Spaces:
Sleeping
Sleeping
File size: 11,036 Bytes
ac4ce84 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 |
# -*- coding: utf-8 -*-
"""
Created on Mon Apr 24 15:43:29 2017
@author: zhaoy
"""
import numpy as np
import cv2
# from scipy.linalg import lstsq
# from scipy.ndimage import geometric_transform # , map_coordinates
from models.mtcnn.mtcnn_pytorch.src.matlab_cp2tform import get_similarity_transform_for_cv2
# reference facial points, a list of coordinates (x,y)
REFERENCE_FACIAL_POINTS = [
[30.29459953, 51.69630051],
[65.53179932, 51.50139999],
[48.02519989, 71.73660278],
[33.54930115, 92.3655014],
[62.72990036, 92.20410156]
]
DEFAULT_CROP_SIZE = (96, 112)
class FaceWarpException(Exception):
def __str__(self):
return 'In File {}:{}'.format(
__file__, super.__str__(self))
def get_reference_facial_points(output_size=None,
inner_padding_factor=0.0,
outer_padding=(0, 0),
default_square=False):
"""
Function:
----------
get reference 5 key points according to crop settings:
0. Set default crop_size:
if default_square:
crop_size = (112, 112)
else:
crop_size = (96, 112)
1. Pad the crop_size by inner_padding_factor in each side;
2. Resize crop_size into (output_size - outer_padding*2),
pad into output_size with outer_padding;
3. Output reference_5point;
Parameters:
----------
@output_size: (w, h) or None
size of aligned face image
@inner_padding_factor: (w_factor, h_factor)
padding factor for inner (w, h)
@outer_padding: (w_pad, h_pad)
each row is a pair of coordinates (x, y)
@default_square: True or False
if True:
default crop_size = (112, 112)
else:
default crop_size = (96, 112);
!!! make sure, if output_size is not None:
(output_size - outer_padding)
= some_scale * (default crop_size * (1.0 + inner_padding_factor))
Returns:
----------
@reference_5point: 5x2 np.array
each row is a pair of transformed coordinates (x, y)
"""
# print('\n===> get_reference_facial_points():')
# print('---> Params:')
# print(' output_size: ', output_size)
# print(' inner_padding_factor: ', inner_padding_factor)
# print(' outer_padding:', outer_padding)
# print(' default_square: ', default_square)
tmp_5pts = np.array(REFERENCE_FACIAL_POINTS)
tmp_crop_size = np.array(DEFAULT_CROP_SIZE)
# 0) make the inner region a square
if default_square:
size_diff = max(tmp_crop_size) - tmp_crop_size
tmp_5pts += size_diff / 2
tmp_crop_size += size_diff
# print('---> default:')
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
if (output_size and
output_size[0] == tmp_crop_size[0] and
output_size[1] == tmp_crop_size[1]):
# print('output_size == DEFAULT_CROP_SIZE {}: return default reference points'.format(tmp_crop_size))
return tmp_5pts
if (inner_padding_factor == 0 and
outer_padding == (0, 0)):
if output_size is None:
# print('No paddings to do: return default reference points')
return tmp_5pts
else:
raise FaceWarpException(
'No paddings to do, output_size must be None or {}'.format(tmp_crop_size))
# check output size
if not (0 <= inner_padding_factor <= 1.0):
raise FaceWarpException('Not (0 <= inner_padding_factor <= 1.0)')
if ((inner_padding_factor > 0 or outer_padding[0] > 0 or outer_padding[1] > 0)
and output_size is None):
output_size = tmp_crop_size * \
(1 + inner_padding_factor * 2).astype(np.int32)
output_size += np.array(outer_padding)
# print(' deduced from paddings, output_size = ', output_size)
if not (outer_padding[0] < output_size[0]
and outer_padding[1] < output_size[1]):
raise FaceWarpException('Not (outer_padding[0] < output_size[0]'
'and outer_padding[1] < output_size[1])')
# 1) pad the inner region according inner_padding_factor
# print('---> STEP1: pad the inner region according inner_padding_factor')
if inner_padding_factor > 0:
size_diff = tmp_crop_size * inner_padding_factor * 2
tmp_5pts += size_diff / 2
tmp_crop_size += np.round(size_diff).astype(np.int32)
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# 2) resize the padded inner region
# print('---> STEP2: resize the padded inner region')
size_bf_outer_pad = np.array(output_size) - np.array(outer_padding) * 2
# print(' crop_size = ', tmp_crop_size)
# print(' size_bf_outer_pad = ', size_bf_outer_pad)
if size_bf_outer_pad[0] * tmp_crop_size[1] != size_bf_outer_pad[1] * tmp_crop_size[0]:
raise FaceWarpException('Must have (output_size - outer_padding)'
'= some_scale * (crop_size * (1.0 + inner_padding_factor)')
