ZeroGPU

#2
by hysts HF staff - opened
This view is limited to 50 files because it contains too many changes.Β  See the raw diff here.
Files changed (50) hide show
  1. app.py +22 -35
  2. causal-conv1d/AUTHORS +0 -1
  3. causal-conv1d/LICENSE +0 -29
  4. causal-conv1d/README.md +0 -1
  5. causal-conv1d/causal_conv1d/__init__.py +0 -3
  6. causal-conv1d/causal_conv1d/causal_conv1d_interface.py +0 -104
  7. causal-conv1d/csrc/causal_conv1d.cpp +0 -333
  8. causal-conv1d/csrc/causal_conv1d.h +0 -53
  9. causal-conv1d/csrc/causal_conv1d_bwd.cu +0 -525
  10. causal-conv1d/csrc/causal_conv1d_common.h +0 -64
  11. causal-conv1d/csrc/causal_conv1d_fwd.cu +0 -350
  12. causal-conv1d/csrc/causal_conv1d_update.cu +0 -96
  13. causal-conv1d/csrc/static_switch.h +0 -25
  14. causal-conv1d/setup.py +0 -264
  15. causal-conv1d/tests/test_causal_conv1d.py +0 -173
  16. causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl +3 -0
  17. install.sh +0 -3
  18. mamba/.gitmodules +0 -3
  19. mamba/AUTHORS +0 -2
  20. mamba/LICENSE +0 -201
  21. mamba/README.md +0 -149
  22. mamba/assets/selection.png +0 -0
  23. mamba/benchmarks/benchmark_generation_mamba_simple.py +0 -88
  24. mamba/csrc/selective_scan/reverse_scan.cuh +0 -401
  25. mamba/csrc/selective_scan/selective_scan.cpp +0 -497
  26. mamba/csrc/selective_scan/selective_scan.h +0 -101
  27. mamba/csrc/selective_scan/selective_scan_bwd_bf16_complex.cu +0 -9
  28. mamba/csrc/selective_scan/selective_scan_bwd_bf16_real.cu +0 -9
  29. mamba/csrc/selective_scan/selective_scan_bwd_fp16_complex.cu +0 -9
  30. mamba/csrc/selective_scan/selective_scan_bwd_fp16_real.cu +0 -9
  31. mamba/csrc/selective_scan/selective_scan_bwd_fp32_complex.cu +0 -9
  32. mamba/csrc/selective_scan/selective_scan_bwd_fp32_real.cu +0 -9
  33. mamba/csrc/selective_scan/selective_scan_bwd_kernel.cuh +0 -531
  34. mamba/csrc/selective_scan/selective_scan_common.h +0 -221
  35. mamba/csrc/selective_scan/selective_scan_fwd_bf16.cu +0 -10
  36. mamba/csrc/selective_scan/selective_scan_fwd_fp16.cu +0 -10
  37. mamba/csrc/selective_scan/selective_scan_fwd_fp32.cu +0 -10
  38. mamba/csrc/selective_scan/selective_scan_fwd_kernel.cuh +0 -345
  39. mamba/csrc/selective_scan/static_switch.h +0 -25
  40. mamba/csrc/selective_scan/uninitialized_copy.cuh +0 -69
  41. mamba/evals/lm_harness_eval.py +0 -39
  42. mamba/mamba_ssm/__init__.py +0 -5
  43. mamba/mamba_ssm/models/__init__.py +0 -0
  44. mamba/mamba_ssm/models/mixer_seq_simple.py +0 -233
  45. mamba/mamba_ssm/modules/__init__.py +0 -0
  46. mamba/mamba_ssm/modules/mamba_simple.py +0 -418
  47. mamba/mamba_ssm/ops/__init__.py +0 -0
  48. mamba/mamba_ssm/ops/selective_scan_interface.py +0 -709
  49. mamba/mamba_ssm/ops/triton/__init__.py +0 -0
  50. mamba/mamba_ssm/ops/triton/layernorm.py +0 -636
app.py CHANGED
@@ -1,15 +1,13 @@
1
- import os
2
- # import spaces
 
3
  import torch
4
 
5
- os.system("nvidia-smi")
6
- print("TORCH_CUDA", torch.cuda.is_available())
7
-
8
-
9
  # install packages for mamba
10
  def install():
11
  print("Install personal packages", flush=True)
12
- os.system("bash install.sh")
 
13
 
14
  install()
15
 
@@ -25,7 +23,7 @@ from videomamba_video import videomamba_tiny
25
  from kinetics_class_index import kinetics_classnames
26
  from imagenet_class_index import imagenet_classnames
27
  from transforms import (
28
- GroupNormalize, GroupScale, GroupCenterCrop,
29
  Stack, ToTorchFormatTensor
30
  )
31
 
