File size: 8,642 Bytes
e040df6
3a66846
e040df6
 
3a66846
 
 
e040df6
 
3a66846
 
 
e040df6
 
3a66846
e040df6
 
3a66846
e040df6
 
3a66846
e040df6
 
3a66846
e040df6
 
3a66846
e040df6
013c16f
3a66846
 
 
 
 
 
 
 
8ca8419
 
 
8a5b81f
 
3a66846
8a5b81f
8ca8419
 
8a5b81f
8ca8419
 
 
 
 
3a66846
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e63359b
 
3a66846
 
d6ee8de
 
 
 
 
 
f89ca45
e040df6
 
06373b0
 
8a5b81f
4ec4eab
 
 
 
 
 
 
b775e86
 
4e2a958
b775e86
 
 
 
4ec4eab
 
e040df6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f89ca45
c327611
f89ca45
 
 
1922f55
e6ea812
1922f55
 
 
56a1e8e
 
 
 
f89ca45
 
 
 
3572d34
 
37422b2
f89ca45
 
 
 
 
 
 
 
b775e86
 
f89ca45
b775e86
 
 
 
 
f89ca45
f0fab5f
f89ca45
 
 
 
 
 
 
 
c327611
56a1e8e
f89ca45
c327611
021221c
 
 
 
 
 
 
 
 
 
d9bc137
 
 
 
d6ee8de
c327611
dfdc718
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
print("[1/7] Importing streamlit...", end=" ", flush=True)
import streamlit as st
print("done")
print("[2/7] Importing something...", end=" ", flush=True)
import os
import pandas as pd
from datetime import datetime
from PIL import Image
from PIL import ImageFilter
from io import BytesIO
import zipfile
import base64
print("done")
print("[3/7] Importing deepdanbooru...", end=" ", flush=True)
import deepdanbooru as dd
print("done")
print("[4/7] Importing huggingface_hub...", end=" ", flush=True)
import huggingface_hub
print("done")
print("[5/7] Importing tensorflow...", end=" ", flush=True)
import tensorflow as tf
print("done")
print("[6/7] Importing numpy...", end=" ", flush=True)
import numpy as np
print("done")
print("[6/7] Importing transformers...", end=" ", flush=True)
from transformers import pipeline
print("done")

# ページごとの表示数
PAGE_SIZE = 20

# ファイルの保存先フォルダー
photos_folder = "photos"

# インデックスファイルのパス
index_file_path = "index.csv"

#blur_enabled = st.sidebar.checkbox("NSFW画像にブラーをかける", value=True, key=blur_toggle_key)
# ブラーのトグル用のキー
import random
import string

blur_toggle_key = "blurOrNot"

# st.session_stateにblur_enabledがない場合に定義
if "blur_enabled" not in st.session_state:
    st.session_state.blur_enabled = st.sidebar.checkbox("NSFW画像にブラーをかける", value=True, key=blur_toggle_key)

# blur_enabledの値を取得
blur_enabled = st.session_state.blur_enabled

# タグ付け関数
def predict_tags(image: Image.Image, score_threshold: float) -> tuple[dict[str, float], dict[str, float], str]:
    _, height, width, _ = model.input_shape
    image = np.asarray(image)
    image = tf.image.resize(image, size=(height, width), method=tf.image.ResizeMethod.AREA, preserve_aspect_ratio=True)
    image = image.numpy()
    image = dd.image.transform_and_pad_image(image, width, height)
    image = image / 255.
    probs = model.predict(image[None, ...])[0]
    probs = probs.astype(float)

    indices = np.argsort(probs)[::-1]
    result_all = dict()
    result_threshold = dict()
    for index in indices:
        label = labels[index]
        prob = probs[index]
        result_all[label] = prob
        if prob < score_threshold:
            break
        result_threshold[label] = prob
    result_text = ', '.join(result_all.keys())
    return result_threshold, result_all, result_text

# NSFW 判定関数
def predict_nsfw(image: Image.Image) -> dict[str, float]:
    classifier = pipeline("image-classification", model="Falconsai/nsfw_image_detection")
    result = classifier(image)[0]
    return {result['label']: result['score']}

# ブラーをかける関数
def blur_image(image: Image.Image, blur_enabled: bool, nsfw_score: float) -> Image.Image:
    if blur_enabled:
        nsfw_result = predict_nsfw(image)
        nsfw_score = nsfw_result.get('nsfw', 0.0)
        if nsfw_score >= 0.75:
            blur_radius=20*nsfw_score
            image = image.filter(ImageFilter.BLUR(radius=blur_radius))
    return image

# ページングと並び替えのためのデータを取得する関数
def load_data():
    if os.path.exists(index_file_path):
        return pd.read_csv(index_file_path)
    else:
        return pd.DataFrame(columns=["File Name", "Timestamp", "Tags"])

