
return nn.Sequential(*layers)
|
242 |
+
|
243 |
+
|
244 |
+
def forward(self, x):
|
245 |
+
|
246 |
+
# if input is list, combine batch dimension
|
247 |
+
is_list = isinstance(x, tuple) or isinstance(x, list)
|
248 |
+
if is_list:
|
249 |
+
batch_dim = x[0].shape[0]
|
250 |
+
x = torch.cat(x, dim=0)
|
251 |
+
|
252 |
+
x = self.conv1(x)
|
253 |
+
x = self.norm1(x)
|
254 |
+
x = self.relu1(x)
|
255 |
+
|
256 |
+
x = self.layer1(x)
|
257 |
+
x = self.layer2(x)
|
258 |
+
x = self.layer3(x)
|
259 |
+
x = self.conv2(x)
|
260 |
+
|
261 |
+
if self.training and self.dropout is not None:
|
262 |
+
x = self.dropout(x)
|
263 |
+
|
264 |
+
if is_list:
|
265 |
+
x = torch.split(x, [batch_dim, batch_dim], dim=0)
|
266 |
+
|
267 |
+
return x
|
vtoonify/model/raft/core/raft.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
|
6 |
+
from model.raft.core.update import BasicUpdateBlock, SmallUpdateBlock
|
7 |
+
from model.raft.core.extractor import BasicEncoder, SmallEncoder
|
8 |
+
from model.raft.core.corr import CorrBlock, AlternateCorrBlock
|
9 |
+
from model.raft.core.utils.utils import bilinear_sampler, coords_grid, upflow8
|
10 |
+
|
11 |
+
try:
|
12 |
+
autocast = torch.cuda.amp.autocast
|
13 |
+
except:
|
14 |
+
# dummy autocast for PyTorch < 1.6
|
15 |
+
class autocast:
|
16 |
+
def __init__(self, enabled):
|
17 |
+
pass
|
18 |
+
def __enter__(self):
|
19 |
+
pass
|
20 |
+
def __exit__(self, *args):
|
21 |
+
pass
|
22 |
+
|
23 |
+
|
24 |
+
class RAFT(nn.Module):
|
25 |
+
def __init__(self, args):
|
26 |
+
super(RAFT, self).__init__()
|
27 |
+
self.args = args
|
28 |
+
|
29 |
+
if args.small:
|
30 |
+
self.hidden_dim = hdim = 96
|
31 |
+
self.context_dim = cdim = 64
|
32 |
+
args.corr_levels = 4
|
33 |
+
args.corr_radius = 3
|
34 |
+
|
35 |
+
else:
|
36 |
+
self.hidden_dim = hdim = 128
|
37 |
+
self.context_dim = cdim = 128
|
38 |
+
args.corr_levels = 4
|
39 |
+
args.corr_radius = 4
|
40 |
+
|
41 |
+
if 'dropout' not in self.args:
|
42 |
+
self.args.dropout = 0
|
43 |
+
|
44 |
+
if 'alternate_corr' not in self.args:
|
45 |
+
self.args.alternate_corr = False
|
46 |
+
|
47 |
+
# feature network, context network, and update block
|
48 |
+
if args.small:
|
49 |
+
self.fnet = SmallEncoder(output_dim=128, norm_fn='instance', dropout=args.dropout)
|
50 |
+
self.cnet = SmallEncoder(output_dim=hdim+cdim, norm_fn='none', dropout=args.dropout)
|
51 |
+
self.update_block = SmallUpdateBlock(self.args, hidden_dim=hdim)
|
52 |
+
|
53 |
+
else:
|
54 |
+
self.fnet = BasicEncoder(output_dim=256, norm_fn='instance', dropout=args.dropout)
|
55 |
+
self.cnet = BasicEncoder(output_dim=hdim+cdim, norm_fn='batch', dropout=args.dropout)
|
56 |
+
self.update_block = BasicUpdateBlock(self.args, hidden_dim=hdim)
|
57 |
+
|
58 |
+
def freeze_bn(self):
|
59 |
+
for m in self.modules():
|
60 |
+
if isinstance(m, nn.BatchNorm2d):
|
61 |
+
m.eval()
|
62 |
+
|
63 |
+
def initialize_flow(self, img):
|
64 |
+
""" Flow is represented as difference between two coordinate grids flow = coords1 - coords0"""
|
65 |
+
N, C, H, W = img.shape
|
66 |
+
coords0 = coords_grid(N, H//8, W//8, device=img.device)
|
67 |
+
coords1 = coords_grid(N, H//8, W//8, device=img.device)
|
68 |
+
|
69 |
+
# optical flow computed as difference: flow = coords1 - coords0
|
70 |
+
return coords0, coords1
|
71 |
+
|
72 |
+
def upsample_flow(self, flow, mask):
|
73 |
+
""" Upsample flow field [H/8, W/8, 2] -> [H, W, 2] using convex combination """
|
74 |
+
N, _, H, W = flow.shape
|
75 |
+
mask = mask.view(N, 1, 9, 8, 8, H, W)
|
76 |
+
mask = torch.softmax(mask, dim=2)
|
77 |
+
|
78 |
+
up_flow = F.unfold(8 * flow, [3,3], padding=1)
|
79 |
+
up_flow = up_flow.view(N, 2, 9, 1, 1, H, W)
|
80 |
+
|
81 |
+
up_flow = torch.sum(mask * up_flow, dim=2)
|
82 |
+
up_flow = up_flow.permute(0, 1, 4, 2, 5, 3)
|
83 |
+
return up_flow.reshape(N, 2, 8*H, 8*W)
|
84 |
+
|
85 |
+
|
86 |
+
def forward(self, image1, image2, iters=12, flow_init=None, upsample=True, test_mode=False):
|
87 |
+
""" Estimate optical flow between pair of frames """
|
88 |
+
|
89 |
+
image1 = 2 * (image1 / 255.0) - 1.0
|
90 |
+
image2 = 2 * (image2 / 255.0) - 1.0
|
91 |
+
|
92 |
+
image1 = image1.contiguous()
|
93 |
+
image2 = image2.contiguous()
|
94 |
+
|
95 |
+
hdim = self.hidden_dim
|
96 |
+
cdim = self.context_dim
|
97 |
+
|
98 |
+
# run the feature network
|
99 |
+
with autocast(enabled=self.args.mixed_precision):
|
100 |
+
fmap1, fmap2 = self.fnet([image1, image2])
|
101 |
+
|
102 |
+
fmap1 = fmap1.float()
|
103 |
+
fmap2 = fmap2.float()
|
104 |
+
if self.args.alternate_corr:
|
105 |
+
corr_fn = AlternateCorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
|
106 |
+
else:
|
107 |
+
corr_fn = CorrBlock(fmap1, fmap2, radius=self.args.corr_radius)
|
108 |
+
|
109 |
+
# run the context network
|
110 |
+
with autocast(enabled=self.args.mixed_precision):
|
111 |
+
cnet = self.cnet(image1)
|
112 |
+
net, inp = torch.split(cnet, [hdim, cdim], dim=1)
|
113 |
+
net = torch.tanh(net)
|
114 |
+
inp = torch.relu(inp)
|
115 |
+
|
116 |
+
coords0, coords1 = self.initialize_flow(image1)
|
117 |
+
|
118 |
+
if flow_init is not None:
|
119 |
+
coords1 = coords1 + flow_init
|
120 |
+
|
121 |
+
flow_predictions = []
|
122 |
+
for itr in range(iters):
|
123 |
+
coords1 = coords1.detach()
|
124 |
+
corr = corr_fn(coords1) # index correlation volume
|
125 |
+
|
126 |
+
flow = coords1 - coords0
|
127 |
+
with autocast(enabled=self.args.mixed_precision):
|
128 |
+
net, up_mask, delta_flow = self.update_block(net, inp, corr, flow)
|
129 |
+
|
130 |
+
# F(t+1) = F(t) + \Delta(t)
|
131 |
+
coords1 = coords1 + delta_flow
|
132 |
+
|
133 |
+
# upsample predictions
|
134 |
+
if up_mask is None:
|
135 |
+
flow_up = upflow8(coords1 - coords0)
|
136 |
+
else:
|
137 |
+
flow_up = self.upsample_flow(coords1 - coords0, up_mask)
|
138 |
+
|
139 |
+
flow_predictions.append(flow_up)
|
140 |
+
|
141 |
+
if test_mode:
|
142 |
+
return coords1 - coords0, flow_up
|
143 |
+
|
144 |
+
return flow_predictions
|
vtoonify/model/raft/core/update.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
|
5 |
+
|
6 |
+
class FlowHead(nn.Module):
|
7 |
+
def __init__(self, input_dim=128, hidden_dim=256):
|
8 |
+
super(FlowHead, self).__init__()
|
9 |
+
self.conv1 = nn.Conv2d(input_dim, hidden_dim, 3, padding=1)
|
10 |
+
self.conv2 = nn.Conv2d(hidden_dim, 2, 3, padding=1)
|
11 |
+
self.relu = nn.ReLU(inplace=True)
|
12 |
+
|
13 |
+
def forward(self, x):
|
14 |
+
return self.conv2(self.relu(self.conv1(x)))
|
15 |
+
|
16 |
+
class ConvGRU(nn.Module):
|
17 |
+
def __init__(self, hidden_dim=128, input_dim=192+128):
|
18 |
+
super(ConvGRU, self).__init__()
|
19 |
+
self.convz = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
20 |
+
self.convr = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
21 |
+
self.convq = nn.Conv2d(hidden_dim+input_dim, hidden_dim, 3, padding=1)
|
22 |
+
|
23 |
+
def forward(self, h, x):
|
24 |
+
hx = torch.cat([h, x], dim=1)
|
25 |
+
|
26 |
+
z = torch.sigmoid(self.convz(hx))
|
27 |
+
r = torch.sigmoid(self.convr(hx))
|
28 |
+
q = torch.tanh(self.convq(torch.cat([r*h, x], dim=1)))
|
29 |
+
|
30 |
+
h = (1-z) * h + z * q
|
31 |
+
return h
|
32 |
+
|
33 |
+
class SepConvGRU(nn.Module):
|
34 |
+
def __init__(self, hidden_dim=128, input_dim=192+128):
|
35 |
+
super(SepConvGRU, self).__init__()
|
36 |
+
self.convz1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
37 |
+
self.convr1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
38 |
+
self.convq1 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (1,5), padding=(0,2))
|
39 |
+
|
40 |
+
self.convz2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
41 |
+
self.convr2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
42 |
+
self.convq2 = nn.Conv2d(hidden_dim+input_dim, hidden_dim, (5,1), padding=(2,0))
|
43 |
+
|
44 |
+
|
45 |
+
def forward(self, h, x):
|
46 |
+
# horizontal
|
47 |
+
hx = torch.cat([h, x], dim=1)
|
48 |
+
z = torch.sigmoid(self.convz1(hx))
|
49 |
+
r = torch.sigmoid(self.convr1(hx))
|
50 |
+
q = torch.tanh(self.convq1(torch.cat([r*h, x], dim=1)))
|
51 |
+
h = (1-z) * h + z * q
|
52 |
+
|
53 |
+
# vertical
|
54 |
+
hx = torch.cat([h, x], dim=1)
|
55 |
+
z = torch.sigmoid(self.convz2(hx))
|
56 |
+
r = torch.sigmoid(self.convr2(hx))
|
57 |
+
q = torch.tanh(self.convq2(torch.cat([r*h, x], dim=1)))
|
58 |
+
h = (1-z) * h + z * q
|
59 |
+
|
60 |
+
return h
|
61 |
+
|
62 |
+
class SmallMotionEncoder(nn.Module):
|
63 |
+
def __init__(self, args):
|
64 |
+
super(SmallMotionEncoder, self).__init__()
|
65 |
+
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
|
66 |
+
self.convc1 = nn.Conv2d(cor_planes, 96, 1, padding=0)
|
67 |
+
self.convf1 = nn.Conv2d(2, 64, 7, padding=3)
|
68 |
+
self.convf2 = nn.Conv2d(64, 32, 3, padding=1)
|
69 |
+
self.conv = nn.Conv2d(128, 80, 3, padding=1)
|
70 |
+
|
71 |
+
def forward(self, flow, corr):
|
72 |
+
cor = F.relu(self.convc1(corr))
|
73 |
+
flo = F.relu(self.convf1(flow))
|
74 |
+
flo = F.relu(self.convf2(flo))
|
75 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
76 |
+
out = F.relu(self.conv(cor_flo))
|
77 |
+
return torch.cat([out, flow], dim=1)
|
78 |
+
|
79 |
+
class BasicMotionEncoder(nn.Module):
|
80 |
+
def __init__(self, args):
|
81 |
+
super(BasicMotionEncoder, self).__init__()
|
82 |
+
cor_planes = args.corr_levels * (2*args.corr_radius + 1)**2
|
83 |
+
self.convc1 = nn.Conv2d(cor_planes, 256, 1, padding=0)
|
84 |
+
self.convc2 = nn.Conv2d(256, 192, 3, padding=1)
|
85 |
+
self.convf1 = nn.Conv2d(2, 128, 7, padding=3)
|
86 |
+
self.convf2 = nn.Conv2d(128, 64, 3, padding=1)
|
87 |
+
self.conv = nn.Conv2d(64+192, 128-2, 3, padding=1)
|
88 |
+
|
89 |
+
def forward(self, flow, corr):
|
90 |
+
cor = F.relu(self.convc1(corr))
|
91 |
+
cor = F.relu(self.convc2(cor))
|
92 |
+
flo = F.relu(self.convf1(flow))
|
93 |
+
flo = F.relu(self.convf2(flo))
|
94 |
+
|
95 |
+
cor_flo = torch.cat([cor, flo], dim=1)
|
96 |
+
out = F.relu(self.conv(cor_flo))
|
97 |
+
return torch.cat([out, flow], dim=1)
|
98 |
+
|
99 |
+
class SmallUpdateBlock(nn.Module):
|
100 |
+
def __init__(self, args, hidden_dim=96):
|
101 |
+
super(SmallUpdateBlock, self).__init__()
|
102 |
+
self.encoder = SmallMotionEncoder(args)
|
103 |
+
self.gru = ConvGRU(hidden_dim=hidden_dim, input_dim=82+64)
|
104 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=128)
|
105 |
+
|
106 |
+
def forward(self, net, inp, corr, flow):
|
107 |
+
motion_features = self.encoder(flow, corr)
|
108 |
+
inp = torch.cat([inp, motion_features], dim=1)
|
109 |
+
net = self.gru(net, inp)
|
110 |
+
delta_flow = self.flow_head(net)
|
111 |
+
|
112 |
+
return net, None, delta_flow
|
113 |
+
|
114 |
+
class BasicUpdateBlock(nn.Module):
|
115 |
+
def __init__(self, args, hidden_dim=128, input_dim=128):
|
116 |
+
super(BasicUpdateBlock, self).__init__()
|
117 |
+
self.args = args
|
118 |
+
self.encoder = BasicMotionEncoder(args)
|
119 |
+
self.gru = SepConvGRU(hidden_dim=hidden_dim, input_dim=128+hidden_dim)
|
120 |
+
self.flow_head = FlowHead(hidden_dim, hidden_dim=256)
|
121 |
+
|
122 |
+
self.mask = nn.Sequential(
|
123 |
+
nn.Conv2d(128, 256, 3, padding=1),
|
124 |
+
nn.ReLU(inplace=True),
|
125 |
+
nn.Conv2d(256, 64*9, 1, padding=0))
|
126 |
+
|
127 |
+
def forward(self, net, inp, corr, flow, upsample=True):
|
128 |
+