@@ -38,7 +36,7 @@ from huggingface_hub import hf_hub_download
38
  device = "cuda"
39
  model_video_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_k400_f16_res224.pth")
40
  model_image_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_in1k_res224.pth")
41
- # Pick a pretrained model
42
  model_video = videomamba_tiny(num_classes=400, num_frames=16)
43
  video_sd = torch.load(model_video_path, map_location='cpu')
44
  model_video.load_state_dict(video_sd)
@@ -55,7 +53,7 @@ for k, v in kinetics_classnames.items():
55
  kinetics_id_to_classname[k] = v
56
  imagenet_id_to_classname = {}
57
  for k, v in imagenet_classnames.items():
58
- imagenet_id_to_classname[k] = v[1]
59
 
60
 
61
  def get_index(num_frames, num_segments=8):
@@ -83,7 +81,7 @@ def load_video(video_path):
83
  GroupCenterCrop(crop_size),
84
  Stack(),
85
  ToTorchFormatTensor(),
86
- GroupNormalize(input_mean, input_std)
87
  ])
88
 
89
  images_group = list()
@@ -92,28 +90,24 @@ def load_video(video_path):
92
  images_group.append(img)
93
  torch_imgs = transform(images_group)
94
  return torch_imgs
95
-
96
 
97
- # @spaces.GPU
 
98
  def inference_video(video):
99
  vid = load_video(video)
100
-
101
  # The model expects inputs of shape: B x C x H x W
102
  TC, H, W = vid.shape
103
  inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
104
-
105
  with torch.no_grad():
106
  prediction = model_video(inputs.to(device))
107
  prediction = F.softmax(prediction, dim=1).flatten()
108
 
109
  return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
110
-
111
-
112
- def set_example_video(example: list) -> dict:
113
- return gr.Video.update(value=example[0])
114
 
115
 
116
- # @spaces.GPU
117
  def inference_image(img):
118
  image = img
119
  image_transform = T.Compose(
@@ -125,10 +119,10 @@ def inference_image(img):
125
  ]
126
  )
127
  image = image_transform(image)
128
-
129
  # The model expects inputs of shape: B x C x H x W
130
  image = image.unsqueeze(0)
131
-
132
  with torch.no_grad():
133
  prediction = model_image(image.to(device))
134
  prediction = F.softmax(prediction, dim=1).flatten()
@@ -136,10 +130,6 @@ def inference_image(img):
136
  return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
137
 
138
 
139
- def set_example_image(example: list) -> dict:
140
- return gr.Image.update(value=example[0])
141
-
142
-
143
  demo = gr.Blocks()
144
  with demo:
145
  gr.Markdown(
@@ -154,26 +144,26 @@ with demo:
154
  with gr.Row():
155
  with gr.Column():
156
  with gr.Row():
157
- input_video = gr.Video(label='Input Video').style(height=360)
158
  with gr.Row():
159
  submit_video_button = gr.Button('Submit')
160
  with gr.Column():
161
  label_video = gr.Label(num_top_classes=5)
162
  with gr.Row():
163
- example_videos = gr.Dataset(components=[input_video], samples=[['./videos/hitting_baseball.mp4'], ['./videos/hoverboarding.mp4'], ['./videos/yoga.mp4']])
164
-
165
  with gr.Tab("Image"):
166
  # with gr.Box():
167
  with gr.Row():
168
  with gr.Column():
169
  with gr.Row():
170
- input_image = gr.Image(label='Input Image', type='pil').style(height=360)
171
  with gr.Row():
172
  submit_image_button = gr.Button('Submit')
173
  with gr.Column():
174
  label_image = gr.Label(num_top_classes=5)
175
  with gr.Row():
176
- example_images = gr.Dataset(components=[input_image], samples=[['./images/cat.png'], ['./images/dog.png'], ['./images/panda.png']])
177
 
178
  gr.Markdown(
179
  """
@@ -182,9 +172,6 @@ with demo:
182
  )
183
 
184
  submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video)
185
- example_videos.click(fn=set_example_video, inputs=example_videos, outputs=example_videos._components)
186
  submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
187
- example_images.click(fn=set_example_image, inputs=example_images, outputs=example_images._components)
188
 
189
- demo.launch(enable_queue=True)
190
- # demo.launch(server_name="0.0.0.0", server_port=10034, enable_queue=True)
 
1
+ import shlex
2
+ import subprocess
3
+ import spaces
4
  import torch
5
 
 
 
 
 
