Spaces:
Running
on
T4
Running
on
T4
File size: 25,826 Bytes
ac1883f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 |
from __future__ import annotations
import numpy as np
import gradio as gr
import os
import pathlib
import gc
import torch
import dlib
import cv2
import PIL
from tqdm import tqdm
import numpy as np
import torch.nn.functional as F
import torchvision
from torchvision import transforms, utils
from argparse import Namespace
from datasets import augmentations
from huggingface_hub import hf_hub_download
from scripts.align_all_parallel import align_face
from latent_optimization import latent_optimization
from utils.inference_utils import save_image, load_image, visualize, get_video_crop_parameter, tensor2cv2, tensor2label, labelcolormap
from models.psp import pSp
from models.bisenet.model import BiSeNet
from models.stylegan2.model import Generator
class Model():
def __init__(self, device):
super().__init__()
self.device = device
self.task_name = None
self.editing_w = None
self.pspex = None
self.landmarkpredictor = dlib.shape_predictor(hf_hub_download('PKUWilliamYang/VToonify', 'models/shape_predictor_68_face_landmarks.dat'))
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]),
])
self.to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
self.maskpredictor = BiSeNet(n_classes=19)
self.maskpredictor.load_state_dict(torch.load(hf_hub_download('PKUWilliamYang/VToonify', 'models/faceparsing.pth'), map_location='cpu'))
self.maskpredictor.to(self.device).eval()
self.parameters = {}
self.parameters['inversion'] = {'path':'pretrained_models/styleganex_inversion.pt', 'image_path':'./data/ILip77SbmOE.png'}
self.parameters['sr-32'] = {'path':'pretrained_models/styleganex_sr32.pt', 'image_path':'./data/pexels-daniel-xavier-1239291.jpg'}
self.parameters['sr'] = {'path':'pretrained_models/styleganex_sr.pt', 'image_path':'./data/pexels-daniel-xavier-1239291.jpg'}
self.parameters['sketch2face'] = {'path':'pretrained_models/styleganex_sketch2face.pt', 'image_path':'./data/234_sketch.jpg'}
self.parameters['mask2face'] = {'path':'pretrained_models/styleganex_mask2face.pt', 'image_path':'./data/540.jpg'}
self.parameters['edit_age'] = {'path':'pretrained_models/styleganex_edit_age.pt', 'image_path':'./data/390.mp4'}
self.parameters['edit_hair'] = {'path':'pretrained_models/styleganex_edit_hair.pt', 'image_path':'./data/390.mp4'}
self.parameters['toonify_pixar'] = {'path':'pretrained_models/styleganex_toonify_pixar.pt', 'image_path':'./data/pexels-anthony-shkraba-production-8136210.mp4'}
self.parameters['toonify_cartoon'] = {'path':'pretrained_models/styleganex_toonify_cartoon.pt', 'image_path':'./data/pexels-anthony-shkraba-production-8136210.mp4'}
self.parameters['toonify_arcane'] = {'path':'pretrained_models/styleganex_toonify_arcane.pt', 'image_path':'./data/pexels-anthony-shkraba-production-8136210.mp4'}
self.print_log = True
self.editing_dicts = torch.load(hf_hub_download('PKUWilliamYang/StyleGANEX', 'direction_dics.pt'))
self.generator = Generator(1024, 512, 8)
self.model_type = None
self.error_info = 'Error: no face detected! \
StyleGANEX uses dlib.get_frontal_face_detector but sometimes it fails to detect a face. \
You can try several times or use other images until a face is detected, \
then switch back to the original image.'
