File size: 14,885 Bytes
ac4ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from torch.nn import Linear, Conv2d, BatchNorm2d, PReLU, Sequential, Module

from models.encoders.helpers import get_blocks, Flatten, bottleneck_IR, bottleneck_IR_SE
from models.stylegan2.model import EqualLinear


class GradualStyleBlock(Module):
    def __init__(self, in_c, out_c, spatial, max_pooling=False):
        super(GradualStyleBlock, self).__init__()
        self.out_c = out_c
        self.spatial = spatial
        self.max_pooling = max_pooling
        num_pools = int(np.log2(spatial))
        modules = []
        modules += [Conv2d(in_c, out_c, kernel_size=3, stride=2, padding=1),
                    nn.LeakyReLU()]
        for i in range(num_pools - 1):
            modules += [
                Conv2d(out_c, out_c, kernel_size=3, stride=2, padding=1),
                nn.LeakyReLU()
            ]
        self.convs = nn.Sequential(*modules)
        self.linear = EqualLinear(out_c, out_c, lr_mul=1)

    def forward(self, x):
        x = self.convs(x)
        # To make E accept more general H*W images, we add global average pooling to 
        # resize all features to 1*1*512 before mapping to latent codes
        if self.max_pooling:
            x = F.adaptive_max_pool2d(x, 1) ##### modified
        else:
            x = F.adaptive_avg_pool2d(x, 1) ##### modified
        x = x.view(-1, self.out_c)
        x = self.linear(x)
        return x

class AdaptiveInstanceNorm(nn.Module):
    def __init__(self, fin, style_dim=512):
        super().__init__()

        self.norm = nn.InstanceNorm2d(fin, affine=False)
        self.style = nn.Linear(style_dim, fin * 2)

        self.style.bias.data[:fin] = 1
        self.style.bias.data[fin:] = 0

    def forward(self, input, style):
        style = self.style(style).unsqueeze(2).unsqueeze(3)
        gamma, beta = style.chunk(2, 1)
        out = self.norm(input)
        out = gamma * out + beta
        return out    
    

class FusionLayer(Module):  ##### modified 
    def __init__(self, inchannel, outchannel, use_skip_torgb=True, use_att=0):
        super(FusionLayer, self).__init__()
        
        self.transform = nn.Sequential(nn.Conv2d(inchannel, outchannel, kernel_size=3, stride=1, padding=1),
                                      nn.LeakyReLU())
        self.fusion_out = nn.Conv2d(outchannel*2, outchannel, kernel_size=3, stride=1, padding=1)
        self.fusion_out.weight.data *= 0.01
        self.fusion_out.weight[:,0:outchannel,1,1].data += torch.eye(outchannel) 
        
        self.use_skip_torgb = use_skip_torgb
        if use_skip_torgb:
            self.fusion_skip = nn.Conv2d(3+outchannel, 3, kernel_size=3, stride=1, padding=1)
            self.fusion_skip.weight.data *= 0.01
            self.fusion_skip.weight[:,0:3,1,1].data += torch.eye(3)
            
        self.use_att = use_att
        if use_att:
            modules = []
            modules.append(nn.Linear(512, outchannel))
            for _ in range(use_att):
                modules.append(nn.LeakyReLU(negative_slope=0.2, inplace=True))
                modules.append(nn.Linear(outchannel, outchannel))
            modules.append(nn.LeakyReLU(negative_slope=0.2, inplace=True))
            self.linear = Sequential(*modules)
            self.norm = AdaptiveInstanceNorm(outchannel*2, outchannel)
            self.conv = nn.Conv2d(outchannel*2, 1, 3, 1, 1, bias=True)

    def forward(self, feat, out, skip, editing_w=None):
        x = self.transform(feat)
        # similar to VToonify, use editing vector as condition
        # fuse encoder feature and decoder feature with a predicted attention mask m_E
        # if self.use_att = False, just fuse them with a simple conv layer
        if self.use_att and editing_w is not None:
            label = self.linear(editing_w)
            m_E = (F.relu(self.conv(self.norm(torch.cat([out, abs(out-x)], dim=1), label)))).tanh()
            x = x * m_E
        out = self.fusion_out(torch.cat((out, x), dim=1))
        if self.use_skip_torgb:
            skip = self.fusion_skip(torch.cat((skip, x), dim=1))
        return out, skip

    
class ResnetBlock(nn.Module):
    def __init__(self, dim):
        super(ResnetBlock, self).__init__()

        self.conv_block = nn.Sequential(Conv2d(dim, dim, 3, 1, 1),
                                        nn.LeakyReLU(),
                                        Conv2d(dim, dim, 3, 1, 1))
        self.relu = nn.LeakyReLU()

    def forward(self, x):
        out = x + self.conv_block(x)  
        return self.relu(out)