motion_features = self.encoder(flow, corr)
|
129 |
+
inp = torch.cat([inp, motion_features], dim=1)
|
130 |
+
|
131 |
+
net = self.gru(net, inp)
|
132 |
+
delta_flow = self.flow_head(net)
|
133 |
+
|
134 |
+
# scale mask to balence gradients
|
135 |
+
mask = .25 * self.mask(net)
|
136 |
+
return net, mask, delta_flow
|
137 |
+
|
138 |
+
|
139 |
+
|
vtoonify/model/raft/core/utils/__init__.py
ADDED
File without changes
|
vtoonify/model/raft/core/utils/augmentor.py
ADDED
@@ -0,0 +1,246 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import random
|
3 |
+
import math
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
cv2.setNumThreads(0)
|
8 |
+
cv2.ocl.setUseOpenCL(False)
|
9 |
+
|
10 |
+
import torch
|
11 |
+
from torchvision.transforms import ColorJitter
|
12 |
+
import torch.nn.functional as F
|
13 |
+
|
14 |
+
|
15 |
+
class FlowAugmentor:
|
16 |
+
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=True):
|
17 |
+
|
18 |
+
# spatial augmentation params
|
19 |
+
self.crop_size = crop_size
|
20 |
+
self.min_scale = min_scale
|
21 |
+
self.max_scale = max_scale
|
22 |
+
self.spatial_aug_prob = 0.8
|
23 |
+
self.stretch_prob = 0.8
|
24 |
+
self.max_stretch = 0.2
|
25 |
+
|
26 |
+
# flip augmentation params
|
27 |
+
self.do_flip = do_flip
|
28 |
+
self.h_flip_prob = 0.5
|
29 |
+
self.v_flip_prob = 0.1
|
30 |
+
|
31 |
+
# photometric augmentation params
|
32 |
+
self.photo_aug = ColorJitter(brightness=0.4, contrast=0.4, saturation=0.4, hue=0.5/3.14)
|
33 |
+
self.asymmetric_color_aug_prob = 0.2
|
34 |
+
self.eraser_aug_prob = 0.5
|
35 |
+
|
36 |
+
def color_transform(self, img1, img2):
|
37 |
+
""" Photometric augmentation """
|
38 |
+
|
39 |
+
# asymmetric
|
40 |
+
if np.random.rand() < self.asymmetric_color_aug_prob:
|
41 |
+
img1 = np.array(self.photo_aug(Image.fromarray(img1)), dtype=np.uint8)
|
42 |
+
img2 = np.array(self.photo_aug(Image.fromarray(img2)), dtype=np.uint8)
|
43 |
+
|
44 |
+
# symmetric
|
45 |
+
else:
|
46 |
+
image_stack = np.concatenate([img1, img2], axis=0)
|
47 |
+
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
|
48 |
+
img1, img2 = np.split(image_stack, 2, axis=0)
|
49 |
+
|
50 |
+
return img1, img2
|
51 |
+
|
52 |
+
def eraser_transform(self, img1, img2, bounds=[50, 100]):
|
53 |
+
""" Occlusion augmentation """
|
54 |
+
|
55 |
+
ht, wd = img1.shape[:2]
|
56 |
+
if np.random.rand() < self.eraser_aug_prob:
|
57 |
+
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
|
58 |
+
for _ in range(np.random.randint(1, 3)):
|
59 |
+
x0 = np.random.randint(0, wd)
|
60 |
+
y0 = np.random.randint(0, ht)
|
61 |
+
dx = np.random.randint(bounds[0], bounds[1])
|
62 |
+
dy = np.random.randint(bounds[0], bounds[1])
|
63 |
+
img2[y0:y0+dy, x0:x0+dx, :] = mean_color
|
64 |
+
|
65 |
+
return img1, img2
|
66 |
+
|
67 |
+
def spatial_transform(self, img1, img2, flow):
|
68 |
+
# randomly sample scale
|
69 |
+
ht, wd = img1.shape[:2]
|
70 |
+
min_scale = np.maximum(
|
71 |
+
(self.crop_size[0] + 8) / float(ht),
|
72 |
+
(self.crop_size[1] + 8) / float(wd))
|
73 |
+
|
74 |
+
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
|
75 |
+
scale_x = scale
|
76 |
+
scale_y = scale
|
77 |
+
if np.random.rand() < self.stretch_prob:
|
78 |
+
scale_x *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
|
79 |
+
scale_y *= 2 ** np.random.uniform(-self.max_stretch, self.max_stretch)
|
80 |
+
|
81 |
+
scale_x = np.clip(scale_x, min_scale, None)
|
82 |
+
scale_y = np.clip(scale_y, min_scale, None)
|
83 |
+
|
84 |
+
if np.random.rand() < self.spatial_aug_prob:
|
85 |
+
# rescale the images
|
86 |
+
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
87 |
+
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
88 |
+
flow = cv2.resize(flow, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
89 |
+
flow = flow * [scale_x, scale_y]
|
90 |
+
|
91 |
+
if self.do_flip:
|
92 |
+
if np.random.rand() < self.h_flip_prob: # h-flip
|
93 |
+
img1 = img1[:, ::-1]
|
94 |
+
img2 = img2[:, ::-1]
|
95 |
+
flow = flow[:, ::-1] * [-1.0, 1.0]
|
96 |
+
|
97 |
+
if np.random.rand() < self.v_flip_prob: # v-flip
|
98 |
+
img1 = img1[::-1, :]
|
99 |
+
img2 = img2[::-1, :]
|
100 |
+
flow = flow[::-1, :] * [1.0, -1.0]
|
101 |
+
|
102 |
+
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0])
|
103 |
+
x0 = np.random.randint(0, img1.shape[1] - self.crop_size[1])
|
104 |
+
|
105 |
+
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
106 |
+
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
107 |
+
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
108 |
+
|
109 |
+
return img1, img2, flow
|
110 |
+
|
111 |
+
def __call__(self, img1, img2, flow):
|
112 |
+
img1, img2 = self.color_transform(img1, img2)
|
113 |
+
img1, img2 = self.eraser_transform(img1, img2)
|
114 |
+
img1, img2, flow = self.spatial_transform(img1, img2, flow)
|
115 |
+
|
116 |
+
img1 = np.ascontiguousarray(img1)
|
117 |
+
img2 = np.ascontiguousarray(img2)
|
118 |
+
flow = np.ascontiguousarray(flow)
|
119 |
+
|
120 |
+
return img1, img2, flow
|
121 |
+
|
122 |
+
class SparseFlowAugmentor:
|
123 |
+
def __init__(self, crop_size, min_scale=-0.2, max_scale=0.5, do_flip=False):
|
124 |
+
# spatial augmentation params
|
125 |
+
self.crop_size = crop_size
|
126 |
+
self.min_scale = min_scale
|
127 |
+
self.max_scale = max_scale
|
128 |
+
self.spatial_aug_prob = 0.8
|
129 |
+
self.stretch_prob = 0.8
|
130 |
+
self.max_stretch = 0.2
|
131 |
+
|
132 |
+
# flip augmentation params
|
133 |
+
self.do_flip = do_flip
|
134 |
+
self.h_flip_prob = 0.5
|
135 |
+
self.v_flip_prob = 0.1
|
136 |
+
|
137 |
+
# photometric augmentation params
|
138 |
+
self.photo_aug = ColorJitter(brightness=0.3, contrast=0.3, saturation=0.3, hue=0.3/3.14)
|
139 |
+
self.asymmetric_color_aug_prob = 0.2
|
140 |
+
self.eraser_aug_prob = 0.5
|
141 |
+
|
142 |
+
def color_transform(self, img1, img2):
|
143 |
+
image_stack = np.concatenate([img1, img2], axis=0)
|
144 |
+
image_stack = np.array(self.photo_aug(Image.fromarray(image_stack)), dtype=np.uint8)
|
145 |
+
img1, img2 = np.split(image_stack, 2, axis=0)
|
146 |
+
return img1, img2
|
147 |
+
|
148 |
+
def eraser_transform(self, img1, img2):
|
149 |
+
ht, wd = img1.shape[:2]
|
150 |
+
if np.random.rand() < self.eraser_aug_prob:
|
151 |
+
mean_color = np.mean(img2.reshape(-1, 3), axis=0)
|
152 |
+
for _ in range(np.random.randint(1, 3)):
|
153 |
+
x0 = np.random.randint(0, wd)
|
154 |
+
y0 = np.random.randint(0, ht)
|
155 |
+
dx = np.random.randint(50, 100)
|
156 |
+
dy = np.random.randint(50, 100)
|
157 |
+
img2[y0:y0+dy, x0:x0+dx, :] = mean_color
|
158 |
+
|
159 |
+
return img1, img2
|
160 |
+
|
161 |
+
def resize_sparse_flow_map(self, flow, valid, fx=1.0, fy=1.0):
|
162 |
+
ht, wd = flow.shape[:2]
|
163 |
+
coords = np.meshgrid(np.arange(wd), np.arange(ht))
|
164 |
+
coords = np.stack(coords, axis=-1)
|
165 |
+
|
166 |
+
coords = coords.reshape(-1, 2).astype(np.float32)
|
167 |
+
flow = flow.reshape(-1, 2).astype(np.float32)
|
168 |
+
valid = valid.reshape(-1).astype(np.float32)
|
169 |
+
|
170 |
+
coords0 = coords[valid>=1]
|
171 |
+
flow0 = flow[valid>=1]
|
172 |
+
|
173 |
+
ht1 = int(round(ht * fy))
|
174 |
+
wd1 = int(round(wd * fx))
|
175 |
+
|
176 |
+
coords1 = coords0 * [fx, fy]
|
177 |
+
flow1 = flow0 * [fx, fy]
|
178 |
+
|
179 |
+
xx = np.round(coords1[:,0]).astype(np.int32)
|
180 |
+
yy = np.round(coords1[:,1]).astype(np.int32)
|
181 |
+
|
182 |
+
v = (xx > 0) & (xx < wd1) & (yy > 0) & (yy < ht1)
|
183 |
+
xx = xx[v]
|
184 |
+
yy = yy[v]
|
185 |
+
flow1 = flow1[v]
|
186 |
+
|
187 |
+
flow_img = np.zeros([ht1, wd1, 2], dtype=np.float32)
|
188 |
+
valid_img = np.zeros([ht1, wd1], dtype=np.int32)
|
189 |
+
|
190 |
+
flow_img[yy, xx] = flow1
|
191 |
+
valid_img[yy, xx] = 1
|
192 |
+
|
193 |
+
return flow_img, valid_img
|
194 |
+
|
195 |
+
def spatial_transform(self, img1, img2, flow, valid):
|
196 |
+
# randomly sample scale
|
197 |
+
|
198 |
+
ht, wd = img1.shape[:2]
|
199 |
+
min_scale = np.maximum(
|
200 |
+
(self.crop_size[0] + 1) / float(ht),
|
201 |
+
(self.crop_size[1] + 1) / float(wd))
|
202 |
+
|
203 |
+
scale = 2 ** np.random.uniform(self.min_scale, self.max_scale)
|
204 |
+
scale_x = np.clip(scale, min_scale, None)
|
205 |
+
scale_y = np.clip(scale, min_scale, None)
|
206 |
+
|
207 |
+
if np.random.rand() < self.spatial_aug_prob:
|
208 |
+
# rescale the images
|
209 |
+
img1 = cv2.resize(img1, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
210 |
+
img2 = cv2.resize(img2, None, fx=scale_x, fy=scale_y, interpolation=cv2.INTER_LINEAR)
|
211 |
+
flow, valid = self.resize_sparse_flow_map(flow, valid, fx=scale_x, fy=scale_y)
|
212 |
+
|
213 |
+
if self.do_flip:
|
214 |
+
if np.random.rand() < 0.5: # h-flip
|
215 |
+
img1 = img1[:, ::-1]
|
216 |
+
img2 = img2[:, ::-1]
|
217 |
+
flow = flow[:, ::-1] * [-1.0, 1.0]
|
218 |
+
valid = valid[:, ::-1]
|
219 |
+
|
220 |
+
margin_y = 20
|
221 |
+
margin_x = 50
|
222 |
+
|
223 |
+
y0 = np.random.randint(0, img1.shape[0] - self.crop_size[0] + margin_y)
|
224 |
+
x0 = np.random.randint(-margin_x, img1.shape[1] - self.crop_size[1] + margin_x)
|
225 |
+
|
226 |
+
y0 = np.clip(y0, 0, img1.shape[0] - self.crop_size[0])
|
227 |
+
x0 = np.clip(x0, 0, img1.shape[1] - self.crop_size[1])
|
228 |
+
|
229 |
+
img1 = img1[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
230 |
+
img2 = img2[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
231 |
+
flow = flow[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
232 |
+
valid = valid[y0:y0+self.crop_size[0], x0:x0+self.crop_size[1]]
|
233 |
+
return img1, img2, flow, valid
|
234 |
+
|
235 |
+
|
236 |
+
def __call__(self, img1, img2, flow, valid):
|
237 |
+
img1, img2 = self.color_transform(img1, img2)
|
238 |
+
img1, img2 = self.eraser_transform(img1, img2)
|
239 |
+
img1, img2, flow, valid = self.spatial_transform(img1, img2, flow, valid)
|
240 |
+
|
241 |
+
img1 = np.ascontiguousarray(img1)
|
242 |
+
img2 = np.ascontiguousarray(img2)
|
243 |
+
flow = np.ascontiguousarray(flow)
|
244 |
+
valid = np.ascontiguousarray(valid)
|
245 |
+
|
246 |
+
return img1, img2, flow, valid
|
vtoonify/model/raft/core/utils/flow_viz.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Flow visualization code used from https://github.com/tomrunia/OpticalFlow_Visualization
|
2 |
+
|
3 |
+
|
4 |
+
# MIT License
|
5 |
+
#
|
6 |
+
# Copyright (c) 2018 Tom Runia
|
7 |
+
#
|
8 |
+
# Permission is hereby granted, free of charge, to any person obtaining a copy
|
9 |
+
# of this software and associated documentation files (the "Software"), to deal
|
10 |
+
# in the Software without restriction, including without limitation the rights
|
11 |
+
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
12 |
+
# copies of the Software, and to permit persons to whom the Software is
|
13 |
+
# furnished to do so, subject to conditions.
|
14 |
+
#
|
15 |
+
# Author: Tom Runia
|
16 |
+
# Date Created: 2018-08-03
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
def make_colorwheel():
|
21 |
+
"""
|
22 |
+
Generates a color wheel for optical flow visualization as presented in:
|
23 |
+
Baker et al. "A Database and Evaluation Methodology for Optical Flow" (ICCV, 2007)
|
24 |
+
URL: http://vision.middlebury.edu/flow/flowEval-iccv07.pdf
|
25 |
+
|
26 |
+
Code follows the original C++ source code of Daniel Scharstein.