def load_model(self, task_name: str) -> None:
if task_name == self.task_name:
return
if self.pspex is not None:
del self.pspex
torch.cuda.empty_cache()
gc.collect()
path = self.parameters[task_name]['path']
local_path = hf_hub_download('PKUWilliamYang/StyleGANEX', path)
ckpt = torch.load(local_path, map_location='cpu')
opts = ckpt['opts']
opts['checkpoint_path'] = local_path
opts['device'] = self.device
opts = Namespace(**opts)
self.pspex = pSp(opts, ckpt).to(self.device).eval()
self.pspex.latent_avg = self.pspex.latent_avg.to(self.device)
if 'editing_w' in ckpt.keys():
self.editing_w = ckpt['editing_w'].clone().to(self.device)
self.task_name = task_name
torch.cuda.empty_cache()
gc.collect()
def load_G_model(self, model_type: str) -> None:
if model_type == self.model_type:
return
torch.cuda.empty_cache()
gc.collect()
local_path = hf_hub_download('rinong/stylegan-nada-models', model_type+'.pt')
self.generator.load_state_dict(torch.load(local_path, map_location='cpu')['g_ema'], strict=False)
self.generator.to(self.device).eval()
self.model_type = model_type
torch.cuda.empty_cache()
gc.collect()
def tensor2np(self, img):
tmp = ((img.cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)
return tmp
def process_sr(self, input_image: str, resize_scale: int, model: str) -> list[np.ndarray]:
#false_image = np.zeros((256,256,3), np.uint8)
#info = 'Error: no face detected! Please retry or change the photo.'
if input_image is None:
#return [false_image, false_image], 'Error: fail to load empty file.'
raise gr.Error("Error: fail to load empty file.")
frame = cv2.imread(input_image)
if frame is None:
#return [false_image, false_image], 'Error: fail to load the image.'
raise gr.Error("Error: fail to load the image.")
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if model is None or model == 'SR for 32x':
task_name = 'sr-32'
resize_scale = 32
else:
task_name = 'sr'
with torch.no_grad():
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
#return [false_image, false_image], info
raise gr.Error(self.error_info)
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = PIL.Image.fromarray(np.uint8(frame))
x1 = augmentations.BilinearResize(factors=[resize_scale//4])(x1)
x1_up = x1.resize((W, H))
x2_up = align_face(np.array(x1_up), self.landmarkpredictor)
if x2_up is None:
#return [false_image, false_image], 'Error: no face detected! Please retry or change the photo.'
raise gr.Error(self.error_info)
x1_up = transforms.ToTensor()(x1_up).unsqueeze(dim=0).to(self.device) * 2 - 1
x2_up = self.transform(x2_up).unsqueeze(dim=0).to(self.device)
if self.print_log: print('image loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
y_hat = torch.clamp(self.pspex(x1=x1_up, x2=x2_up, use_skip=self.pspex.opts.use_skip, resize=False), -1, 1)
return [self.tensor2np(x1_up[0]), self.tensor2np(y_hat[0])]
def process_s2f(self, input_image: str, seed: int) -> np.ndarray:
task_name = 'sketch2face'
with torch.no_grad():
x1 = transforms.ToTensor()(PIL.Image.open(input_image)).unsqueeze(0).to(self.device)
if x1.shape[2] > 513:
x1 = x1[:,:,(x1.shape[2]//2-256)//8*8:(x1.shape[2]//2+256)//8*8]
if x1.shape[3] > 513:
x1 = x1[:,:,:,(x1.shape[3]//2-256)//8*8:(x1.shape[3]//2+256)//8*8]
x1 = x1[:,0:1] # uploaded files will be transformed to 3-channel RGB image!
if self.print_log: print('image loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
self.pspex.train()
torch.manual_seed(seed)
y_hat = self.pspex(x1=x1, resize=False, latent_mask=[8,9,10,11,12,13,14,15,16,17], use_skip=self.pspex.opts.use_skip,
inject_latent= self.pspex.decoder.style(torch.randn(1, 512).to(self.device)).unsqueeze(1).repeat(1,18,1) * 0.7)
y_hat = torch.clamp(y_hat, -1, 1)
self.pspex.eval()
return self.tensor2np(y_hat[0])
def process_m2f(self, input_image: str, input_type: str, seed: int) -> list[np.ndarray]:
#false_image = np.zeros((256,256,3), np.uint8)
if input_image is None:
raise gr.Error('Error: fail to load empty file.' )
#return [false_image, false_image], 'Error: fail to load empty file.'
