File size: 4,995 Bytes
ac4ce84
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
import torch
import torch.nn as nn
import torch.nn.functional as F
from collections import OrderedDict
import numpy as np

from configs.paths_config import model_paths
PNET_PATH = model_paths["mtcnn_pnet"]
ONET_PATH = model_paths["mtcnn_onet"]
RNET_PATH = model_paths["mtcnn_rnet"]


class Flatten(nn.Module):

    def __init__(self):
        super(Flatten, self).__init__()

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, c, h, w].
        Returns:
            a float tensor with shape [batch_size, c*h*w].
        """

        # without this pretrained model isn't working
        x = x.transpose(3, 2).contiguous()

        return x.view(x.size(0), -1)


class PNet(nn.Module):

    def __init__(self):
        super().__init__()

        # suppose we have input with size HxW, then
        # after first layer: H - 2,
        # after pool: ceil((H - 2)/2),
        # after second conv: ceil((H - 2)/2) - 2,
        # after last conv: ceil((H - 2)/2) - 4,
        # and the same for W

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 10, 3, 1)),
            ('prelu1', nn.PReLU(10)),
            ('pool1', nn.MaxPool2d(2, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(10, 16, 3, 1)),
            ('prelu2', nn.PReLU(16)),

            ('conv3', nn.Conv2d(16, 32, 3, 1)),
            ('prelu3', nn.PReLU(32))
        ]))

        self.conv4_1 = nn.Conv2d(32, 2, 1, 1)
        self.conv4_2 = nn.Conv2d(32, 4, 1, 1)

        weights = np.load(PNET_PATH, allow_pickle=True)[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, 3, h, w].
        Returns:
            b: a float tensor with shape [batch_size, 4, h', w'].
            a: a float tensor with shape [batch_size, 2, h', w'].
        """
        x = self.features(x)
        a = self.conv4_1(x)
        b = self.conv4_2(x)
        a = F.softmax(a, dim=-1)
        return b, a


class RNet(nn.Module):

    def __init__(self):
        super().__init__()

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 28, 3, 1)),
            ('prelu1', nn.PReLU(28)),
            ('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(28, 48, 3, 1)),
            ('prelu2', nn.PReLU(48)),
            ('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv3', nn.Conv2d(48, 64, 2, 1)),
            ('prelu3', nn.PReLU(64)),

            ('flatten', Flatten()),
            ('conv4', nn.Linear(576, 128)),
            ('prelu4', nn.PReLU(128))
        ]))

        self.conv5_1 = nn.Linear(128, 2)
        self.conv5_2 = nn.Linear(128, 4)

        weights = np.load(RNET_PATH, allow_pickle=True)[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, 3, h, w].
        Returns:
            b: a float tensor with shape [batch_size, 4].
            a: a float tensor with shape [batch_size, 2].
        """
        x = self.features(x)
        a = self.conv5_1(x)
        b = self.conv5_2(x)
        a = F.softmax(a, dim=-1)
        return b, a


class ONet(nn.Module):

    def __init__(self):
        super().__init__()

        self.features = nn.Sequential(OrderedDict([
            ('conv1', nn.Conv2d(3, 32, 3, 1)),
            ('prelu1', nn.PReLU(32)),
            ('pool1', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv2', nn.Conv2d(32, 64, 3, 1)),
            ('prelu2', nn.PReLU(64)),
            ('pool2', nn.MaxPool2d(3, 2, ceil_mode=True)),

            ('conv3', nn.Conv2d(64, 64, 3, 1)),
            ('prelu3', nn.PReLU(64)),
            ('pool3', nn.MaxPool2d(2, 2, ceil_mode=True)),

            ('conv4', nn.Conv2d(64, 128, 2, 1)),
            ('prelu4', nn.PReLU(128)),

            ('flatten', Flatten()),
            ('conv5', nn.Linear(1152, 256)),
            ('drop5', nn.Dropout(0.25)),
            ('prelu5', nn.PReLU(256)),
        ]))

        self.conv6_1 = nn.Linear(256, 2)
        self.conv6_2 = nn.Linear(256, 4)
        self.conv6_3 = nn.Linear(256, 10)

        weights = np.load(ONET_PATH, allow_pickle=True)[()]
        for n, p in self.named_parameters():
            p.data = torch.FloatTensor(weights[n])

    def forward(self, x):
        """
        Arguments:
            x: a float tensor with shape [batch_size, 3, h, w].
        Returns:
            c: a float tensor with shape [batch_size, 10].
            b: a float tensor with shape [batch_size, 4].
            a: a float tensor with shape [batch_size, 2].
        """
        x = self.features(x)
        a = self.conv6_1(x)
        b = self.conv6_2(x)
        c = self.conv6_3(x)
        a = F.softmax(a, dim=-1)
        return c, b, a