|
27 |
+
Code follows the the Matlab source code of Deqing Sun.
|
28 |
+
|
29 |
+
Returns:
|
30 |
+
np.ndarray: Color wheel
|
31 |
+
"""
|
32 |
+
|
33 |
+
RY = 15
|
34 |
+
YG = 6
|
35 |
+
GC = 4
|
36 |
+
CB = 11
|
37 |
+
BM = 13
|
38 |
+
MR = 6
|
39 |
+
|
40 |
+
ncols = RY + YG + GC + CB + BM + MR
|
41 |
+
colorwheel = np.zeros((ncols, 3))
|
42 |
+
col = 0
|
43 |
+
|
44 |
+
# RY
|
45 |
+
colorwheel[0:RY, 0] = 255
|
46 |
+
colorwheel[0:RY, 1] = np.floor(255*np.arange(0,RY)/RY)
|
47 |
+
col = col+RY
|
48 |
+
# YG
|
49 |
+
colorwheel[col:col+YG, 0] = 255 - np.floor(255*np.arange(0,YG)/YG)
|
50 |
+
colorwheel[col:col+YG, 1] = 255
|
51 |
+
col = col+YG
|
52 |
+
# GC
|
53 |
+
colorwheel[col:col+GC, 1] = 255
|
54 |
+
colorwheel[col:col+GC, 2] = np.floor(255*np.arange(0,GC)/GC)
|
55 |
+
col = col+GC
|
56 |
+
# CB
|
57 |
+
colorwheel[col:col+CB, 1] = 255 - np.floor(255*np.arange(CB)/CB)
|
58 |
+
colorwheel[col:col+CB, 2] = 255
|
59 |
+
col = col+CB
|
60 |
+
# BM
|
61 |
+
colorwheel[col:col+BM, 2] = 255
|
62 |
+
colorwheel[col:col+BM, 0] = np.floor(255*np.arange(0,BM)/BM)
|
63 |
+
col = col+BM
|
64 |
+
# MR
|
65 |
+
colorwheel[col:col+MR, 2] = 255 - np.floor(255*np.arange(MR)/MR)
|
66 |
+
colorwheel[col:col+MR, 0] = 255
|
67 |
+
return colorwheel
|
68 |
+
|
69 |
+
|
70 |
+
def flow_uv_to_colors(u, v, convert_to_bgr=False):
|
71 |
+
"""
|
72 |
+
Applies the flow color wheel to (possibly clipped) flow components u and v.
|
73 |
+
|
74 |
+
According to the C++ source code of Daniel Scharstein
|
75 |
+
According to the Matlab source code of Deqing Sun
|
76 |
+
|
77 |
+
Args:
|
78 |
+
u (np.ndarray): Input horizontal flow of shape [H,W]
|
79 |
+
v (np.ndarray): Input vertical flow of shape [H,W]
|
80 |
+
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
|
81 |
+
|
82 |
+
Returns:
|
83 |
+
np.ndarray: Flow visualization image of shape [H,W,3]
|
84 |
+
"""
|
85 |
+
flow_image = np.zeros((u.shape[0], u.shape[1], 3), np.uint8)
|
86 |
+
colorwheel = make_colorwheel() # shape [55x3]
|
87 |
+
ncols = colorwheel.shape[0]
|
88 |
+
rad = np.sqrt(np.square(u) + np.square(v))
|
89 |
+
a = np.arctan2(-v, -u)/np.pi
|
90 |
+
fk = (a+1) / 2*(ncols-1)
|
91 |
+
k0 = np.floor(fk).astype(np.int32)
|
92 |
+
k1 = k0 + 1
|
93 |
+
k1[k1 == ncols] = 0
|
94 |
+
f = fk - k0
|
95 |
+
for i in range(colorwheel.shape[1]):
|
96 |
+
tmp = colorwheel[:,i]
|
97 |
+
col0 = tmp[k0] / 255.0
|
98 |
+
col1 = tmp[k1] / 255.0
|
99 |
+
col = (1-f)*col0 + f*col1
|
100 |
+
idx = (rad <= 1)
|
101 |
+
col[idx] = 1 - rad[idx] * (1-col[idx])
|
102 |
+
col[~idx] = col[~idx] * 0.75 # out of range
|
103 |
+
# Note the 2-i => BGR instead of RGB
|
104 |
+
ch_idx = 2-i if convert_to_bgr else i
|
105 |
+
flow_image[:,:,ch_idx] = np.floor(255 * col)
|
106 |
+
return flow_image
|
107 |
+
|
108 |
+
|
109 |
+
def flow_to_image(flow_uv, clip_flow=None, convert_to_bgr=False):
|
110 |
+
"""
|
111 |
+
Expects a two dimensional flow image of shape.
|
112 |
+
|
113 |
+
Args:
|
114 |
+
flow_uv (np.ndarray): Flow UV image of shape [H,W,2]
|
115 |
+
clip_flow (float, optional): Clip maximum of flow values. Defaults to None.
|
116 |
+
convert_to_bgr (bool, optional): Convert output image to BGR. Defaults to False.
|
117 |
+
|
118 |
+
Returns:
|
119 |
+
np.ndarray: Flow visualization image of shape [H,W,3]
|
120 |
+
"""
|
121 |
+
assert flow_uv.ndim == 3, 'input flow must have three dimensions'
|
122 |
+
assert flow_uv.shape[2] == 2, 'input flow must have shape [H,W,2]'
|
123 |
+
if clip_flow is not None:
|
124 |
+
flow_uv = np.clip(flow_uv, 0, clip_flow)
|
125 |
+
u = flow_uv[:,:,0]
|
126 |
+
v = flow_uv[:,:,1]
|
127 |
+
rad = np.sqrt(np.square(u) + np.square(v))
|
128 |
+
rad_max = np.max(rad)
|
129 |
+
epsilon = 1e-5
|
130 |
+
u = u / (rad_max + epsilon)
|
131 |
+
v = v / (rad_max + epsilon)
|
132 |
+
return flow_uv_to_colors(u, v, convert_to_bgr)
|
vtoonify/model/raft/core/utils/frame_utils.py
ADDED
@@ -0,0 +1,137 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
from os.path import *
|
4 |
+
import re
|
5 |
+
|
6 |
+
import cv2
|
7 |
+
cv2.setNumThreads(0)
|
8 |
+
cv2.ocl.setUseOpenCL(False)
|
9 |
+
|
10 |
+
TAG_CHAR = np.array([202021.25], np.float32)
|
11 |
+
|
12 |
+
def readFlow(fn):
|
13 |
+
""" Read .flo file in Middlebury format"""
|
14 |
+
# Code adapted from:
|
15 |
+
# http://stackoverflow.com/questions/28013200/reading-middlebury-flow-files-with-python-bytes-array-numpy
|
16 |
+
|
17 |
+
# WARNING: this will work on little-endian architectures (eg Intel x86) only!
|
18 |
+
# print 'fn = %s'%(fn)
|
19 |
+
with open(fn, 'rb') as f:
|
20 |
+
magic = np.fromfile(f, np.float32, count=1)
|
21 |
+
if 202021.25 != magic:
|
22 |
+
print('Magic number incorrect. Invalid .flo file')
|
23 |
+
return None
|
24 |
+
else:
|
25 |
+
w = np.fromfile(f, np.int32, count=1)
|
26 |
+
h = np.fromfile(f, np.int32, count=1)
|
27 |
+
# print 'Reading %d x %d flo file\n' % (w, h)
|
28 |
+
data = np.fromfile(f, np.float32, count=2*int(w)*int(h))
|
29 |
+
# Reshape data into 3D array (columns, rows, bands)
|
30 |
+
# The reshape here is for visualization, the original code is (w,h,2)
|
31 |
+
return np.resize(data, (int(h), int(w), 2))
|
32 |
+
|
33 |
+
def readPFM(file):
|
34 |
+
file = open(file, 'rb')
|
35 |
+
|
36 |
+
color = None
|
37 |
+
width = None
|
38 |
+
height = None
|
39 |
+
scale = None
|
40 |
+
endian = None
|
41 |
+
|
42 |
+
header = file.readline().rstrip()
|
43 |
+
if header == b'PF':
|
44 |
+
color = True
|
45 |
+
elif header == b'Pf':
|
46 |
+
color = False
|
47 |
+
else:
|
48 |
+
raise Exception('Not a PFM file.')
|
49 |
+
|
50 |
+
dim_match = re.match(rb'^(\d+)\s(\d+)\s$', file.readline())
|
51 |
+
if dim_match:
|
52 |
+
width, height = map(int, dim_match.groups())
|
53 |
+
else:
|
54 |
+
raise Exception('Malformed PFM header.')
|
55 |
+
|
56 |
+
scale = float(file.readline().rstrip())
|
57 |
+
if scale < 0: # little-endian
|
58 |
+
endian = '<'
|
59 |
+
scale = -scale
|
60 |
+
else:
|
61 |
+
endian = '>' # big-endian
|
62 |
+
|
63 |
+
data = np.fromfile(file, endian + 'f')
|
64 |
+
shape = (height, width, 3) if color else (height, width)
|
65 |
+
|
66 |
+
data = np.reshape(data, shape)
|
67 |
+
data = np.flipud(data)
|
68 |
+
return data
|
69 |
+
|
70 |
+
def writeFlow(filename,uv,v=None):
|
71 |
+
""" Write optical flow to file.
|
72 |
+
|
73 |
+
If v is None, uv is assumed to contain both u and v channels,
|
74 |
+
stacked in depth.
|
75 |
+
Original code by Deqing Sun, adapted from Daniel Scharstein.