task_name = 'mask2face'
with torch.no_grad():
if input_type == 'parsing mask':
x1 = PIL.Image.open(input_image).getchannel(0) # uploaded files will be transformed to 3-channel RGB image!
x1 = augmentations.ToOneHot(19)(x1)
x1 = transforms.ToTensor()(x1).unsqueeze(dim=0).float().to(self.device)
#print(x1.shape)
else:
frame = cv2.imread(input_image)
if frame is None:
#return [false_image, false_image], 'Error: fail to load the image.'
raise gr.Error('Error: fail to load the image.' )
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
#return [false_image, false_image], 'Error: no face detected! Please retry or change the photo.'
raise gr.Error(self.error_info)
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
# convert face image to segmentation mask
x1 = self.to_tensor(frame).unsqueeze(0).to(self.device)
# upsample image for precise segmentation
x1 = F.interpolate(x1, scale_factor=2, mode='bilinear')
x1 = self.maskpredictor(x1)[0]
x1 = F.interpolate(x1, scale_factor=0.5).argmax(dim=1)
x1 = F.one_hot(x1, num_classes=19).permute(0, 3, 1, 2).float().to(self.device)
if x1.shape[2] > 513:
x1 = x1[:,:,(x1.shape[2]//2-256)//8*8:(x1.shape[2]//2+256)//8*8]
if x1.shape[3] > 513:
x1 = x1[:,:,:,(x1.shape[3]//2-256)//8*8:(x1.shape[3]//2+256)//8*8]
x1_viz = (tensor2label(x1[0], 19) / 192 * 256).astype(np.uint8)
if self.print_log: print('image loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
self.pspex.train()
torch.manual_seed(seed)
y_hat = self.pspex(x1=x1, resize=False, latent_mask=[8,9,10,11,12,13,14,15,16,17], use_skip=self.pspex.opts.use_skip,
inject_latent= self.pspex.decoder.style(torch.randn(1, 512).to(self.device)).unsqueeze(1).repeat(1,18,1) * 0.7)
y_hat = torch.clamp(y_hat, -1, 1)
self.pspex.eval()
return [x1_viz, self.tensor2np(y_hat[0])]
def process_editing(self, input_image: str, scale_factor: float, model_type: str) -> np.ndarray:
#false_image = np.zeros((256,256,3), np.uint8)
#info = 'Error: no face detected! Please retry or change the photo.'
if input_image is None:
#return false_image, false_image, 'Error: fail to load empty file.'
raise gr.Error('Error: fail to load empty file.')
frame = cv2.imread(input_image)
if frame is None:
#return false_image, false_image, 'Error: fail to load the image.'
raise gr.Error('Error: fail to load the image.')
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if model_type is None or model_type == 'reduce age':
task_name = 'edit_age'
else:
task_name = 'edit_hair'
with torch.no_grad():
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
#return false_image, false_image, info
raise gr.Error(self.error_info)
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
x2 = align_face(frame, self.landmarkpredictor)
if x2 is None:
#return false_image, 'Error: no face detected! Please retry or change the photo.'
raise gr.Error(self.error_info)
x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
if self.print_log: print('image loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True,
resize=False, editing_w= - scale_factor* self.editing_w[0:1])
y_hat = torch.clamp(y_hat, -1, 1)
return self.tensor2np(y_hat[0])
def process_vediting(self, input_video: str, scale_factor: float, model_type: str, frame_num: int) -> tuple[list[np.ndarray], str]:
#false_image = np.zeros((256,256,3), np.uint8)
#info = 'Error: no face detected! Please retry or change the video.'
if input_video is None:
#return [false_image], 'default.mp4', 'Error: fail to load empty file.'
raise gr.Error('Error: fail to load empty file.')
video_cap = cv2.VideoCapture(input_video)
success, frame = video_cap.read()
if success is False:
#return [false_image], 'default.mp4', 'Error: fail to load the video.'
raise gr.Error('Error: fail to load the video.')
