Spaces:
Running
on
T4
Running
on
T4
File size: 1,720 Bytes
ac1883f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import datetime
import os
import numpy as np
import wandb
from utils import common
class WBLogger:
def __init__(self, opts):
wandb_run_name = os.path.basename(opts.exp_dir)
wandb.init(project="pixel2style2pixel", config=vars(opts), name=wandb_run_name)
@staticmethod
def log_best_model():
wandb.run.summary["best-model-save-time"] = datetime.datetime.now()
@staticmethod
def log(prefix, metrics_dict, global_step):
log_dict = {f'{prefix}_{key}': value for key, value in metrics_dict.items()}
log_dict["global_step"] = global_step
wandb.log(log_dict)
@staticmethod
def log_dataset_wandb(dataset, dataset_name, n_images=16):
idxs = np.random.choice(a=range(len(dataset)), size=n_images, replace=False)
data = [wandb.Image(dataset.source_paths[idx]) for idx in idxs]
wandb.log({f"{dataset_name} Data Samples": data})
@staticmethod
def log_images_to_wandb(x, y, y_hat, id_logs, prefix, step, opts):
im_data = []
column_names = ["Source", "Target", "Output"]
if id_logs is not None:
column_names.append("ID Diff Output to Target")
for i in range(len(x)):
cur_im_data = [
wandb.Image(common.log_input_image(x[i], opts)),
wandb.Image(common.tensor2im(y[i])),
wandb.Image(common.tensor2im(y_hat[i])),
]
if id_logs is not None:
cur_im_data.append(id_logs[i]["diff_target"])
im_data.append(cur_im_data)
outputs_table = wandb.Table(data=im_data, columns=column_names)
wandb.log({f"{prefix.title()} Step {step} Output Samples": outputs_table})
|