|
76 |
+
"""
|
77 |
+
nBands = 2
|
78 |
+
|
79 |
+
if v is None:
|
80 |
+
assert(uv.ndim == 3)
|
81 |
+
assert(uv.shape[2] == 2)
|
82 |
+
u = uv[:,:,0]
|
83 |
+
v = uv[:,:,1]
|
84 |
+
else:
|
85 |
+
u = uv
|
86 |
+
|
87 |
+
assert(u.shape == v.shape)
|
88 |
+
height,width = u.shape
|
89 |
+
f = open(filename,'wb')
|
90 |
+
# write the header
|
91 |
+
f.write(TAG_CHAR)
|
92 |
+
np.array(width).astype(np.int32).tofile(f)
|
93 |
+
np.array(height).astype(np.int32).tofile(f)
|
94 |
+
# arrange into matrix form
|
95 |
+
tmp = np.zeros((height, width*nBands))
|
96 |
+
tmp[:,np.arange(width)*2] = u
|
97 |
+
tmp[:,np.arange(width)*2 + 1] = v
|
98 |
+
tmp.astype(np.float32).tofile(f)
|
99 |
+
f.close()
|
100 |
+
|
101 |
+
|
102 |
+
def readFlowKITTI(filename):
|
103 |
+
flow = cv2.imread(filename, cv2.IMREAD_ANYDEPTH|cv2.IMREAD_COLOR)
|
104 |
+
flow = flow[:,:,::-1].astype(np.float32)
|
105 |
+
flow, valid = flow[:, :, :2], flow[:, :, 2]
|
106 |
+
flow = (flow - 2**15) / 64.0
|
107 |
+
return flow, valid
|
108 |
+
|
109 |
+
def readDispKITTI(filename):
|
110 |
+
disp = cv2.imread(filename, cv2.IMREAD_ANYDEPTH) / 256.0
|
111 |
+
valid = disp > 0.0
|
112 |
+
flow = np.stack([-disp, np.zeros_like(disp)], -1)
|
113 |
+
return flow, valid
|
114 |
+
|
115 |
+
|
116 |
+
def writeFlowKITTI(filename, uv):
|
117 |
+
uv = 64.0 * uv + 2**15
|
118 |
+
valid = np.ones([uv.shape[0], uv.shape[1], 1])
|
119 |
+
uv = np.concatenate([uv, valid], axis=-1).astype(np.uint16)
|
120 |
+
cv2.imwrite(filename, uv[..., ::-1])
|
121 |
+
|
122 |
+
|
123 |
+
def read_gen(file_name, pil=False):
|
124 |
+
ext = splitext(file_name)[-1]
|
125 |
+
if ext == '.png' or ext == '.jpeg' or ext == '.ppm' or ext == '.jpg':
|
126 |
+
return Image.open(file_name)
|
127 |
+
elif ext == '.bin' or ext == '.raw':
|
128 |
+
return np.load(file_name)
|
129 |
+
elif ext == '.flo':
|
130 |
+
return readFlow(file_name).astype(np.float32)
|
131 |
+
elif ext == '.pfm':
|
132 |
+
flow = readPFM(file_name).astype(np.float32)
|
133 |
+
if len(flow.shape) == 2:
|
134 |
+
return flow
|
135 |
+
else:
|
136 |
+
return flow[:, :, :-1]
|
137 |
+
return []
|
vtoonify/model/raft/core/utils/utils.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import numpy as np
|
4 |
+
from scipy import interpolate
|
5 |
+
|
6 |
+
|
7 |
+
class InputPadder:
|
8 |
+
""" Pads images such that dimensions are divisible by 8 """
|
9 |
+
def __init__(self, dims, mode='sintel'):
|
10 |
+
self.ht, self.wd = dims[-2:]
|
11 |
+
pad_ht = (((self.ht // 8) + 1) * 8 - self.ht) % 8
|
12 |
+
pad_wd = (((self.wd // 8) + 1) * 8 - self.wd) % 8
|
13 |
+
if mode == 'sintel':
|
14 |
+
self._pad = [pad_wd//2, pad_wd - pad_wd//2, pad_ht//2, pad_ht - pad_ht//2]
|
15 |
+
else:
|
16 |
+
self._pad = [pad_wd//2, pad_wd - pad_wd//2, 0, pad_ht]
|
17 |
+
|
18 |
+
def pad(self, *inputs):
|
19 |
+
return [F.pad(x, self._pad, mode='replicate') for x in inputs]
|
20 |
+
|
21 |
+
def unpad(self,x):
|
22 |
+
ht, wd = x.shape[-2:]
|
23 |
+
c = [self._pad[2], ht-self._pad[3], self._pad[0], wd-self._pad[1]]
|
24 |
+
return x[..., c[0]:c[1], c[2]:c[3]]
|
25 |
+
|
26 |
+
def forward_interpolate(flow):
|
27 |
+
flow = flow.detach().cpu().numpy()
|
28 |
+
dx, dy = flow[0], flow[1]
|
29 |
+
|
30 |
+
ht, wd = dx.shape
|
31 |
+
x0, y0 = np.meshgrid(np.arange(wd), np.arange(ht))
|
32 |
+
|
33 |
+
x1 = x0 + dx
|
34 |
+
y1 = y0 + dy
|
35 |
+
|
36 |
+
x1 = x1.reshape(-1)
|
37 |
+
y1 = y1.reshape(-1)
|
38 |
+
dx = dx.reshape(-1)
|
39 |
+
dy = dy.reshape(-1)
|
40 |
+
|
41 |
+
valid = (x1 > 0) & (x1 < wd) & (y1 > 0) & (y1 < ht)
|
42 |
+
x1 = x1[valid]
|
43 |
+
y1 = y1[valid]
|
44 |
+
dx = dx[valid]
|
45 |
+
dy = dy[valid]
|
46 |
+
|
47 |
+
flow_x = interpolate.griddata(
|
48 |
+
(x1, y1), dx, (x0, y0), method='nearest', fill_value=0)
|
49 |
+
|
50 |
+
flow_y = interpolate.griddata(
|
51 |
+
(x1, y1), dy, (x0, y0), method='nearest', fill_value=0)
|
52 |
+
|
53 |
+
flow = np.stack([flow_x, flow_y], axis=0)
|
54 |
+
return torch.from_numpy(flow).float()
|
55 |
+
|
56 |
+
|
57 |
+
def bilinear_sampler(img, coords, mode='bilinear', mask=False):
|
58 |
+
""" Wrapper for grid_sample, uses pixel coordinates """
|
59 |
+
H, W = img.shape[-2:]
|
60 |
+
xgrid, ygrid = coords.split([1,1], dim=-1)
|
61 |
+
xgrid = 2*xgrid/(W-1) - 1
|
62 |
+
ygrid = 2*ygrid/(H-1) - 1
|
63 |
+
|
64 |
+
grid = torch.cat([xgrid, ygrid], dim=-1)
|
65 |
+
img = F.grid_sample(img, grid, align_corners=True)
|
66 |
+
|
67 |
+
if mask:
|
68 |
+
mask = (xgrid > -1) & (ygrid > -1) & (xgrid < 1) & (ygrid < 1)
|
69 |
+
return img, mask.float()
|
70 |
+
|
71 |
+
return img
|
72 |
+
|
73 |
+
|
74 |
+
def coords_grid(batch, ht, wd, device):
|
75 |
+
coords = torch.meshgrid(torch.arange(ht, device=device), torch.arange(wd, device=device))
|
76 |
+
coords = torch.stack(coords[::-1], dim=0).float()
|
77 |
+
return coords[None].repeat(batch, 1, 1, 1)
|
78 |
+
|
79 |
+
|
80 |
+
def upflow8(flow, mode='bilinear'):
|
81 |
+
new_size = (8 * flow.shape[2], 8 * flow.shape[3])
|
82 |
+
return 8 * F.interpolate(flow, size=new_size, mode=mode, align_corners=True)
|
vtoonify/model/raft/demo.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('core')
|
3 |
+
|
4 |
+
import argparse
|
5 |
+
import os
|
6 |
+
import cv2
|
7 |
+
import glob
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
from PIL import Image
|
11 |
+
|
12 |
+
from raft import RAFT
|
13 |
+
from utils import flow_viz
|
14 |
+
from utils.utils import InputPadder
|
15 |
+
|
16 |
+
|
17 |
+
|
18 |
+
DEVICE = 'cuda'
|
19 |
+
|
20 |
+
def load_image(imfile):
|
21 |
+
img = np.array(Image.open(imfile)).astype(np.uint8)
|
22 |
+
img = torch.from_numpy(img).permute(2, 0, 1).float()
|
23 |
+
return img[None].to(DEVICE)
|
24 |
+
|
25 |
+
|
26 |
+
def viz(img, flo):
|
27 |
+
img = img[0].permute(1,2,0).cpu().numpy()
|
28 |
+
flo = flo[0].permute(1,2,0).cpu().numpy()
|
29 |
+
|
30 |
+
# map flow to rgb image
|
31 |
+
flo = flow_viz.flow_to_image(flo)
|
32 |
+
img_flo = np.concatenate([img, flo], axis=0)
|
33 |
+
|
34 |
+
# import matplotlib.pyplot as plt
|
35 |
+
# plt.imshow(img_flo / 255.0)
|
36 |
+
# plt.show()
|
37 |
+
|
38 |
+
cv2.imshow('image', img_flo[:, :, [2,1,0]]/255.0)
|
39 |
+
cv2.waitKey()
|
40 |
+
|
41 |
+
|
42 |
+
def demo(args):
|
43 |
+
model = torch.nn.DataParallel(RAFT(args))
|
44 |
+
model.load_state_dict(torch.load(args.model))
|
45 |
+
|
46 |
+
model = model.module
|
47 |
+
model.to(DEVICE)
|
48 |
+
model.eval()
|
49 |
+
|
50 |
+
with torch.no_grad():
|
51 |
+
images = glob.glob(os.path.join(args.path, '*.png')) + \
|
52 |
+
glob.glob(os.path.join(args.path, '*.jpg'))
|
53 |
+
|
54 |
+
images = sorted(images)
|
55 |
+
for imfile1, imfile2 in zip(images[:-1], images[1:]):
|
56 |
+
image1 = load_image(imfile1)
|
57 |
+
image2 = load_image(imfile2)
|
58 |
+
|
59 |
+
padder = InputPadder(image1.shape)
|
60 |
+
image1, image2 = padder.pad(image1, image2)
|
61 |
+
|
62 |
+
flow_low, flow_up = model(image1, image2, iters=20, test_mode=True)
|
63 |
+
viz(image1, flow_up)
|
64 |
+
|
65 |
+
|
66 |
+
if __name__ == '__main__':
|
67 |
+
parser = argparse.ArgumentParser()
|
68 |
+
parser.add_argument('--model', help="restore checkpoint")
|
69 |
+
parser.add_argument('--path', help="dataset for evaluation")
|
70 |
+
parser.add_argument('--small', action='store_true', help='use small model')
|
71 |
+
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
|
72 |
+
parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation')
|
73 |
+
args = parser.parse_args()
|
74 |
+
|
75 |
+
demo(args)
|
vtoonify/model/raft/download_models.sh
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
wget https://www.dropbox.com/s/4j4z58wuv8o0mfz/models.zip
|
3 |
+
unzip models.zip
|
vtoonify/model/raft/evaluate.py
ADDED
@@ -0,0 +1,197 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
sys.path.append('core')
|
3 |
+
|
4 |
+
from PIL import Image
|
5 |
+
import argparse
|
6 |
+
import os
|
7 |
+
import time
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
|
13 |
+
import datasets
|
14 |
+
from utils import flow_viz
|
15 |
+
from utils import frame_utils
|
16 |
+
|
17 |
+
from raft import RAFT
|
18 |
+
from utils.utils import InputPadder, forward_interpolate
|
19 |
+
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def create_sintel_submission(model, iters=32, warm_start=False, output_path='sintel_submission'):
|
23 |
+
""" Create submission for the Sintel leaderboard """
|
24 |
+
model.eval()
|
25 |
+
for dstype in ['clean', 'final']:
|
26 |
+
test_dataset = datasets.MpiSintel(split='test', aug_params=None, dstype=dstype)
|
27 |
+
|
28 |
+
flow_prev, sequence_prev = None, None
|
29 |
+
for test_id in range(len(test_dataset)):
|
30 |
+
image1, image2, (sequence, frame) = test_dataset[test_id]
|
31 |
+
if sequence != sequence_prev:
|
32 |
+
flow_prev = None
|
33 |
+
|
34 |
+
padder = InputPadder(image1.shape)
|
35 |
+
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
|
36 |
+
|
37 |
+
flow_low, flow_pr = model(image1, image2, iters=iters, flow_init=flow_prev, test_mode=True)
|
38 |
+
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()
|
39 |
+
|
40 |
+
if warm_start:
|
41 |
+
flow_prev = forward_interpolate(flow_low[0])[None].cuda()
|
42 |
+
|
43 |
+
output_dir = os.path.join(output_path, dstype, sequence)
|
44 |
+
output_file = os.path.join(output_dir, 'frame%04d.flo' % (frame+1))
|
45 |
+
|
46 |
+
if not os.path.exists(output_dir):
|
47 |
+
os.makedirs(output_dir)
|
48 |
+
|
49 |
+
frame_utils.writeFlow(output_file, flow)
|
50 |
+
sequence_prev = sequence
|
51 |
+
|
52 |
+
|
53 |
+
@torch.no_grad()
|
54 |
+
def create_kitti_submission(model, iters=24, output_path='kitti_submission'):
|
55 |
+
""" Create submission for the Sintel leaderboard """
|
56 |
+
model.eval()
|
57 |
+
test_dataset = datasets.KITTI(split='testing', aug_params=None)
|
58 |
+
|
59 |
+
if not os.path.exists(output_path):
|
60 |
+
os.makedirs(output_path)
|
61 |
+
|
62 |
+
for test_id in range(len(test_dataset)):
|
63 |
+
image1, image2, (frame_id, ) = test_dataset[test_id]
|
64 |
+
padder = InputPadder(image1.shape, mode='kitti')
|
65 |
+
image1, image2 = padder.pad(image1[None].cuda(), image2[None].cuda())
|
66 |
+
|
67 |
+
_, flow_pr = model(image1, image2, iters=iters, test_mode=True)
|
68 |
+
flow = padder.unpad(flow_pr[0]).permute(1, 2, 0).cpu().numpy()
|
69 |
+
|
70 |
+
output_filename = os.path.join(output_path, frame_id)
|
71 |
+
frame_utils.writeFlowKITTI(output_filename, flow)
|
72 |
+
|
73 |
+
|
74 |
+
@torch.no_grad()
|
75 |
+
def validate_chairs(model, iters=24):
|
76 |
+
""" Perform evaluation on the FlyingChairs (test) split """
|
77 |
+
model.eval()
|
78 |
+
epe_list = []
|
79 |
+
|
80 |
+
val_dataset = datasets.FlyingChairs(split='validation')
|
81 |
+
for val_id in range(len(val_dataset)):
|
82 |
+
image1, image2, flow_gt, _ = val_dataset[val_id]
|
83 |
+