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if model_type is None or model_type == 'reduce age':
task_name = 'edit_age'
else:
task_name = 'edit_hair'
with torch.no_grad():
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
#return [false_image], 'default.mp4', info
raise gr.Error(self.error_info)
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
x2 = align_face(frame, self.landmarkpredictor)
if x2 is None:
#return [false_image], 'default.mp4', info
raise gr.Error(self.error_info)
x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
if self.print_log: print('first frame loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter('output.mp4', fourcc, video_cap.get(5), (4*W, 4*H))
viz_frames = []
for i in range(frame_num):
if i > 0:
success, frame = video_cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True,
resize=False, editing_w= - scale_factor * self.editing_w[0:1])
y_hat = torch.clamp(y_hat, -1, 1)
videoWriter.write(tensor2cv2(y_hat[0].cpu()))
if i < min(frame_num, 4):
viz_frames += [self.tensor2np(y_hat[0])]
videoWriter.release()
return viz_frames, 'output.mp4'
def process_toonify(self, input_image: str, style_type: str) -> np.ndarray:
#false_image = np.zeros((256,256,3), np.uint8)
#info = 'Error: no face detected! Please retry or change the photo.'
if input_image is None:
raise gr.Error('Error: fail to load empty file.')
#return false_image, false_image, 'Error: fail to load empty file.'
frame = cv2.imread(input_image)
if frame is None:
raise gr.Error('Error: fail to load the image.')
#return false_image, false_image, 'Error: fail to load the image.'
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if style_type is None or style_type == 'Pixar':
task_name = 'toonify_pixar'
elif style_type == 'Cartoon':
task_name = 'toonify_cartoon'
else:
task_name = 'toonify_arcane'
with torch.no_grad():
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
raise gr.Error(self.error_info)
#return false_image, false_image, info
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
x2 = align_face(frame, self.landmarkpredictor)
if x2 is None:
raise gr.Error(self.error_info)
#return false_image, 'Error: no face detected! Please retry or change the photo.'
x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
if self.print_log: print('image loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True, resize=False)
y_hat = torch.clamp(y_hat, -1, 1)
return self.tensor2np(y_hat[0]), 'Done!'
def process_vtoonify(self, input_video: str, style_type: str, frame_num: int) -> tuple[list[np.ndarray], str]:
#false_image = np.zeros((256,256,3), np.uint8)
#info = 'Error: no face detected! Please retry or change the video.'
if input_video is None:
raise gr.Error('Error: fail to load empty file.')
#return [false_image], 'default.mp4', 'Error: fail to load empty file.'
video_cap = cv2.VideoCapture(input_video)
success, frame = video_cap.read()
if success is False:
raise gr.Error('Error: fail to load the video.')
#return [false_image], 'default.mp4', 'Error: fail to load the video.'
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
if style_type is None or style_type == 'Pixar':
task_name = 'toonify_pixar'
elif style_type == 'Cartoon':
task_name = 'toonify_cartoon'
else:
task_name = 'toonify_arcane'
with torch.no_grad():
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
raise gr.Error(self.error_info)
#return [false_image], 'default.mp4', info
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
x2 = align_face(frame, self.landmarkpredictor)
if x2 is None:
raise gr.Error(self.error_info)
#return [false_image], 'default.mp4', info
x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
if self.print_log: print('first frame loaded')
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
videoWriter = cv2.VideoWriter('output.mp4', fourcc, video_cap.get(5), (4*W, 4*H))
viz_frames = []
for i in range(frame_num):
if i > 0:
success, frame = video_cap.read()
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
y_hat = self.pspex(x1=x1, x2=x2, use_skip=self.pspex.opts.use_skip, zero_noise=True, resize=False)
y_hat = torch.clamp(y_hat, -1, 1)
videoWriter.write(tensor2cv2(y_hat[0].cpu()))
if i < min(frame_num, 4):
viz_frames += [self.tensor2np(y_hat[0])]
videoWriter.release()
return viz_frames, 'output.mp4'
def process_inversion(self, input_image: str, optimize: str, input_latent: file-object, editing_options: str,
scale_factor: float, seed: int) -> tuple[np.ndarray, np.ndarray]:
#false_image = np.zeros((256,256,3), np.uint8)
#info = 'Error: no face detected! Please retry or change the photo.'