# trainable light-weight translation network T
# for sketch/mask-to-face translation, 
# we add a trainable T to map y to an intermediate domain where E can more easily extract features. 
class ResnetGenerator(nn.Module):
    def __init__(self, in_channel=19, res_num=2):
        super(ResnetGenerator, self).__init__()
        
        modules = []
        modules.append(Conv2d(in_channel, 16, 3, 2, 1))
        modules.append(nn.LeakyReLU())
        modules.append(Conv2d(16, 16, 3, 2, 1))
        modules.append(nn.LeakyReLU())
        for _ in range(res_num):
            modules.append(ResnetBlock(16))
        for _ in range(2):
            modules.append(nn.ConvTranspose2d(16, 16, 3, 2, 1, output_padding=1))
            modules.append(nn.LeakyReLU())  
        modules.append(Conv2d(16, 64, 3, 1, 1, bias=False))
        modules.append(BatchNorm2d(64))  
        modules.append(PReLU(64))  
        self.model = Sequential(*modules)

    def forward(self, input):
        return self.model(input)
    
class GradualStyleEncoder(Module):
    def __init__(self, num_layers, mode='ir', opts=None):
        super(GradualStyleEncoder, self).__init__()
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        
        # for sketch/mask-to-face translation, add a new network T
        if opts.input_nc != 3:
            self.input_label_layer = ResnetGenerator(opts.input_nc, opts.res_num)

        self.input_layer = Sequential(Conv2d(3, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(unit_module(bottleneck.in_channel,
                                           bottleneck.depth,
                                           bottleneck.stride))
        self.body = Sequential(*modules)

        self.styles = nn.ModuleList()
        self.style_count = opts.n_styles
        self.coarse_ind = 3
        self.middle_ind = 7
        for i in range(self.style_count):
            if i < self.coarse_ind:
                style = GradualStyleBlock(512, 512, 16, 'max_pooling' in opts and opts.max_pooling)
            elif i < self.middle_ind:
                style = GradualStyleBlock(512, 512, 32, 'max_pooling' in opts and opts.max_pooling)
            else:
                style = GradualStyleBlock(512, 512, 64, 'max_pooling' in opts and opts.max_pooling)
            self.styles.append(style)
        self.latlayer1 = nn.Conv2d(256, 512, kernel_size=1, stride=1, padding=0)
        self.latlayer2 = nn.Conv2d(128, 512, kernel_size=1, stride=1, padding=0)
        
        # we concatenate pSp features in the middle layers and 
        # add a convolution layer to map the concatenated features to the first-layer input feature f of G.
        self.featlayer = nn.Conv2d(768, 512, kernel_size=1, stride=1, padding=0) ##### modified
        self.skiplayer = nn.Conv2d(768, 3, kernel_size=1, stride=1, padding=0) ##### modified
        
        # skip connection
        if 'use_skip' in opts and opts.use_skip: ##### modified
            self.fusion = nn.ModuleList()
            channels = [[256,512], [256,512], [256,512], [256,512], [128,512], [64,256], [64,128]]
            # opts.skip_max_layer: how many layers are skipped to the decoder
            for inc, outc in channels[:max(1, min(7, opts.skip_max_layer))]: # from 4 to 256
                self.fusion.append(FusionLayer(inc, outc, opts.use_skip_torgb, opts.use_att))

    def _upsample_add(self, x, y):
        '''Upsample and add two feature maps.
        Args:
          x: (Variable) top feature map to be upsampled.
          y: (Variable) lateral feature map.
        Returns:
          (Variable) added feature map.
        Note in PyTorch, when input size is odd, the upsampled feature map
        with `F.upsample(..., scale_factor=2, mode='nearest')`
        maybe not equal to the lateral feature map size.
        e.g.
        original input size: [N,_,15,15] ->
        conv2d feature map size: [N,_,8,8] ->
        upsampled feature map size: [N,_,16,16]
        So we choose bilinear upsample which supports arbitrary output sizes.
        '''
        _, _, H, W = y.size()
        return F.interpolate(x, size=(H, W), mode='bilinear', align_corners=True) + y
    