image1 = image1[None].cuda()
|
84 |
+
image2 = image2[None].cuda()
|
85 |
+
|
86 |
+
_, flow_pr = model(image1, image2, iters=iters, test_mode=True)
|
87 |
+
epe = torch.sum((flow_pr[0].cpu() - flow_gt)**2, dim=0).sqrt()
|
88 |
+
epe_list.append(epe.view(-1).numpy())
|
89 |
+
|
90 |
+
epe = np.mean(np.concatenate(epe_list))
|
91 |
+
print("Validation Chairs EPE: %f" % epe)
|
92 |
+
return {'chairs': epe}
|
93 |
+
|
94 |
+
|
95 |
+
@torch.no_grad()
|
96 |
+
def validate_sintel(model, iters=32):
|
97 |
+
""" Peform validation using the Sintel (train) split """
|
98 |
+
model.eval()
|
99 |
+
results = {}
|
100 |
+
for dstype in ['clean', 'final']:
|
101 |
+
val_dataset = datasets.MpiSintel(split='training', dstype=dstype)
|
102 |
+
epe_list = []
|
103 |
+
|
104 |
+
for val_id in range(len(val_dataset)):
|
105 |
+
image1, image2, flow_gt, _ = val_dataset[val_id]
|
106 |
+
image1 = image1[None].cuda()
|
107 |
+
image2 = image2[None].cuda()
|
108 |
+
|
109 |
+
padder = InputPadder(image1.shape)
|
110 |
+
image1, image2 = padder.pad(image1, image2)
|
111 |
+
|
112 |
+
flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True)
|
113 |
+
flow = padder.unpad(flow_pr[0]).cpu()
|
114 |
+
|
115 |
+
epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt()
|
116 |
+
epe_list.append(epe.view(-1).numpy())
|
117 |
+
|
118 |
+
epe_all = np.concatenate(epe_list)
|
119 |
+
epe = np.mean(epe_all)
|
120 |
+
px1 = np.mean(epe_all<1)
|
121 |
+
px3 = np.mean(epe_all<3)
|
122 |
+
px5 = np.mean(epe_all<5)
|
123 |
+
|
124 |
+
print("Validation (%s) EPE: %f, 1px: %f, 3px: %f, 5px: %f" % (dstype, epe, px1, px3, px5))
|
125 |
+
results[dstype] = np.mean(epe_list)
|
126 |
+
|
127 |
+
return results
|
128 |
+
|
129 |
+
|
130 |
+
@torch.no_grad()
|
131 |
+
def validate_kitti(model, iters=24):
|
132 |
+
""" Peform validation using the KITTI-2015 (train) split """
|
133 |
+
model.eval()
|
134 |
+
val_dataset = datasets.KITTI(split='training')
|
135 |
+
|
136 |
+
out_list, epe_list = [], []
|
137 |
+
for val_id in range(len(val_dataset)):
|
138 |
+
image1, image2, flow_gt, valid_gt = val_dataset[val_id]
|
139 |
+
image1 = image1[None].cuda()
|
140 |
+
image2 = image2[None].cuda()
|
141 |
+
|
142 |
+
padder = InputPadder(image1.shape, mode='kitti')
|
143 |
+
image1, image2 = padder.pad(image1, image2)
|
144 |
+
|
145 |
+
flow_low, flow_pr = model(image1, image2, iters=iters, test_mode=True)
|
146 |
+
flow = padder.unpad(flow_pr[0]).cpu()
|
147 |
+
|
148 |
+
epe = torch.sum((flow - flow_gt)**2, dim=0).sqrt()
|
149 |
+
mag = torch.sum(flow_gt**2, dim=0).sqrt()
|
150 |
+
|
151 |
+
epe = epe.view(-1)
|
152 |
+
mag = mag.view(-1)
|
153 |
+
val = valid_gt.view(-1) >= 0.5
|
154 |
+
|
155 |
+
out = ((epe > 3.0) & ((epe/mag) > 0.05)).float()
|
156 |
+
epe_list.append(epe[val].mean().item())
|
157 |
+
out_list.append(out[val].cpu().numpy())
|
158 |
+
|
159 |
+
epe_list = np.array(epe_list)
|
160 |
+
out_list = np.concatenate(out_list)
|
161 |
+
|
162 |
+
epe = np.mean(epe_list)
|
163 |
+
f1 = 100 * np.mean(out_list)
|
164 |
+
|
165 |
+
print("Validation KITTI: %f, %f" % (epe, f1))
|
166 |
+
return {'kitti-epe': epe, 'kitti-f1': f1}
|
167 |
+
|
168 |
+
|
169 |
+
if __name__ == '__main__':
|
170 |
+
parser = argparse.ArgumentParser()
|
171 |
+
parser.add_argument('--model', help="restore checkpoint")
|
172 |
+
parser.add_argument('--dataset', help="dataset for evaluation")
|
173 |
+
parser.add_argument('--small', action='store_true', help='use small model')
|
174 |
+
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
|
175 |
+
parser.add_argument('--alternate_corr', action='store_true', help='use efficent correlation implementation')
|
176 |
+
args = parser.parse_args()
|
177 |
+
|
178 |
+
model = torch.nn.DataParallel(RAFT(args))
|
179 |
+
model.load_state_dict(torch.load(args.model))
|
180 |
+
|
181 |
+
model.cuda()
|
182 |
+
model.eval()
|
183 |
+
|
184 |
+
# create_sintel_submission(model.module, warm_start=True)
|
185 |
+
# create_kitti_submission(model.module)
|
186 |
+
|
187 |
+
with torch.no_grad():
|
188 |
+
if args.dataset == 'chairs':
|
189 |
+
validate_chairs(model.module)
|
190 |
+
|
191 |
+
elif args.dataset == 'sintel':
|
192 |
+
validate_sintel(model.module)
|
193 |
+
|
194 |
+
elif args.dataset == 'kitti':
|
195 |
+
validate_kitti(model.module)
|
196 |
+
|
197 |
+
|
vtoonify/model/raft/train.py
ADDED
@@ -0,0 +1,247 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import print_function, division
|
2 |
+
import sys
|
3 |
+
sys.path.append('core')
|
4 |
+
|
5 |
+
import argparse
|
6 |
+
import os
|
7 |
+
import cv2
|
8 |
+
import time
|
9 |
+
import numpy as np
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
|
12 |
+
import torch
|
13 |
+
import torch.nn as nn
|
14 |
+
import torch.optim as optim
|
15 |
+
import torch.nn.functional as F
|
16 |
+
|
17 |
+
from torch.utils.data import DataLoader
|
18 |
+
from raft import RAFT
|
19 |
+
import evaluate
|
20 |
+
import datasets
|
21 |
+
|
22 |
+
from torch.utils.tensorboard import SummaryWriter
|
23 |
+
|
24 |
+
try:
|
25 |
+
from torch.cuda.amp import GradScaler
|
26 |
+
except:
|
27 |
+
# dummy GradScaler for PyTorch < 1.6
|
28 |
+
class GradScaler:
|
29 |
+
def __init__(self):
|
30 |
+
pass
|
31 |
+
def scale(self, loss):
|
32 |
+
return loss
|
33 |
+
def unscale_(self, optimizer):
|
34 |
+
pass
|
35 |
+
def step(self, optimizer):
|
36 |
+
optimizer.step()
|
37 |
+
def update(self):
|
38 |
+
pass
|
39 |
+
|
40 |
+
|
41 |
+
# exclude extremly large displacements
|
42 |
+
MAX_FLOW = 400
|
43 |
+
SUM_FREQ = 100
|
44 |
+
VAL_FREQ = 5000
|
45 |
+
|
46 |
+
|
47 |
+
def sequence_loss(flow_preds, flow_gt, valid, gamma=0.8, max_flow=MAX_FLOW):
|
48 |
+
""" Loss function defined over sequence of flow predictions """
|
49 |
+
|
50 |
+
n_predictions = len(flow_preds)
|
51 |
+
flow_loss = 0.0
|
52 |
+
|
53 |
+
# exlude invalid pixels and extremely large diplacements
|
54 |
+
mag = torch.sum(flow_gt**2, dim=1).sqrt()
|
55 |
+
valid = (valid >= 0.5) & (mag < max_flow)
|
56 |
+
|
57 |
+
for i in range(n_predictions):
|
58 |
+
i_weight = gamma**(n_predictions - i - 1)
|
59 |
+
i_loss = (flow_preds[i] - flow_gt).abs()
|
60 |
+
flow_loss += i_weight * (valid[:, None] * i_loss).mean()
|
61 |
+
|
62 |
+
epe = torch.sum((flow_preds[-1] - flow_gt)**2, dim=1).sqrt()
|
63 |
+
epe = epe.view(-1)[valid.view(-1)]
|
64 |
+
|
65 |
+
metrics = {
|
66 |
+
'epe': epe.mean().item(),
|
67 |
+
'1px': (epe < 1).float().mean().item(),
|
68 |
+
'3px': (epe < 3).float().mean().item(),
|
69 |
+
'5px': (epe < 5).float().mean().item(),
|
70 |
+
}
|
71 |
+
|
72 |
+
return flow_loss, metrics
|
73 |
+
|
74 |
+
|
75 |
+
def count_parameters(model):
|
76 |
+
return sum(p.numel() for p in model.parameters() if p.requires_grad)
|
77 |
+
|
78 |
+
|
79 |
+
def fetch_optimizer(args, model):
|
80 |
+
""" Create the optimizer and learning rate scheduler """
|
81 |
+
optimizer = optim.AdamW(model.parameters(), lr=args.lr, weight_decay=args.wdecay, eps=args.epsilon)
|
82 |
+
|
83 |
+
scheduler = optim.lr_scheduler.OneCycleLR(optimizer, args.lr, args.num_steps+100,
|
84 |
+
pct_start=0.05, cycle_momentum=False, anneal_strategy='linear')
|
85 |
+
|
86 |
+
return optimizer, scheduler
|
87 |
+
|
88 |
+
|
89 |
+
class Logger:
|
90 |
+
def __init__(self, model, scheduler):
|
91 |
+
self.model = model
|
92 |
+
self.scheduler = scheduler
|
93 |
+
self.total_steps = 0
|
94 |
+
self.running_loss = {}
|
95 |
+
self.writer = None
|
96 |
+
|
97 |
+
def _print_training_status(self):
|
98 |
+
metrics_data = [self.running_loss[k]/SUM_FREQ for k in sorted(self.running_loss.keys())]
|
99 |
+
training_str = "[{:6d}, {:10.7f}] ".format(self.total_steps+1, self.scheduler.get_last_lr()[0])
|
100 |
+
metrics_str = ("{:10.4f}, "*len(metrics_data)).format(*metrics_data)
|
101 |
+
|
102 |
+
# print the training status
|
103 |
+
print(training_str + metrics_str)
|
104 |
+
|
105 |
+
if self.writer is None:
|
106 |
+
self.writer = SummaryWriter()
|
107 |
+
|
108 |
+
for k in self.running_loss:
|
109 |
+
self.writer.add_scalar(k, self.running_loss[k]/SUM_FREQ, self.total_steps)
|
110 |
+
self.running_loss[k] = 0.0
|
111 |
+
|
112 |
+
def push(self, metrics):
|
113 |
+
self.total_steps += 1
|
114 |
+
|
115 |
+
for key in metrics:
|
116 |
+
if key not in self.running_loss:
|
117 |
+
self.running_loss[key] = 0.0
|
118 |
+
|
119 |
+
self.running_loss[key] += metrics[key]
|
120 |
+
|
121 |
+
if self.total_steps % SUM_FREQ == SUM_FREQ-1:
|
122 |
+
self._print_training_status()
|
123 |
+
self.running_loss = {}
|
124 |
+
|
125 |
+
def write_dict(self, results):
|
126 |
+
if self.writer is None:
|
127 |
+
self.writer = SummaryWriter()
|
128 |
+
|
129 |
+
for key in results:
|
130 |
+
self.writer.add_scalar(key, results[key], self.total_steps)
|
131 |
+
|
132 |
+
def close(self):
|
133 |
+
self.writer.close()
|
134 |
+
|
135 |
+
|
136 |
+
def train(args):
|
137 |
+
|
138 |
+
model = nn.DataParallel(RAFT(args), device_ids=args.gpus)
|
139 |
+
print("Parameter Count: %d" % count_parameters(model))
|
140 |
+
|
141 |
+
if args.restore_ckpt is not None:
|
142 |
+
model.load_state_dict(torch.load(args.restore_ckpt), strict=False)
|
143 |
+
|
144 |
+
model.cuda()
|
145 |
+
model.train()
|
146 |
+
|
147 |
+
if args.stage != 'chairs':
|
148 |
+
model.module.freeze_bn()
|
149 |
+
|
150 |
+
train_loader = datasets.fetch_dataloader(args)
|
151 |
+
optimizer, scheduler = fetch_optimizer(args, model)
|
152 |
+
|
153 |
+
total_steps = 0
|
154 |
+
scaler = GradScaler(enabled=args.mixed_precision)
|
155 |
+
logger = Logger(model, scheduler)
|
156 |
+
|
157 |
+
VAL_FREQ = 5000
|
158 |
+
add_noise = True
|
159 |
+
|
160 |
+
should_keep_training = True
|
161 |
+
while should_keep_training:
|
162 |
+
|
163 |
+
for i_batch, data_blob in enumerate(train_loader):
|
164 |
+
optimizer.zero_grad()
|
165 |
+
image1, image2, flow, valid = [x.cuda() for x in data_blob]
|
166 |
+
|
167 |
+
if args.add_noise:
|
168 |
+
stdv = np.random.uniform(0.0, 5.0)
|
169 |
+
image1 = (image1 + stdv * torch.randn(*image1.shape).cuda()).clamp(0.0, 255.0)
|
170 |
+
image2 = (image2 + stdv * torch.randn(*image2.shape).cuda()).clamp(0.0, 255.0)
|
171 |
+
|
172 |
+
flow_predictions = model(image1, image2, iters=args.iters)
|
173 |
+
|
174 |
+
loss, metrics = sequence_loss(flow_predictions, flow, valid, args.gamma)
|
175 |
+
scaler.scale(loss).backward()
|
176 |
+
scaler.unscale_(optimizer)
|
177 |
+
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
|
178 |
+
|
179 |
+
scaler.step(optimizer)
|
180 |
+
scheduler.step()
|
181 |
+
scaler.update()
|
182 |
+
|
183 |
+
logger.push(metrics)
|
184 |
+
|
185 |
+
if total_steps % VAL_FREQ == VAL_FREQ - 1:
|
186 |
+
PATH = 'checkpoints/%d_%s.pth' % (total_steps+1, args.name)
|
187 |
+
torch.save(model.state_dict(), PATH)
|
188 |
+
|
189 |
+
results = {}
|
190 |
+
for val_dataset in args.validation:
