File size: 4,002 Bytes
2250554
 
 
 
 
d8f12f9
2250554
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
import streamlit as st
from streamlit_chat import message
from streamlit_extras.colored_header import colored_header
from streamlit_extras.add_vertical_space import add_vertical_space
from streamlit_mic_recorder import speech_to_text
from model_pipelineV2 import ModelPipeLine

from gtts import gTTS
from io import BytesIO

mdl = ModelPipeLine()
final_chain = mdl.create_final_chain()

st.set_page_config(page_title="PeacePal")

st.title('Omdena HYD: Mental Health counselor 🌱')

## generated stores AI generated responses
if 'generated' not in st.session_state:
    st.session_state['generated'] = ["I'm your Mental health Assistant, How may I help you?"]
## past stores User's questions
if 'past' not in st.session_state:
    st.session_state['past'] = ['Hi!']

# Layout of input/response containers

colored_header(label='', description='', color_name='blue-30')
response_container = st.container()
input_container = st.container()

# User input
## Function for taking user provided prompt as input
def get_text():
    input_text = st.text_input("You: ", "", key="input")
    return input_text

def generate_response(prompt):
    response = mdl.call_conversational_rag(prompt,final_chain)
    return response['answer']

def text_to_speech(text):
    # Use gTTS to convert text to speech
    tts = gTTS(text=text, lang='en')
    # Save the speech as bytes in memory
    fp = BytesIO()
    tts.write_to_fp(fp)
    return fp

def speech_recognition_callback():
    # Ensure that speech output is available
    if st.session_state.my_stt_output is None:
        st.session_state.p01_error_message = "Please record your response again."
        return
    
    # Clear any previous error messages
    st.session_state.p01_error_message = None
        
    # Store the speech output in the session state
    st.session_state.speech_input = st.session_state.my_stt_output


## Applying the user input box        
with input_container:
    # Add a radio button to choose input mode
    input_mode = st.radio("Select input mode:", ["Text", "Speech"])

    if input_mode == "Speech":
        # Use the speech_to_text function to capture speech input
        speech_input = speech_to_text(
            key='my_stt', 
            callback=speech_recognition_callback
        )

        # Check if speech input is available
        if 'speech_input' in st.session_state and st.session_state.speech_input:
            # Display the speech input
            st.text(f"Speech Input: {st.session_state.speech_input}")
            
            # Process the speech input as a query
            query = st.session_state.speech_input
            with st.spinner("processing....."):
                response = generate_response(query)
                st.session_state.past.append(query)
                st.session_state.generated.append(response)
                
                # Convert the response to speech
                speech_fp = text_to_speech(response)
                # Play the speech
                st.audio(speech_fp, format='audio/mp3')
    else:
        # Add a text input field for query
        query = st.text_input("Query: ", key="input")

        # Process the query if it's not empty
        if query:
            with st.spinner("typing....."):
                response = generate_response(query)
                st.session_state.past.append(query)
                st.session_state.generated.append(response)
                
                # Convert the response to speech
                speech_fp = text_to_speech(response)
                # Play the speech
                st.audio(speech_fp, format='audio/mp3')

## Conditional display of AI generated responses as a function of user provided prompts
with response_container:        
    if st.session_state['generated']:
        for i in range(len(st.session_state['generated'])):
            message(st.session_state['past'][i], is_user=True, key=str(i) + '_user')
            message(st.session_state["generated"][i], key=str(i))