6
  # install packages for mamba
7
  def install():
8
  print("Install personal packages", flush=True)
9
+ subprocess.run(shlex.split("pip install causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl"))
10
+ subprocess.run(shlex.split("pip install mamba_ssm-1.0.1-cp310-cp310-linux_x86_64.whl"))
11
 
12
  install()
13
 
 
23
  from kinetics_class_index import kinetics_classnames
24
  from imagenet_class_index import imagenet_classnames
25
  from transforms import (
26
+ GroupNormalize, GroupScale, GroupCenterCrop,
27
  Stack, ToTorchFormatTensor
28
  )
29
 
 
36
  device = "cuda"
37
  model_video_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_k400_f16_res224.pth")
38
  model_image_path = hf_hub_download(repo_id="OpenGVLab/VideoMamba", filename="videomamba_t16_in1k_res224.pth")
39
+ # Pick a pretrained model
40
  model_video = videomamba_tiny(num_classes=400, num_frames=16)
41
  video_sd = torch.load(model_video_path, map_location='cpu')
42
  model_video.load_state_dict(video_sd)
 
53
  kinetics_id_to_classname[k] = v
54
  imagenet_id_to_classname = {}
55
  for k, v in imagenet_classnames.items():
56
+ imagenet_id_to_classname[k] = v[1]
57
 
58
 
59
  def get_index(num_frames, num_segments=8):
 
81
  GroupCenterCrop(crop_size),
82
  Stack(),
83
  ToTorchFormatTensor(),
84
+ GroupNormalize(input_mean, input_std)
85
  ])
86
 
87
  images_group = list()
 
90
  images_group.append(img)
91
  torch_imgs = transform(images_group)
92
  return torch_imgs
 
93
 
94
+
95
+ @spaces.GPU
96
  def inference_video(video):
97
  vid = load_video(video)
98
+
99
  # The model expects inputs of shape: B x C x H x W
100
  TC, H, W = vid.shape
101
  inputs = vid.reshape(1, TC//3, 3, H, W).permute(0, 2, 1, 3, 4)
102
+
103
  with torch.no_grad():
104
  prediction = model_video(inputs.to(device))
105
  prediction = F.softmax(prediction, dim=1).flatten()
106
 
107
  return {kinetics_id_to_classname[str(i)]: float(prediction[i]) for i in range(400)}
 
 
 
 
108
 
109
 
110
+ @spaces.GPU
111
  def inference_image(img):
112
  image = img
113
  image_transform = T.Compose(
 
119
  ]
120
  )
121
  image = image_transform(image)
122
+
123
  # The model expects inputs of shape: B x C x H x W
124
  image = image.unsqueeze(0)
125
+
126
  with torch.no_grad():
127
  prediction = model_image(image.to(device))
128
  prediction = F.softmax(prediction, dim=1).flatten()
 
130
  return {imagenet_id_to_classname[str(i)]: float(prediction[i]) for i in range(1000)}
131
 
132
 
 
 
 
 
133
  demo = gr.Blocks()
134
  with demo:
135
  gr.Markdown(
 
144
  with gr.Row():
145
  with gr.Column():
146
  with gr.Row():
147
+ input_video = gr.Video(label='Input Video', height=360)
148
  with gr.Row():
149
  submit_video_button = gr.Button('Submit')
150
  with gr.Column():
151
  label_video = gr.Label(num_top_classes=5)
152
  with gr.Row():
153
+ gr.Examples(examples=['./videos/hitting_baseball.mp4', './videos/hoverboarding.mp4', './videos/yoga.mp4'], inputs=input_video, outputs=label_video, fn=inference_video, cache_examples=True)
154
+
155
  with gr.Tab("Image"):
156
  # with gr.Box():
157
  with gr.Row():
158
  with gr.Column():
159
  with gr.Row():
160
+ input_image = gr.Image(label='Input Image', type='pil', height=360)
161
  with gr.Row():
162
  submit_image_button = gr.Button('Submit')
163
  with gr.Column():
164
  label_image = gr.Label(num_top_classes=5)
165
  with gr.Row():
166
+ gr.Examples(examples=['./images/cat.png', './images/dog.png', './images/panda.png'], inputs=input_image, outputs=label_image, fn=inference_image, cache_examples=True)
167
 
168
  gr.Markdown(
169
  """
 
172
  )
173
 
174
  submit_video_button.click(fn=inference_video, inputs=input_video, outputs=label_video)
 
175
  submit_image_button.click(fn=inference_image, inputs=input_image, outputs=label_image)
 