|
191 |
+
if val_dataset == 'chairs':
|
192 |
+
results.update(evaluate.validate_chairs(model.module))
|
193 |
+
elif val_dataset == 'sintel':
|
194 |
+
results.update(evaluate.validate_sintel(model.module))
|
195 |
+
elif val_dataset == 'kitti':
|
196 |
+
results.update(evaluate.validate_kitti(model.module))
|
197 |
+
|
198 |
+
logger.write_dict(results)
|
199 |
+
|
200 |
+
model.train()
|
201 |
+
if args.stage != 'chairs':
|
202 |
+
model.module.freeze_bn()
|
203 |
+
|
204 |
+
total_steps += 1
|
205 |
+
|
206 |
+
if total_steps > args.num_steps:
|
207 |
+
should_keep_training = False
|
208 |
+
break
|
209 |
+
|
210 |
+
logger.close()
|
211 |
+
PATH = 'checkpoints/%s.pth' % args.name
|
212 |
+
torch.save(model.state_dict(), PATH)
|
213 |
+
|
214 |
+
return PATH
|
215 |
+
|
216 |
+
|
217 |
+
if __name__ == '__main__':
|
218 |
+
parser = argparse.ArgumentParser()
|
219 |
+
parser.add_argument('--name', default='raft', help="name your experiment")
|
220 |
+
parser.add_argument('--stage', help="determines which dataset to use for training")
|
221 |
+
parser.add_argument('--restore_ckpt', help="restore checkpoint")
|
222 |
+
parser.add_argument('--small', action='store_true', help='use small model')
|
223 |
+
parser.add_argument('--validation', type=str, nargs='+')
|
224 |
+
|
225 |
+
parser.add_argument('--lr', type=float, default=0.00002)
|
226 |
+
parser.add_argument('--num_steps', type=int, default=100000)
|
227 |
+
parser.add_argument('--batch_size', type=int, default=6)
|
228 |
+
parser.add_argument('--image_size', type=int, nargs='+', default=[384, 512])
|
229 |
+
parser.add_argument('--gpus', type=int, nargs='+', default=[0,1])
|
230 |
+
parser.add_argument('--mixed_precision', action='store_true', help='use mixed precision')
|
231 |
+
|
232 |
+
parser.add_argument('--iters', type=int, default=12)
|
233 |
+
parser.add_argument('--wdecay', type=float, default=.00005)
|
234 |
+
parser.add_argument('--epsilon', type=float, default=1e-8)
|
235 |
+
parser.add_argument('--clip', type=float, default=1.0)
|
236 |
+
parser.add_argument('--dropout', type=float, default=0.0)
|
237 |
+
parser.add_argument('--gamma', type=float, default=0.8, help='exponential weighting')
|
238 |
+
parser.add_argument('--add_noise', action='store_true')
|
239 |
+
args = parser.parse_args()
|
240 |
+
|
241 |
+
torch.manual_seed(1234)
|
242 |
+
np.random.seed(1234)
|
243 |
+
|
244 |
+
if not os.path.isdir('checkpoints'):
|
245 |
+
os.mkdir('checkpoints')
|
246 |
+
|
247 |
+
train(args)
|
vtoonify/model/raft/train_mixed.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
mkdir -p checkpoints
|
3 |
+
python -u train.py --name raft-chairs --stage chairs --validation chairs --gpus 0 --num_steps 120000 --batch_size 8 --lr 0.00025 --image_size 368 496 --wdecay 0.0001 --mixed_precision
|
4 |
+
python -u train.py --name raft-things --stage things --validation sintel --restore_ckpt checkpoints/raft-chairs.pth --gpus 0 --num_steps 120000 --batch_size 5 --lr 0.0001 --image_size 400 720 --wdecay 0.0001 --mixed_precision
|
5 |
+
python -u train.py --name raft-sintel --stage sintel --validation sintel --restore_ckpt checkpoints/raft-things.pth --gpus 0 --num_steps 120000 --batch_size 5 --lr 0.0001 --image_size 368 768 --wdecay 0.00001 --gamma=0.85 --mixed_precision
|
6 |
+
python -u train.py --name raft-kitti --stage kitti --validation kitti --restore_ckpt checkpoints/raft-sintel.pth --gpus 0 --num_steps 50000 --batch_size 5 --lr 0.0001 --image_size 288 960 --wdecay 0.00001 --gamma=0.85 --mixed_precision
|
vtoonify/model/raft/train_standard.sh
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
mkdir -p checkpoints
|
3 |
+
python -u train.py --name raft-chairs --stage chairs --validation chairs --gpus 0 1 --num_steps 100000 --batch_size 10 --lr 0.0004 --image_size 368 496 --wdecay 0.0001
|
4 |
+
python -u train.py --name raft-things --stage things --validation sintel --restore_ckpt checkpoints/raft-chairs.pth --gpus 0 1 --num_steps 100000 --batch_size 6 --lr 0.000125 --image_size 400 720 --wdecay 0.0001
|
5 |
+
python -u train.py --name raft-sintel --stage sintel --validation sintel --restore_ckpt checkpoints/raft-things.pth --gpus 0 1 --num_steps 100000 --batch_size 6 --lr 0.000125 --image_size 368 768 --wdecay 0.00001 --gamma=0.85
|
6 |
+
python -u train.py --name raft-kitti --stage kitti --validation kitti --restore_ckpt checkpoints/raft-sintel.pth --gpus 0 1 --num_steps 50000 --batch_size 6 --lr 0.0001 --image_size 288 960 --wdecay 0.00001 --gamma=0.85
|
vtoonify/model/simple_augment.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# almost the same as model.stylegan.non_leaking
|
2 |
+
# we only modify the parameters in sample_affine() to make the transformations mild
|
3 |
+
|
4 |
+
import math
|
5 |
+
|
6 |
+
import torch
|
7 |
+
from torch import autograd
|
8 |
+
from torch.nn import functional as F
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
from model.stylegan.distributed import reduce_sum
|
12 |
+
from model.stylegan.op import upfirdn2d
|
13 |
+
|
14 |
+
|
15 |
+
class AdaptiveAugment:
|
16 |
+
def __init__(self, ada_aug_target, ada_aug_len, update_every, device):
|
17 |
+
self.ada_aug_target = ada_aug_target
|
18 |
+
self.ada_aug_len = ada_aug_len
|
19 |
+
self.update_every = update_every
|
20 |
+
|
21 |
+
self.ada_update = 0
|
22 |
+
self.ada_aug_buf = torch.tensor([0.0, 0.0], device=device)
|
23 |
+
self.r_t_stat = 0
|
24 |
+
self.ada_aug_p = 0
|
25 |
+
|
26 |
+
@torch.no_grad()
|
27 |
+
def tune(self, real_pred):
|
28 |
+
self.ada_aug_buf += torch.tensor(
|
29 |
+
(torch.sign(real_pred).sum().item(), real_pred.shape[0]),
|
30 |
+
device=real_pred.device,
|
31 |
+
)
|
32 |
+
self.ada_update += 1
|
33 |
+
|
34 |
+
if self.ada_update % self.update_every == 0:
|
35 |
+
self.ada_aug_buf = reduce_sum(self.ada_aug_buf)
|
36 |
+
pred_signs, n_pred = self.ada_aug_buf.tolist()
|
37 |
+
|
38 |
+
self.r_t_stat = pred_signs / n_pred
|
39 |
+
|
40 |
+
if self.r_t_stat > self.ada_aug_target:
|
41 |
+
sign = 1
|
42 |
+
|
43 |
+
else:
|
44 |
+
sign = -1
|
45 |
+
|
46 |
+
self.ada_aug_p += sign * n_pred / self.ada_aug_len
|
47 |
+
self.ada_aug_p = min(1, max(0, self.ada_aug_p))
|
48 |
+
self.ada_aug_buf.mul_(0)
|
49 |
+
self.ada_update = 0
|
50 |
+
|
51 |
+
return self.ada_aug_p
|
52 |
+
|
53 |
+
|
54 |
+
SYM6 = (
|
55 |
+
0.015404109327027373,
|
56 |
+
0.0034907120842174702,
|
57 |
+
-0.11799011114819057,
|
58 |
+
-0.048311742585633,
|
59 |
+
0.4910559419267466,
|
60 |
+
0.787641141030194,
|
61 |
+
0.3379294217276218,
|
62 |
+
-0.07263752278646252,
|
63 |
+
-0.021060292512300564,
|
64 |
+
0.04472490177066578,
|
65 |
+
0.0017677118642428036,
|
66 |
+
-0.007800708325034148,
|
67 |
+
)
|
68 |
+
|
69 |
+
|
70 |
+
def translate_mat(t_x, t_y, device="cpu"):
|
71 |
+
batch = t_x.shape[0]
|
72 |
+
|
73 |
+
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1)
|
74 |
+
translate = torch.stack((t_x, t_y), 1)
|
75 |
+
mat[:, :2, 2] = translate
|
76 |
+
|
77 |
+
return mat
|
78 |
+
|
79 |
+
|
80 |
+
def rotate_mat(theta, device="cpu"):
|
81 |
+
batch = theta.shape[0]
|
82 |
+
|
83 |
+
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1)
|
84 |
+
sin_t = torch.sin(theta)
|
85 |
+
cos_t = torch.cos(theta)
|
86 |
+
rot = torch.stack((cos_t, -sin_t, sin_t, cos_t), 1).view(batch, 2, 2)
|
87 |
+
mat[:, :2, :2] = rot
|
88 |
+
|
89 |
+
return mat
|
90 |
+
|
91 |
+
|
92 |
+
def scale_mat(s_x, s_y, device="cpu"):
|
93 |
+
batch = s_x.shape[0]
|
94 |
+
|
95 |
+
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1)
|
96 |
+
mat[:, 0, 0] = s_x
|
97 |
+
mat[:, 1, 1] = s_y
|
98 |
+
|
99 |
+
return mat
|
100 |
+
|
101 |
+
|
102 |
+
def translate3d_mat(t_x, t_y, t_z):
|
103 |
+
batch = t_x.shape[0]
|
104 |
+
|
105 |
+
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
|
106 |
+
translate = torch.stack((t_x, t_y, t_z), 1)
|
107 |
+
mat[:, :3, 3] = translate
|
108 |
+
|
109 |
+
return mat
|
110 |
+
|
111 |
+
|
112 |
+
def rotate3d_mat(axis, theta):
|
113 |
+
batch = theta.shape[0]
|
114 |
+
|
115 |
+
u_x, u_y, u_z = axis
|
116 |
+
|
117 |
+
eye = torch.eye(3).unsqueeze(0)
|
118 |
+
cross = torch.tensor([(0, -u_z, u_y), (u_z, 0, -u_x), (-u_y, u_x, 0)]).unsqueeze(0)
|
119 |
+
outer = torch.tensor(axis)
|
120 |
+
outer = (outer.unsqueeze(1) * outer).unsqueeze(0)
|
121 |
+
|
122 |
+
sin_t = torch.sin(theta).view(-1, 1, 1)
|
123 |
+
cos_t = torch.cos(theta).view(-1, 1, 1)
|
124 |
+
|
125 |
+
rot = cos_t * eye + sin_t * cross + (1 - cos_t) * outer
|
126 |
+
|
127 |
+
eye_4 = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
|
128 |
+
eye_4[:, :3, :3] = rot
|
129 |
+
|
130 |
+
return eye_4
|
131 |
+
|
132 |
+
|
133 |
+
def scale3d_mat(s_x, s_y, s_z):
|
134 |
+
batch = s_x.shape[0]
|
135 |
+
|
136 |
+
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
|
137 |
+
mat[:, 0, 0] = s_x
|
138 |
+
mat[:, 1, 1] = s_y
|
139 |
+
mat[:, 2, 2] = s_z
|
140 |
+
|
141 |
+
return mat
|
142 |
+
|
143 |
+
|
144 |
+
def luma_flip_mat(axis, i):
|
145 |
+
batch = i.shape[0]
|
146 |
+
|
147 |
+
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
|
148 |
+
axis = torch.tensor(axis + (0,))
|
149 |
+
flip = 2 * torch.ger(axis, axis) * i.view(-1, 1, 1)
|
150 |
+
|
151 |
+
return eye - flip
|
152 |
+
|
153 |
+
|
154 |
+
def saturation_mat(axis, i):
|
155 |
+
batch = i.shape[0]
|
156 |
+
|
157 |
+
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1)
|
158 |
+
axis = torch.tensor(axis + (0,))
|
159 |
+
axis = torch.ger(axis, axis)
|
160 |
+
saturate = axis + (eye - axis) * i.view(-1, 1, 1)
|
161 |
+
|
162 |
+
return saturate
|
163 |
+
|
164 |
+
|
165 |
+
def lognormal_sample(size, mean=0, std=1, device="cpu"):
|
166 |
+
return torch.empty(size, device=device).log_normal_(mean=mean, std=std)
|
167 |
+
|
168 |
+
|
169 |
+
def category_sample(size, categories, device="cpu"):
|
170 |
+
category = torch.tensor(categories, device=device)
|
171 |
+
sample = torch.randint(high=len(categories), size=(size,), device=device)
|
172 |
+
|
173 |
+
return category[sample]
|
174 |
+
|
175 |
+
|
176 |
+
def uniform_sample(size, low, high, device="cpu"):
|
177 |
+
return torch.empty(size, device=device).uniform_(low, high)
|
178 |
+
|
179 |
+
|
180 |
+
def normal_sample(size, mean=0, std=1, device="cpu"):
|
181 |
+
return torch.empty(size, device=device).normal_(mean, std)
|
182 |
+
|
183 |
+
|
184 |
+
def bernoulli_sample(size, p, device="cpu"):
|
185 |
+
return torch.empty(size, device=device).bernoulli_(p)
|
186 |
+
|
187 |
+
|
188 |
+
def random_mat_apply(p, transform, prev, eye, device="cpu"):
|
189 |
+
size = transform.shape[0]
|
190 |
+
select = bernoulli_sample(size, p, device=device).view(size, 1, 1)
|
191 |
+
select_transform = select * transform + (1 - select) * eye
|
192 |
+
|
193 |
+
return select_transform @ prev
|
194 |
+
|
195 |
+
|
196 |
+
def sample_affine(p, size, height, width, device="cpu"):