    # return_feat: return f
    # return_full: return f and the skipped encoder features
    # return [out, feats]
    # out is the style latent code w+
    # feats[0] is f for the 1st conv layer, feats[1] is f for the 1st torgb layer
    # feats[2-8] is the skipped encoder features 
    def forward(self, x, return_feat=False, return_full=False): ##### modified      
        if x.shape[1] != 3:
            x = self.input_label_layer(x)
        else:
            x = self.input_layer(x)
        c256 = x ##### modified
        
        latents = []
        modulelist = list(self.body._modules.values())
        for i, l in enumerate(modulelist):
            x = l(x)
            if i == 2:    ##### modified
                c128 = x
            elif i == 6:
                c1 = x
            elif i == 10: ##### modified
                c21 = x   ##### modified
            elif i == 15: ##### modified
                c22 = x   ##### modified
            elif i == 20:
                c2 = x
            elif i == 23:
                c3 = x

        for j in range(self.coarse_ind):
            latents.append(self.styles[j](c3))

        p2 = self._upsample_add(c3, self.latlayer1(c2))
        for j in range(self.coarse_ind, self.middle_ind):
            latents.append(self.styles[j](p2))

        p1 = self._upsample_add(p2, self.latlayer2(c1))
        for j in range(self.middle_ind, self.style_count):
            latents.append(self.styles[j](p1))

        out = torch.stack(latents, dim=1)
        
        if not return_feat:
            return out
        
        feats = [self.featlayer(torch.cat((c21, c22, c2), dim=1)), self.skiplayer(torch.cat((c21, c22, c2), dim=1))]
        
        if return_full: ##### modified
            feats += [c2, c2, c22, c21, c1, c128, c256]
            
        return out, feats

    
    # only compute the first-layer feature f
    # E_F in the paper
    def get_feat(self, x): ##### modified     
        # for sketch/mask-to-face translation
        # use a trainable light-weight translation network T
        if x.shape[1] != 3:
            x = self.input_label_layer(x)
        else:
            x = self.input_layer(x)
        
        latents = []
        modulelist = list(self.body._modules.values())
        for i, l in enumerate(modulelist):
            x = l(x)
            if i == 10: ##### modified
                c21 = x   ##### modified
            elif i == 15: ##### modified
                c22 = x   ##### modified
            elif i == 20:
                c2 = x
                break
        return self.featlayer(torch.cat((c21, c22, c2), dim=1))
    
class BackboneEncoderUsingLastLayerIntoW(Module):
    def __init__(self, num_layers, mode='ir', opts=None):
        super(BackboneEncoderUsingLastLayerIntoW, self).__init__()
        print('Using BackboneEncoderUsingLastLayerIntoW')
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        self.output_pool = torch.nn.AdaptiveAvgPool2d((1, 1))
        self.linear = EqualLinear(512, 512, lr_mul=1)
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(unit_module(bottleneck.in_channel,
                                           bottleneck.depth,
                                           bottleneck.stride))
        self.body = Sequential(*modules)

    def forward(self, x):
        x = self.input_layer(x)
        x = self.body(x)
        x = self.output_pool(x)
        x = x.view(-1, 512)
        x = self.linear(x)
        return x


class BackboneEncoderUsingLastLayerIntoWPlus(Module):
    def __init__(self, num_layers, mode='ir', opts=None):
        super(BackboneEncoderUsingLastLayerIntoWPlus, self).__init__()
        print('Using BackboneEncoderUsingLastLayerIntoWPlus')
        assert num_layers in [50, 100, 152], 'num_layers should be 50,100, or 152'
        assert mode in ['ir', 'ir_se'], 'mode should be ir or ir_se'
        blocks = get_blocks(num_layers)
        if mode == 'ir':
            unit_module = bottleneck_IR
        elif mode == 'ir_se':
            unit_module = bottleneck_IR_SE
        self.n_styles = opts.n_styles
        self.input_layer = Sequential(Conv2d(opts.input_nc, 64, (3, 3), 1, 1, bias=False),
                                      BatchNorm2d(64),
                                      PReLU(64))
        self.output_layer_2 = Sequential(BatchNorm2d(512),
                                         torch.nn.AdaptiveAvgPool2d((7, 7)),
                                         Flatten(),
                                         Linear(512 * 7 * 7, 512))
        self.linear = EqualLinear(512, 512 * self.n_styles, lr_mul=1)
        modules = []
        for block in blocks:
            for bottleneck in block:
                modules.append(unit_module(bottleneck.in_channel,
                                           bottleneck.depth,
                                           bottleneck.stride))
        self.body = Sequential(*modules)

    def forward(self, x):
        x = self.input_layer(x)
        x = self.body(x)
        x = self.output_layer_2(x)
        x = self.linear(x)
        x = x.view(-1, self.n_styles, 512)
        return x