# ブラーのトグル用のキー

#blur_enabled = st.sidebar.checkbox("NSFW画像にブラーをかける", value=True, key=blur_toggle_key)
if "blur_enabled" not in st.session_state:
   st.session_state.blur_enabled = st.sidebar.checkbox("NSFW画像にブラーをかける", value=True, key=blur_toggle_key)
# アップロードされた写真を保存する関数
def save_uploaded_photo(uploaded_photo, file_name):
    if not os.path.exists(photos_folder):
        os.makedirs(photos_folder)
    
    # アップロードされた写真を保存
    image = Image.open(uploaded_photo)
    
    # ブラーの有効/無効をトグルで制御
    #blur_enabled = st.sidebar.checkbox("NSFW画像にブラーをかける", value=True, key=blur_toggle_key)
    
    # ブラーの適用
    image = blur_image(image, blur_enabled, 0.75)

    image.save(os.path.join(photos_folder, file_name), "PNG")

# アップロードされた写真を表示する関数
def display_photos(photos):
    for photo_info in photos.iterrows():
        row = photo_info[1]
        photo_path = os.path.join(photos_folder, row["File Name"])
        image = Image.open(photo_path)

        # タグを予測して表示
        result_threshold, result_all, result_text = predict_tags(image, 0.7)

        st.image(image, caption=row["File Name"], use_column_width=True)
        
        # タグを表示
        st.write("タグ:", ", ".join(result_all.keys()))

# フォルダーの中身を zip ファイルとしてダウンロード
def download_photos_as_zip(file_paths):
    # Zip ファイル作成
    with BytesIO() as zip_buffer:
        with zipfile.ZipFile(zip_buffer, "a", zipfile.ZIP_DEFLATED) as zip_file:
            for file_path in file_paths:
                zip_file.write(file_path, os.path.basename(file_path))
        
        # ダウンロードリンク表示
        st.markdown(
            f"**[ダウンロード ZIPファイル](data:application/zip;base64,{base64.b64encode(zip_buffer.getvalue()).decode()})**",
            unsafe_allow_html=True
        )

# モデルとラベルをダウンロードする関数
def load_model():
    path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', 'model-resnet_custom_v3.h5')
    model = tf.keras.models.load_model(path)
    return model

def load_labels():
    path = huggingface_hub.hf_hub_download('public-data/DeepDanbooru', 'tags.txt')
    with open(path) as f:
        labels = [line.strip() for line in f.readlines()]
    return labels

# Streamlit アプリケーションのメイン部分
def main():
    st.sidebar.title("アップロードオプション")
    uploaded_photos = st.sidebar.file_uploader("写真をアップロードしてください", type=["jpg", "jpeg", "png"], accept_multiple_files=True)

    # モデルとラベルをダウンロードする
    global model, labels
    model = load_model()
    labels = load_labels()

    # インデックスを初期化
    global photo_df
    photo_df = load_data()

    if uploaded_photos:
        for uploaded_photo in uploaded_photos:
            file_name = f"{datetime.now().strftime('%Y%m%d%H%M%S%f')}.png"
            save_uploaded_photo(uploaded_photo, file_name)

            # インデックスに追加
            photo_df = pd.concat([photo_df, pd.DataFrame([[os.path.basename(file_name), datetime.now(), ""]], columns=["File Name", "Timestamp", "Tags"])], ignore_index=True)

        # インデックスを更新
        photo_df.sort_values(by="Timestamp", inplace=True, ascending=False)
        photo_df.reset_index(drop=True, inplace=True)
        photo_df.to_csv(index_file_path, index=False)

    st.subheader("アップロードされた写真")
    
    # ページングのための変数
    page_num = st.sidebar.number_input("ページ番号", value=1, min_value=1, max_value=(len(photo_df) // PAGE_SIZE) + 1)
    start_idx = (page_num - 1) * PAGE_SIZE
    end_idx = min(start_idx + PAGE_SIZE, len(photo_df))
    current_page = photo_df.iloc[start_idx:end_idx]

    # 並び替えのための選択肢
    selected_sort = st.sidebar.selectbox("写真の並び替え", ["TimeStamp 昇順", "TimeStamp 降順", "名前 昇順", "名前 降順"])

    # 並び替え
    if selected_sort == "TimeStamp 昇順":
        current_page = current_page.sort_values(by="Timestamp", ascending=True)
    elif selected_sort == "TimeStamp 降順":
        current_page = current_page.sort_values(by="Timestamp", ascending=False)
    elif selected_sort == "名前 昇順":
        current_page = current_page.sort_values(by="File Name", ascending=True)
    elif selected_sort == "名前 降順":
        current_page = current_page.sort_values(by="File Name", ascending=False)

    # ページに写真を表示
    display_photos(current_page)

    # Next ボタン
    if st.button("Next"):
        page_num += 1
        st.experimental_rerun()

    # Previous ボタン
    if st.button("Previous"):
        page_num -= 1
        st.experimental_rerun()

    # Zip ダウンロードボタン
    if st.button("写真をダウンロード (ZIP)"):
        file_paths = [os.path.join(photos_folder, file) for file in os.listdir(photos_folder)]
        download_photos_as_zip(file_paths)

if __name__ == "__main__":
    main()