176
 
177
+ demo.queue(max_size=20).launch()
 
causal-conv1d/AUTHORS DELETED
@@ -1 +0,0 @@
1
- Tri Dao, tri@tridao.me
 
 
causal-conv1d/LICENSE DELETED
@@ -1,29 +0,0 @@
1
- BSD 3-Clause License
2
-
3
- Copyright (c) 2022, the respective contributors, as shown by the AUTHORS file.
4
- All rights reserved.
5
-
6
- Redistribution and use in source and binary forms, with or without
7
- modification, are permitted provided that the following conditions are met:
8
-
9
- * Redistributions of source code must retain the above copyright notice, this
10
- list of conditions and the following disclaimer.
11
-
12
- * Redistributions in binary form must reproduce the above copyright notice,
13
- this list of conditions and the following disclaimer in the documentation
14
- and/or other materials provided with the distribution.
15
-
16
- * Neither the name of the copyright holder nor the names of its
17
- contributors may be used to endorse or promote products derived from
18
- this software without specific prior written permission.
19
-
20
- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
21
- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
22
- IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
23
- DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
24
- FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
25
- DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
26
- SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
27
- CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
28
- OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29
- OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/README.md DELETED
@@ -1 +0,0 @@
1
- # Causal depthwise conv1d in CUDA with a PyTorch interface
 
 
causal-conv1d/causal_conv1d/__init__.py DELETED
@@ -1,3 +0,0 @@
1
- __version__ = "1.0.0"
2
-
3
- from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_update
 
 
 