|
197 |
+
G = torch.eye(3, device=device).unsqueeze(0).repeat(size, 1, 1)
|
198 |
+
eye = G
|
199 |
+
|
200 |
+
# flip
|
201 |
+
param = category_sample(size, (0, 1))
|
202 |
+
Gc = scale_mat(1 - 2.0 * param, torch.ones(size), device=device)
|
203 |
+
G = random_mat_apply(p, Gc, G, eye, device=device)
|
204 |
+
# print('flip', G, scale_mat(1 - 2.0 * param, torch.ones(size)), sep='\n')
|
205 |
+
|
206 |
+
# 90 rotate
|
207 |
+
#param = category_sample(size, (0, 3))
|
208 |
+
#Gc = rotate_mat(-math.pi / 2 * param, device=device)
|
209 |
+
#G = random_mat_apply(p, Gc, G, eye, device=device)
|
210 |
+
# print('90 rotate', G, rotate_mat(-math.pi / 2 * param), sep='\n')
|
211 |
+
|
212 |
+
# integer translate
|
213 |
+
param = uniform_sample(size, -0.125, 0.125)
|
214 |
+
param_height = torch.round(param * height) / height
|
215 |
+
param_width = torch.round(param * width) / width
|
216 |
+
Gc = translate_mat(param_width, param_height, device=device)
|
217 |
+
G = random_mat_apply(p, Gc, G, eye, device=device)
|
218 |
+
# print('integer translate', G, translate_mat(param_width, param_height), sep='\n')
|
219 |
+
|
220 |
+
# isotropic scale
|
221 |
+
param = lognormal_sample(size, std=0.1 * math.log(2))
|
222 |
+
Gc = scale_mat(param, param, device=device)
|
223 |
+
G = random_mat_apply(p, Gc, G, eye, device=device)
|
224 |
+
# print('isotropic scale', G, scale_mat(param, param), sep='\n')
|
225 |
+
|
226 |
+
p_rot = 1 - math.sqrt(1 - p)
|
227 |
+
|
228 |
+
# pre-rotate
|
229 |
+
param = uniform_sample(size, -math.pi * 0.25, math.pi * 0.25)
|
230 |
+
Gc = rotate_mat(-param, device=device)
|
231 |
+
G = random_mat_apply(p_rot, Gc, G, eye, device=device)
|
232 |
+
# print('pre-rotate', G, rotate_mat(-param), sep='\n')
|
233 |
+
|
234 |
+
# anisotropic scale
|
235 |
+
param = lognormal_sample(size, std=0.1 * math.log(2))
|
236 |
+
Gc = scale_mat(param, 1 / param, device=device)
|
237 |
+
G = random_mat_apply(p, Gc, G, eye, device=device)
|
238 |
+
# print('anisotropic scale', G, scale_mat(param, 1 / param), sep='\n')
|
239 |
+
|
240 |
+
# post-rotate
|
241 |
+
param = uniform_sample(size, -math.pi * 0.25, math.pi * 0.25)
|
242 |
+
Gc = rotate_mat(-param, device=device)
|
243 |
+
G = random_mat_apply(p_rot, Gc, G, eye, device=device)
|
244 |
+
# print('post-rotate', G, rotate_mat(-param), sep='\n')
|
245 |
+
|
246 |
+
# fractional translate
|
247 |
+
param = normal_sample(size, std=0.125)
|
248 |
+
Gc = translate_mat(param, param, device=device)
|
249 |
+
G = random_mat_apply(p, Gc, G, eye, device=device)
|
250 |
+
# print('fractional translate', G, translate_mat(param, param), sep='\n')
|
251 |
+
|
252 |
+
return G
|
253 |
+
|
254 |
+
|
255 |
+
def sample_color(p, size):
|
256 |
+
C = torch.eye(4).unsqueeze(0).repeat(size, 1, 1)
|
257 |
+
eye = C
|
258 |
+
axis_val = 1 / math.sqrt(3)
|
259 |
+
axis = (axis_val, axis_val, axis_val)
|
260 |
+
|
261 |
+
# brightness
|
262 |
+
param = normal_sample(size, std=0.2)
|
263 |
+
Cc = translate3d_mat(param, param, param)
|
264 |
+
C = random_mat_apply(p, Cc, C, eye)
|
265 |
+
|
266 |
+
# contrast
|
267 |
+
param = lognormal_sample(size, std=0.5 * math.log(2))
|
268 |
+
Cc = scale3d_mat(param, param, param)
|
269 |
+
C = random_mat_apply(p, Cc, C, eye)
|
270 |
+
|
271 |
+
# luma flip
|
272 |
+
param = category_sample(size, (0, 1))
|
273 |
+
Cc = luma_flip_mat(axis, param)
|
274 |
+
C = random_mat_apply(p, Cc, C, eye)
|
275 |
+
|
276 |
+
# hue rotation
|
277 |
+
param = uniform_sample(size, -math.pi, math.pi)
|
278 |
+
Cc = rotate3d_mat(axis, param)
|
279 |
+
C = random_mat_apply(p, Cc, C, eye)
|
280 |
+
|
281 |
+
# saturation
|
282 |
+
param = lognormal_sample(size, std=1 * math.log(2))
|
283 |
+
Cc = saturation_mat(axis, param)
|
284 |
+
C = random_mat_apply(p, Cc, C, eye)
|
285 |
+
|
286 |
+
return C
|
287 |
+
|
288 |
+
|
289 |
+
def make_grid(shape, x0, x1, y0, y1, device):
|
290 |
+
n, c, h, w = shape
|
291 |
+
grid = torch.empty(n, h, w, 3, device=device)
|
292 |
+
grid[:, :, :, 0] = torch.linspace(x0, x1, w, device=device)
|
293 |
+
grid[:, :, :, 1] = torch.linspace(y0, y1, h, device=device).unsqueeze(-1)
|
294 |
+
grid[:, :, :, 2] = 1
|
295 |
+
|
296 |
+
return grid
|
297 |
+
|
298 |
+
|
299 |
+
def affine_grid(grid, mat):
|
300 |
+
n, h, w, _ = grid.shape
|
301 |
+
return (grid.view(n, h * w, 3) @ mat.transpose(1, 2)).view(n, h, w, 2)
|
302 |
+
|
303 |
+
|
304 |
+
def get_padding(G, height, width, kernel_size):
|
305 |
+
device = G.device
|
306 |
+
|
307 |
+
cx = (width - 1) / 2
|
308 |
+
cy = (height - 1) / 2
|
309 |
+
cp = torch.tensor(
|
310 |
+
[(-cx, -cy, 1), (cx, -cy, 1), (cx, cy, 1), (-cx, cy, 1)], device=device
|
311 |
+
)
|
312 |
+
cp = G @ cp.T
|
313 |
+
|
314 |
+
pad_k = kernel_size // 4
|
315 |
+
|
316 |
+
pad = cp[:, :2, :].permute(1, 0, 2).flatten(1)
|
317 |
+
pad = torch.cat((-pad, pad)).max(1).values
|
318 |
+
pad = pad + torch.tensor([pad_k * 2 - cx, pad_k * 2 - cy] * 2, device=device)
|
319 |
+
pad = pad.max(torch.tensor([0, 0] * 2, device=device))
|
320 |
+
pad = pad.min(torch.tensor([width - 1, height - 1] * 2, device=device))
|
321 |
+
|
322 |
+
pad_x1, pad_y1, pad_x2, pad_y2 = pad.ceil().to(torch.int32)
|
323 |
+
|
324 |
+
return pad_x1, pad_x2, pad_y1, pad_y2
|
325 |
+
|
326 |
+
|
327 |
+
def try_sample_affine_and_pad(img, p, kernel_size, G=None):
|
328 |
+
batch, _, height, width = img.shape
|
329 |
+
|
330 |
+
G_try = G
|
331 |
+
|
332 |
+
if G is None:
|
333 |
+
G_try = torch.inverse(sample_affine(p, batch, height, width))
|
334 |
+
|
335 |
+
pad_x1, pad_x2, pad_y1, pad_y2 = get_padding(G_try, height, width, kernel_size)
|
336 |
+
|
337 |
+
img_pad = F.pad(img, (pad_x1, pad_x2, pad_y1, pad_y2), mode="reflect")
|
338 |
+
|
339 |
+
return img_pad, G_try, (pad_x1, pad_x2, pad_y1, pad_y2)
|
340 |
+
|
341 |
+
|
342 |
+
class GridSampleForward(autograd.Function):
|
343 |
+
@staticmethod
|
344 |
+
def forward(ctx, input, grid):
|
345 |
+
out = F.grid_sample(
|
346 |
+
input, grid, mode="bilinear", padding_mode="zeros", align_corners=False
|
347 |
+
)
|
348 |
+
ctx.save_for_backward(input, grid)
|
349 |
+
|
350 |
+
return out
|
351 |
+
|
352 |
+
@staticmethod
|
353 |
+
def backward(ctx, grad_output):
|
354 |
+
input, grid = ctx.saved_tensors
|
355 |
+
grad_input, grad_grid = GridSampleBackward.apply(grad_output, input, grid)
|
356 |
+
|
357 |
+
return grad_input, grad_grid
|
358 |
+
|
359 |
+
|
360 |
+
class GridSampleBackward(autograd.Function):
|
361 |
+
@staticmethod
|
362 |
+
def forward(ctx, grad_output, input, grid):
|
363 |
+
op = torch._C._jit_get_operation("aten::grid_sampler_2d_backward")
|
364 |
+
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False)
|
365 |
+
ctx.save_for_backward(grid)
|
366 |
+
|
367 |
+
return grad_input, grad_grid
|
368 |
+
|
369 |
+
@staticmethod
|
370 |
+
def backward(ctx, grad_grad_input, grad_grad_grid):
|
371 |
+
grid, = ctx.saved_tensors
|
372 |
+
grad_grad_output = None
|
373 |
+
|
374 |
+
if ctx.needs_input_grad[0]:
|
375 |
+
grad_grad_output = GridSampleForward.apply(grad_grad_input, grid)
|
376 |
+
|
377 |
+
return grad_grad_output, None, None
|
378 |
+
|
379 |
+
|
380 |
+
grid_sample = GridSampleForward.apply
|
381 |
+
|
382 |
+
|
383 |
+
def scale_mat_single(s_x, s_y):
|
384 |
+
return torch.tensor(((s_x, 0, 0), (0, s_y, 0), (0, 0, 1)), dtype=torch.float32)
|
385 |
+
|
386 |
+
|
387 |
+
def translate_mat_single(t_x, t_y):
|
388 |
+
return torch.tensor(((1, 0, t_x), (0, 1, t_y), (0, 0, 1)), dtype=torch.float32)
|
389 |
+
|
390 |
+
|
391 |
+
def random_apply_affine(img, p, G=None, antialiasing_kernel=SYM6):
|
392 |
+
kernel = antialiasing_kernel
|
393 |
+
len_k = len(kernel)
|
394 |
+
|
395 |
+
kernel = torch.as_tensor(kernel).to(img)
|
396 |
+
# kernel = torch.ger(kernel, kernel).to(img)
|
397 |
+
kernel_flip = torch.flip(kernel, (0,))
|
398 |
+
|
399 |
+
img_pad, G, (pad_x1, pad_x2, pad_y1, pad_y2) = try_sample_affine_and_pad(
|
400 |
+
img, p, len_k, G
|
401 |
+
)
|
402 |
+
|
403 |
+
G_inv = (
|
404 |
+
translate_mat_single((pad_x1 - pad_x2).item() / 2, (pad_y1 - pad_y2).item() / 2)
|
405 |
+
@ G
|
406 |
+
)
|
407 |
+
up_pad = (
|
408 |
+
(len_k + 2 - 1) // 2,
|
409 |
+
(len_k - 2) // 2,
|
410 |
+
(len_k + 2 - 1) // 2,
|
411 |
+
(len_k - 2) // 2,
|
412 |
+
)
|
413 |
+
img_2x = upfirdn2d(img_pad, kernel.unsqueeze(0), up=(2, 1), pad=(*up_pad[:2], 0, 0))
|
414 |
+
img_2x = upfirdn2d(img_2x, kernel.unsqueeze(1), up=(1, 2), pad=(0, 0, *up_pad[2:]))
|
415 |
+
G_inv = scale_mat_single(2, 2) @ G_inv @ scale_mat_single(1 / 2, 1 / 2)
|
416 |
+
G_inv = translate_mat_single(-0.5, -0.5) @ G_inv @ translate_mat_single(0.5, 0.5)
|
417 |
+
batch_size, channel, height, width = img.shape
|
418 |
+
pad_k = len_k // 4
|
419 |
+
shape = (batch_size, channel, (height + pad_k * 2) * 2, (width + pad_k * 2) * 2)
|
420 |
+
G_inv = (
|
421 |
+
scale_mat_single(2 / img_2x.shape[3], 2 / img_2x.shape[2])
|
422 |
+
@ G_inv
|
423 |
+
@ scale_mat_single(1 / (2 / shape[3]), 1 / (2 / shape[2]))
|
424 |
+
)
|
425 |
+
grid = F.affine_grid(G_inv[:, :2, :].to(img_2x), shape, align_corners=False)
|
426 |
+
img_affine = grid_sample(img_2x, grid)
|
427 |
+
d_p = -pad_k * 2
|
428 |
+
down_pad = (
|
429 |
+
d_p + (len_k - 2 + 1) // 2,
|
430 |
+
d_p + (len_k - 2) // 2,
|
431 |
+
d_p + (len_k - 2 + 1) // 2,
|
432 |
+
d_p + (len_k - 2) // 2,
|
433 |
+
)
|
434 |
+
img_down = upfirdn2d(
|
435 |
+
img_affine, kernel_flip.unsqueeze(0), down=(2, 1), pad=(*down_pad[:2], 0, 0)
|
436 |
+
)
|
437 |
+
img_down = upfirdn2d(
|
438 |
+
img_down, kernel_flip.unsqueeze(1), down=(1, 2), pad=(0, 0, *down_pad[2:])
|
439 |
+
)
|
440 |
+
|
441 |
+
return img_down, G
|
442 |
+
|
443 |
+
|
444 |
+
def apply_color(img, mat):
|
445 |
+
batch = img.shape[0]
|
446 |
+
img = img.permute(0, 2, 3, 1)
|
447 |
+
mat_mul = mat[:, :3, :3].transpose(1, 2).view(batch, 1, 3, 3)
|
448 |
+
mat_add = mat[:, :3, 3].view(batch, 1, 1, 3)
|
449 |
+
img = img @ mat_mul + mat_add
|
450 |
+
img = img.permute(0, 3, 1, 2)
|
451 |
+
|
452 |
+
return img
|
453 |
+
|
454 |
+
|
455 |
+
def random_apply_color(img, p, C=None):
|
456 |
+
if C is None:
|
457 |
+
C = sample_color(p, img.shape[0])
|
458 |
+
|
459 |
+
img = apply_color(img, C.to(img))
|
460 |
+
|
461 |
+
return img, C
|
462 |
+
|
463 |
+
|
464 |
+
def augment(img, p, transform_matrix=(None, None)):
|
465 |
+
img, G = random_apply_affine(img, p, transform_matrix[0])
|
466 |
+
img, C = random_apply_color(img, p, transform_matrix[1])
|
467 |
+
|
468 |
+
return img, (G, C)
|
vtoonify/model/stylegan/__init__.py
ADDED
File without changes
|
vtoonify/model/stylegan/dataset.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from io import BytesIO
|
2 |
+
|
3 |
+
import lmdb
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils.data import Dataset
|
6 |
+
|
7 |
+
|
8 |
+
class MultiResolutionDataset(Dataset):
|
9 |
+
def __init__(self, path, transform, resolution=256):