if input_image is None:
raise gr.Error('Error: fail to load empty file.')
#return false_image, false_image, 'Error: fail to load empty file.'
frame = cv2.imread(input_image)
if frame is None:
raise gr.Error('Error: fail to load the image.')
#return false_image, false_image, 'Error: fail to load the image.'
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
task_name = 'inversion'
self.load_model(task_name)
if self.print_log: print('model %s loaded'%(task_name))
if input_latent is not None:
if '.pt' not in input_latent.name:
raise gr.Error('Error: the latent format is wrong')
#return false_image, false_image, 'Error: the latent format is wrong'
latents = torch.load(input_latent.name)
if 'wplus' not in latents.keys() or 'f' not in latents.keys():
raise gr.Error('Error: the latent format is wrong')
#return false_image, false_image, 'Error: the latent format is wrong'
wplus = latents['wplus'].to(self.device) # w+
f = [latents['f'][0].to(self.device)] # f
elif optimize == 'Latent optimization':
wplus, f, _, _, _ = latent_optimization(frame, self.pspex, self.landmarkpredictor,
step=500, device=self.device)
else:
with torch.no_grad():
paras = get_video_crop_parameter(frame, self.landmarkpredictor)
if paras is None:
raise gr.Error(self.error_info)
#return false_image, false_image, info
h,w,top,bottom,left,right,scale = paras
H, W = int(bottom-top), int(right-left)
frame = cv2.resize(frame, (w, h))[top:bottom, left:right]
x1 = self.transform(frame).unsqueeze(0).to(self.device)
x2 = align_face(frame, self.landmarkpredictor)
if x2 is None:
raise gr.Error(self.error_info)
#return false_image, false_image, 'Error: no face detected! Please retry or change the photo.'
x2 = self.transform(x2).unsqueeze(dim=0).to(self.device)
if self.print_log: print('image loaded')
wplus = self.pspex.encoder(x2) + self.pspex.latent_avg.unsqueeze(0)
_, f = self.pspex.encoder(x1, return_feat=True)
with torch.no_grad():
y_hat, _ = self.pspex.decoder([wplus], input_is_latent=True, first_layer_feature=f)
y_hat = torch.clamp(y_hat, -1, 1)
if 'Style Mixing' in editing_options:
torch.manual_seed(seed)
wplus[:, 8:] = self.pspex.decoder.style(torch.randn(1, 512).to(self.device)).unsqueeze(1).repeat(1,10,1) * 0.7
y_hat_edit, _ = self.pspex.decoder([wplus], input_is_latent=True, first_layer_feature=f)
elif 'Attribute Editing' in editing_options:
editing_w = self.editing_dicts[editing_options[19:]].to(self.device)
y_hat_edit, _ = self.pspex.decoder([wplus+scale_factor*editing_w], input_is_latent=True, first_layer_feature=f)
elif 'Domain Transfer' in editing_options:
self.load_G_model(editing_options[17:])
if self.print_log: print('model %s loaded'%(editing_options[17:]))
y_hat_edit, _ = self.generator([wplus], input_is_latent=True, first_layer_feature=f)
else:
y_hat_edit = y_hat
y_hat_edit = torch.clamp(y_hat_edit, -1, 1)
return self.tensor2np(y_hat[0]), self.tensor2np(y_hat_edit[0]) |