Spaces:
Running
on
T4
Running
on
T4
File size: 1,839 Bytes
4e3dd77 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
from torchvision import transforms
from torchvision.utils import save_image
from torch.utils.serialization import load_lua
import os
import cv2
import numpy as np
"""
NOTE!: Must have torch==0.4.1 and torchvision==0.2.1
The sketch simplification model (sketch_gan.t7) from Simo Serra et al. can be downloaded from their official implementation:
https://github.com/bobbens/sketch_simplification
"""
def sobel(img):
opImgx = cv2.Sobel(img, cv2.CV_8U, 0, 1, ksize=3)
opImgy = cv2.Sobel(img, cv2.CV_8U, 1, 0, ksize=3)
return cv2.bitwise_or(opImgx, opImgy)
def sketch(frame):
frame = cv2.GaussianBlur(frame, (3, 3), 0)
invImg = 255 - frame
edgImg0 = sobel(frame)
edgImg1 = sobel(invImg)
edgImg = cv2.addWeighted(edgImg0, 0.75, edgImg1, 0.75, 0)
opImg = 255 - edgImg
return opImg
def get_sketch_image(image_path):
original = cv2.imread(image_path)
original = cv2.cvtColor(original, cv2.COLOR_BGR2GRAY)
sketch_image = sketch(original)
return sketch_image[:, :, np.newaxis]
use_cuda = True
cache = load_lua("/path/to/sketch_gan.t7")
model = cache.model
immean = cache.mean
imstd = cache.std
model.evaluate()
data_path = "/path/to/data/imgs"
images = [os.path.join(data_path, f) for f in os.listdir(data_path)]
output_dir = "/path/to/data/edges"
if not os.path.exists(output_dir):
os.makedirs(output_dir)
for idx, image_path in enumerate(images):
if idx % 50 == 0:
print("{} out of {}".format(idx, len(images)))
data = get_sketch_image(image_path)
data = ((transforms.ToTensor()(data) - immean) / imstd).unsqueeze(0)
if use_cuda:
pred = model.cuda().forward(data.cuda()).float()
else:
pred = model.forward(data)
save_image(pred[0], os.path.join(output_dir, "{}_edges.jpg".format(image_path.split("/")[-1].split('.')[0])))
|