|
10 |
+
self.env = lmdb.open(
|
11 |
+
path,
|
12 |
+
max_readers=32,
|
13 |
+
readonly=True,
|
14 |
+
lock=False,
|
15 |
+
readahead=False,
|
16 |
+
meminit=False,
|
17 |
+
)
|
18 |
+
|
19 |
+
if not self.env:
|
20 |
+
raise IOError('Cannot open lmdb dataset', path)
|
21 |
+
|
22 |
+
with self.env.begin(write=False) as txn:
|
23 |
+
self.length = int(txn.get('length'.encode('utf-8')).decode('utf-8'))
|
24 |
+
|
25 |
+
self.resolution = resolution
|
26 |
+
self.transform = transform
|
27 |
+
|
28 |
+
def __len__(self):
|
29 |
+
return self.length
|
30 |
+
|
31 |
+
def __getitem__(self, index):
|
32 |
+
with self.env.begin(write=False) as txn:
|
33 |
+
key = f'{self.resolution}-{str(index).zfill(5)}'.encode('utf-8')
|
34 |
+
img_bytes = txn.get(key)
|
35 |
+
|
36 |
+
buffer = BytesIO(img_bytes)
|
37 |
+
img = Image.open(buffer)
|
38 |
+
img = self.transform(img)
|
39 |
+
|
40 |
+
return img
|
vtoonify/model/stylegan/distributed.py
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import pickle
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch import distributed as dist
|
6 |
+
from torch.utils.data.sampler import Sampler
|
7 |
+
|
8 |
+
|
9 |
+
def get_rank():
|
10 |
+
if not dist.is_available():
|
11 |
+
return 0
|
12 |
+
|
13 |
+
if not dist.is_initialized():
|
14 |
+
return 0
|
15 |
+
|
16 |
+
return dist.get_rank()
|
17 |
+
|
18 |
+
|
19 |
+
def synchronize():
|
20 |
+
if not dist.is_available():
|
21 |
+
return
|
22 |
+
|
23 |
+
if not dist.is_initialized():
|
24 |
+
return
|
25 |
+
|
26 |
+
world_size = dist.get_world_size()
|
27 |
+
|
28 |
+
if world_size == 1:
|
29 |
+
return
|
30 |
+
|
31 |
+
dist.barrier()
|
32 |
+
|
33 |
+
|
34 |
+
def get_world_size():
|
35 |
+
if not dist.is_available():
|
36 |
+
return 1
|
37 |
+
|
38 |
+
if not dist.is_initialized():
|
39 |
+
return 1
|
40 |
+
|
41 |
+
return dist.get_world_size()
|
42 |
+
|
43 |
+
|
44 |
+
def reduce_sum(tensor):
|
45 |
+
if not dist.is_available():
|
46 |
+
return tensor
|
47 |
+
|
48 |
+
if not dist.is_initialized():
|
49 |
+
return tensor
|
50 |
+
|
51 |
+
tensor = tensor.clone()
|
52 |
+
dist.all_reduce(tensor, op=dist.ReduceOp.SUM)
|
53 |
+
|
54 |
+
return tensor
|
55 |
+
|
56 |
+
|
57 |
+
def gather_grad(params):
|
58 |
+
world_size = get_world_size()
|
59 |
+
|
60 |
+
if world_size == 1:
|
61 |
+
return
|
62 |
+
|
63 |
+
for param in params:
|
64 |
+
if param.grad is not None:
|
65 |
+
dist.all_reduce(param.grad.data, op=dist.ReduceOp.SUM)
|
66 |
+
param.grad.data.div_(world_size)
|
67 |
+
|
68 |
+
|
69 |
+
def all_gather(data):
|
70 |
+
world_size = get_world_size()
|
71 |
+
|
72 |
+
if world_size == 1:
|
73 |
+
return [data]
|
74 |
+
|
75 |
+
buffer = pickle.dumps(data)
|
76 |
+
storage = torch.ByteStorage.from_buffer(buffer)
|
77 |
+
tensor = torch.ByteTensor(storage).to('cuda')
|
78 |
+
|
79 |
+
local_size = torch.IntTensor([tensor.numel()]).to('cuda')
|
80 |
+
size_list = [torch.IntTensor([0]).to('cuda') for _ in range(world_size)]
|
81 |
+
dist.all_gather(size_list, local_size)
|
82 |
+
size_list = [int(size.item()) for size in size_list]
|
83 |
+
max_size = max(size_list)
|
84 |
+
|
85 |
+
tensor_list = []
|
86 |
+
for _ in size_list:
|
87 |
+
tensor_list.append(torch.ByteTensor(size=(max_size,)).to('cuda'))
|
88 |
+
|
89 |
+
if local_size != max_size:
|
90 |
+
padding = torch.ByteTensor(size=(max_size - local_size,)).to('cuda')
|
91 |
+
tensor = torch.cat((tensor, padding), 0)
|
92 |
+
|
93 |
+
dist.all_gather(tensor_list, tensor)
|
94 |
+
|
95 |
+
data_list = []
|
96 |
+
|
97 |
+
for size, tensor in zip(size_list, tensor_list):
|
98 |
+
buffer = tensor.cpu().numpy().tobytes()[:size]
|
99 |
+
data_list.append(pickle.loads(buffer))
|
100 |
+
|
101 |
+
return data_list
|
102 |
+
|
103 |
+
|
104 |
+
def reduce_loss_dict(loss_dict):
|
105 |
+
world_size = get_world_size()
|
106 |
+
|
107 |
+
if world_size < 2:
|
108 |
+
return loss_dict
|
109 |
+
|
110 |
+
with torch.no_grad():
|
111 |
+
keys = []
|
112 |
+
losses = []
|
113 |
+
|
114 |
+
for k in sorted(loss_dict.keys()):
|
115 |
+
keys.append(k)
|
116 |
+
losses.append(loss_dict[k])
|
117 |
+
|
118 |
+
losses = torch.stack(losses, 0)
|
119 |
+
dist.reduce(losses, dst=0)
|
120 |
+
|
121 |
+
if dist.get_rank() == 0:
|
122 |
+
losses /= world_size
|
123 |
+
|
124 |
+
reduced_losses = {k: v for k, v in zip(keys, losses)}
|
125 |
+
|
126 |
+
return reduced_losses
|
vtoonify/model/stylegan/lpips/__init__.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
from __future__ import absolute_import
|
3 |
+
from __future__ import division
|
4 |
+
from __future__ import print_function
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
#from skimage.measure import compare_ssim
|
8 |
+
from skimage.metrics import structural_similarity as compare_ssim
|
9 |
+
import torch
|
10 |
+
from torch.autograd import Variable
|
11 |
+
|
12 |
+
from model.stylegan.lpips import dist_model
|
13 |
+
|
14 |
+
class PerceptualLoss(torch.nn.Module):
|
15 |
+
def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0]): # VGG using our perceptually-learned weights (LPIPS metric)
|
16 |
+
# def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
|
17 |
+
super(PerceptualLoss, self).__init__()
|
18 |
+
print('Setting up Perceptual loss...')
|
19 |
+
self.use_gpu = use_gpu
|
20 |
+
self.spatial = spatial
|
21 |
+
self.gpu_ids = gpu_ids
|
22 |
+
self.model = dist_model.DistModel()
|
23 |
+
self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids)
|
24 |
+
print('...[%s] initialized'%self.model.name())
|
25 |
+
print('...Done')
|
26 |
+
|
27 |
+
def forward(self, pred, target, normalize=False):
|
28 |
+
"""
|
29 |
+
Pred and target are Variables.
|
30 |
+
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1]
|
31 |
+
If normalize is False, assumes the images are already between [-1,+1]
|
32 |
+
|
33 |
+
Inputs pred and target are Nx3xHxW
|
34 |
+
Output pytorch Variable N long
|
35 |
+
"""
|
36 |
+
|
37 |
+
if normalize:
|
38 |
+
target = 2 * target - 1
|
39 |
+
pred = 2 * pred - 1
|
40 |
+
|
41 |
+
return self.model.forward(target, pred)
|
42 |
+
|
43 |
+
def normalize_tensor(in_feat,eps=1e-10):
|
44 |
+
norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True))
|
45 |
+
return in_feat/(norm_factor+eps)
|
46 |
+
|
47 |
+
def l2(p0, p1, range=255.):
|
48 |
+
return .5*np.mean((p0 / range - p1 / range)**2)
|
49 |
+
|
50 |
+
def psnr(p0, p1, peak=255.):
|
51 |
+
return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2))
|
52 |
+
|
53 |
+
def dssim(p0, p1, range=255.):
|
54 |
+
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.
|
55 |
+
|
56 |
+
def rgb2lab(in_img,mean_cent=False):
|
57 |
+
from skimage import color
|
58 |
+
img_lab = color.rgb2lab(in_img)
|
59 |
+
if(mean_cent):
|
60 |
+
img_lab[:,:,0] = img_lab[:,:,0]-50
|
61 |
+
return img_lab
|
62 |
+
|
63 |
+
def tensor2np(tensor_obj):
|
64 |
+
# change dimension of a tensor object into a numpy array
|
65 |
+
return tensor_obj[0].cpu().float().numpy().transpose((1,2,0))
|
66 |
+
|
67 |
+
def np2tensor(np_obj):
|
68 |
+
# change dimenion of np array into tensor array
|
69 |
+
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
|
70 |
+
|
71 |
+
def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False):
|
72 |
+
# image tensor to lab tensor
|
73 |
+
from skimage import color
|
74 |
+
|
75 |
+
img = tensor2im(image_tensor)
|
76 |
+
img_lab = color.rgb2lab(img)
|
77 |
+
if(mc_only):
|
78 |
+
img_lab[:,:,0] = img_lab[:,:,0]-50
|
79 |
+
if(to_norm and not mc_only):
|
80 |
+
img_lab[:,:,0] = img_lab[:,:,0]-50
|
81 |
+
img_lab = img_lab/100.
|
82 |
+
|
83 |
+
return np2tensor(img_lab)
|
84 |
+
|
85 |
+
def tensorlab2tensor(lab_tensor,return_inbnd=False):
|
86 |
+
from skimage import color
|
87 |
+
import warnings
|
88 |
+
warnings.filterwarnings("ignore")
|
89 |
+
|
90 |
+
lab = tensor2np(lab_tensor)*100.
|
91 |
+
lab[:,:,0] = lab[:,:,0]+50
|
92 |
+
|
93 |
+
rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1)
|
94 |
+
if(return_inbnd):
|
95 |
+
# convert back to lab, see if we match
|
96 |
+
lab_back = color.rgb2lab(rgb_back.astype('uint8'))
|
97 |
+
mask = 1.*np.isclose(lab_back,lab,atol=2.)
|
98 |
+
mask = np2tensor(np.prod(mask,axis=2)[:,:,np.newaxis])
|
99 |
+
return (im2tensor(rgb_back),mask)
|
100 |
+
else:
|
101 |
+
return im2tensor(rgb_back)
|
102 |
+
|
103 |
+
def rgb2lab(input):
|
104 |
+
from skimage import color
|
105 |
+
return color.rgb2lab(input / 255.)
|
106 |
+
|
107 |
+
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.):
|
108 |
+
image_numpy = image_tensor[0].cpu().float().numpy()
|
109 |
+
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
|
110 |
+
return image_numpy.astype(imtype)
|
111 |
+
|
112 |
+
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.):
|
113 |
+
return torch.Tensor((image / factor - cent)
|
114 |
+
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
|
115 |
+
|
116 |
+
def tensor2vec(vector_tensor):
|
117 |
+
return vector_tensor.data.cpu().numpy()[:, :, 0, 0]
|
118 |
+
|
119 |
+
def voc_ap(rec, prec, use_07_metric=False):
|
120 |
+
""" ap = voc_ap(rec, prec, [use_07_metric])
|
121 |
+
Compute VOC AP given precision and recall.
|
122 |
+
If use_07_metric is true, uses the
|
123 |
+
VOC 07 11 point method (default:False).
|
124 |
+
"""
|
125 |
+
if use_07_metric:
|
126 |
+
# 11 point metric
|
127 |
+
ap = 0.
|
128 |
+
for t in np.arange(0., 1.1, 0.1):
|
129 |
+
if np.sum(rec >= t) == 0:
|
130 |
+
p = 0
|
131 |
+
else:
|
132 |
+
p = np.max(prec[rec >= t])
|
133 |
+
ap = ap + p / 11.
|
134 |
+
else:
|
135 |
+
# correct AP calculation
|
136 |
+
# first append sentinel values at the end
|
137 |
+
mrec = np.concatenate(([0.], rec, [1.]))
|
138 |
+
mpre = np.concatenate(([0.], prec, [0.]))
|
139 |
+
|
140 |
+
# compute the precision envelope
|
141 |
+
for i in range(mpre.size - 1, 0, -1):
|
142 |
+
mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i])
|
143 |
+
|
144 |
+
# to calculate area under PR curve, look for points
|
145 |
+
# where X axis (recall) changes value
|
146 |
+
i = np.where(mrec[1:] != mrec[:-1])[0]
|
147 |
+
|
148 |
+
# and sum (\Delta recall) * prec
|
149 |
+
ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1])
|
150 |
+
return ap
|
151 |
+
|
152 |
+
def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=255./2.):
|
153 |
+
# def tensor2im(image_tensor, imtype=np.uint8, cent=1., factor=1.):
|
154 |
+
image_numpy = image_tensor[0].cpu().float().numpy()
|
155 |
+
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + cent) * factor
|
156 |
+
return image_numpy.astype(imtype)
|
157 |
+
|
158 |
+
def im2tensor(image, imtype=np.uint8, cent=1., factor=255./2.):
|
159 |
+
# def im2tensor(image, imtype=np.uint8, cent=1., factor=1.):
|
160 |
+
return torch.Tensor((image / factor - cent)
|
161 |
+
[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
|