scale_factor = size_bf_outer_pad[0].astype(np.float32) / tmp_crop_size[0]
# print(' resize scale_factor = ', scale_factor)
tmp_5pts = tmp_5pts * scale_factor
# size_diff = tmp_crop_size * (scale_factor - min(scale_factor))
# tmp_5pts = tmp_5pts + size_diff / 2
tmp_crop_size = size_bf_outer_pad
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# 3) add outer_padding to make output_size
reference_5point = tmp_5pts + np.array(outer_padding)
tmp_crop_size = output_size
# print('---> STEP3: add outer_padding to make output_size')
# print(' crop_size = ', tmp_crop_size)
# print(' reference_5pts = ', tmp_5pts)
# print('===> end get_reference_facial_points\n')
return reference_5point
def get_affine_transform_matrix(src_pts, dst_pts):
"""
Function:
----------
get affine transform matrix 'tfm' from src_pts to dst_pts
Parameters:
----------
@src_pts: Kx2 np.array
source points matrix, each row is a pair of coordinates (x, y)
@dst_pts: Kx2 np.array
destination points matrix, each row is a pair of coordinates (x, y)
Returns:
----------
@tfm: 2x3 np.array
transform matrix from src_pts to dst_pts
"""
tfm = np.float32([[1, 0, 0], [0, 1, 0]])
n_pts = src_pts.shape[0]
ones = np.ones((n_pts, 1), src_pts.dtype)
src_pts_ = np.hstack([src_pts, ones])
dst_pts_ = np.hstack([dst_pts, ones])
# #print(('src_pts_:\n' + str(src_pts_))
# #print(('dst_pts_:\n' + str(dst_pts_))
A, res, rank, s = np.linalg.lstsq(src_pts_, dst_pts_)
# #print(('np.linalg.lstsq return A: \n' + str(A))
# #print(('np.linalg.lstsq return res: \n' + str(res))
# #print(('np.linalg.lstsq return rank: \n' + str(rank))
# #print(('np.linalg.lstsq return s: \n' + str(s))
if rank == 3:
tfm = np.float32([
[A[0, 0], A[1, 0], A[2, 0]],
[A[0, 1], A[1, 1], A[2, 1]]
])
elif rank == 2:
tfm = np.float32([
[A[0, 0], A[1, 0], 0],
[A[0, 1], A[1, 1], 0]
])
return tfm
def warp_and_crop_face(src_img,
facial_pts,
reference_pts=None,
crop_size=(96, 112),
align_type='smilarity'):
"""
Function:
----------
apply affine transform 'trans' to uv
Parameters:
----------
@src_img: 3x3 np.array
input image
@facial_pts: could be
1)a list of K coordinates (x,y)
or
2) Kx2 or 2xK np.array
each row or col is a pair of coordinates (x, y)
@reference_pts: could be
1) a list of K coordinates (x,y)
or
2) Kx2 or 2xK np.array
each row or col is a pair of coordinates (x, y)
or
3) None
if None, use default reference facial points
@crop_size: (w, h)
output face image size
@align_type: transform type, could be one of
1) 'similarity': use similarity transform
2) 'cv2_affine': use the first 3 points to do affine transform,
by calling cv2.getAffineTransform()
3) 'affine': use all points to do affine transform
Returns:
----------
@face_img: output face image with size (w, h) = @crop_size
"""
if reference_pts is None:
if crop_size[0] == 96 and crop_size[1] == 112:
reference_pts = REFERENCE_FACIAL_POINTS
else:
default_square = False
inner_padding_factor = 0
outer_padding = (0, 0)
output_size = crop_size
reference_pts = get_reference_facial_points(output_size,
inner_padding_factor,
outer_padding,
default_square)
ref_pts = np.float32(reference_pts)
ref_pts_shp = ref_pts.shape
if max(ref_pts_shp) < 3 or min(ref_pts_shp) != 2:
raise FaceWarpException(
'reference_pts.shape must be (K,2) or (2,K) and K>2')
if ref_pts_shp[0] == 2:
ref_pts = ref_pts.T
src_pts = np.float32(facial_pts)
src_pts_shp = src_pts.shape
if max(src_pts_shp) < 3 or min(src_pts_shp) != 2:
raise FaceWarpException(
'facial_pts.shape must be (K,2) or (2,K) and K>2')
if src_pts_shp[0] == 2:
src_pts = src_pts.T
# #print('--->src_pts:\n', src_pts
# #print('--->ref_pts\n', ref_pts
if src_pts.shape != ref_pts.shape:
raise FaceWarpException(
'facial_pts and reference_pts must have the same shape')
if align_type is 'cv2_affine':
tfm = cv2.getAffineTransform(src_pts[0:3], ref_pts[0:3])
# #print(('cv2.getAffineTransform() returns tfm=\n' + str(tfm))
elif align_type is 'affine':
tfm = get_affine_transform_matrix(src_pts, ref_pts)
# #print(('get_affine_transform_matrix() returns tfm=\n' + str(tfm))
else:
tfm = get_similarity_transform_for_cv2(src_pts, ref_pts)
# #print(('get_similarity_transform_for_cv2() returns tfm=\n' + str(tfm))
# #print('--->Transform matrix: '
# #print(('type(tfm):' + str(type(tfm)))
# #print(('tfm.dtype:' + str(tfm.dtype))
# #print( tfm
face_img = cv2.warpAffine(src_img, tfm, (crop_size[0], crop_size[1]))
return face_img, tfm
|