 
causal-conv1d/causal_conv1d/causal_conv1d_interface.py DELETED
@@ -1,104 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao.
2
-
3
- import torch
4
- import torch.nn.functional as F
5
-
6
-
7
- import causal_conv1d_cuda
8
-
9
-
10
- class CausalConv1dFn(torch.autograd.Function):
11
- @staticmethod
12
- def forward(ctx, x, weight, bias=None, activation=None):
13
- if activation not in [None, "silu", "swish"]:
14
- raise NotImplementedError("activation must be None, silu, or swish")
15
- if x.stride(2) != 1 and x.stride(1) != 1:
16
- x = x.contiguous()
17
- bias = bias.contiguous() if bias is not None else None
18
- ctx.save_for_backward(x, weight, bias)
19
- ctx.activation = activation in ["silu", "swish"]
20
- out = causal_conv1d_cuda.causal_conv1d_fwd(x, weight, bias, ctx.activation)
21
- return out
22
-
23
- @staticmethod
24
- def backward(ctx, dout):
25
- x, weight, bias = ctx.saved_tensors
26
- if dout.stride(2) != 1 and dout.stride(1) != 1:
27
- dout = dout.contiguous()
28
- # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
29
- # backward of conv1d with the backward of chunk).
30
- # Here we just pass in None and dx will be allocated in the C++ code.
31
- dx, dweight, dbias = causal_conv1d_cuda.causal_conv1d_bwd(
32
- x, weight, bias, dout, None, ctx.activation
33
- )
34
- return dx, dweight, dbias if bias is not None else None, None
35
-
36
-
37
- def causal_conv1d_fn(x, weight, bias=None, activation=None):
38
- """
39
- x: (batch, dim, seqlen)
40
- weight: (dim, width)
41
- bias: (dim,)
42
- activation: either None or "silu" or "swish"
43
-
44
- out: (batch, dim, seqlen)
45
- """
46
- return CausalConv1dFn.apply(x, weight, bias, activation)
47
-
48
-
49
- def causal_conv1d_ref(x, weight, bias=None, activation=None):
50
- """
51
- x: (batch, dim, seqlen)
52
- weight: (dim, width)
53
- bias: (dim,)
54
-
55
- out: (batch, dim, seqlen)
56
- """
57
- if activation not in [None, "silu", "swish"]:
58
- raise NotImplementedError("activation must be None, silu, or swish")
59
- dtype_in = x.dtype
60
- x = x.to(weight.dtype)
61
- seqlen = x.shape[-1]
62
- dim, width = weight.shape
63
- out = F.conv1d(x, weight.unsqueeze(1), bias, padding=width - 1, groups=dim)
64
- out = out[..., :seqlen]
65
- return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
66
-
67
-
68
- def causal_conv1d_update(x, conv_state, weight, bias=None, activation=None):
69
- """
70
- x: (batch, dim)
71
- conv_state: (batch, dim, width)
72
- weight: (dim, width)
73
- bias: (dim,)
74
-
75
- out: (batch, dim)
76
- """
77
- if activation not in [None, "silu", "swish"]:
78
- raise NotImplementedError("activation must be None, silu, or swish")
79
- activation = activation in ["silu", "swish"]
80
- return causal_conv1d_cuda.causal_conv1d_update(x, conv_state, weight, bias, activation)
81
-
82
-
83
- def causal_conv1d_update_ref(x, conv_state, weight, bias=None, activation=None):
84
- """
85
- x: (batch, dim)
86
- conv_state: (batch, dim, width)
87
- weight: (dim, width)
88
- bias: (dim,)
89
-
90
- out: (batch, dim)
91
- """
92
- if activation not in [None, "silu", "swish"]:
93
- raise NotImplementedError("activation must be None, silu, or swish")
94
- dtype_in = x.dtype
95
- batch, dim = x.shape
96
- width = weight.shape[1]
97
- assert conv_state.shape == (batch, dim, width)
98
- assert weight.shape == (dim, width)
99
- conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
100
- conv_state[:, :, -1] = x
101
- out = torch.sum(conv_state * weight, dim=-1) # (B D)
102
- if bias is not None:
103
- out += bias
104
- return (out if activation is None else F.silu(out)).to(dtype=dtype_in)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/causal_conv1d.cpp DELETED
@@ -1,333 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #include <ATen/cuda/CUDAContext.h>
6
- #include <c10/cuda/CUDAGuard.h>
7
- #include <torch/extension.h>
8
- #include <vector>
9
-
10
- #include "causal_conv1d.h"
11
-
12
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
13
-
14
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
15
- if (ITYPE == at::ScalarType::Half) { \
16
- using input_t = at::Half; \
17
- __VA_ARGS__(); \
18
- } else if (ITYPE == at::ScalarType::BFloat16) { \
19
- using input_t = at::BFloat16; \
20
- __VA_ARGS__(); \
21
- } else if (ITYPE == at::ScalarType::Float) { \
22
- using input_t = float; \
23
- __VA_ARGS__(); \
24
- } else { \
25
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
26
- }
27
-
28
- #define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
29
- if (WTYPE == at::ScalarType::Half) { \
30
- using weight_t = at::Half; \
31
- __VA_ARGS__(); \
32
- } else if (WTYPE == at::ScalarType::BFloat16) { \
33
- using weight_t = at::BFloat16; \
34
- __VA_ARGS__(); \
35
- } else if (WTYPE == at::ScalarType::Float) { \
36
- using weight_t = float; \
37
- __VA_ARGS__(); \
38
- } else { \
39
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
40
- }
41
-
42
- template<typename input_t, typename weight_t>
43
- void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
44
- template <typename input_t, typename weight_t>
45
- void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream);
46
-
47
- template<typename input_t, typename weight_t>
48
- void causal_conv1d_bwd_cuda(ConvParamsBwd &params, cudaStream_t stream);
49
- template<typename input_t, typename weight_t>
50
- void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd &params, cudaStream_t stream);
51
-
52
- template<typename input_t, typename weight_t>
53
- void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream);
54
-
55
- void set_conv_params_fwd(ConvParamsBase &params,
56
- // sizes
57
- const size_t batch,
58
- const size_t dim,
59
- const size_t seqlen,
60
- const size_t width,
61
- // device pointers
62
- const at::Tensor x,
63
- const at::Tensor weight,
64
- const at::Tensor out,
65
- void* bias_ptr,
66
- bool silu_activation) {
67
-
68
- // Reset the parameters
69
- memset(&params, 0, sizeof(params));
70
-
71
- params.batch = batch;
72
- params.dim = dim;
73
- params.seqlen = seqlen;
74
- params.width = width;
75
-
76
- params.silu_activation = silu_activation;
77
-
78
- // Set the pointers and strides.
79
- params.x_ptr = x.data_ptr();
80
- params.weight_ptr = weight.data_ptr();
81
- params.bias_ptr = bias_ptr;
82
- params.out_ptr = out.data_ptr();
83
- // All stride are in elements, not bytes.
84
- params.x_batch_stride = x.stride(0);
85
- params.x_c_stride = x.stride(1);
86
- params.x_l_stride = x.stride(-1);
87
- params.weight_c_stride = weight.stride(0);
88
- params.weight_width_stride = weight.stride(1);
89
- params.out_batch_stride = out.stride(0);
90
- params.out_c_stride = out.stride(1);
91
- params.out_l_stride = out.stride(-1);
92
- }
93
-
94
-
95
- void set_conv_params_bwd(ConvParamsBwd &params,
96
- // sizes
97
- const size_t batch,
98
- const size_t dim,
99
- const size_t seqlen,
100
- const size_t width,
101
- // device pointers
102
- const at::Tensor x,
103
- const at::Tensor weight,
104
- void* bias_ptr,
105
- const at::Tensor dout,
106
- const at::Tensor dx,
107
- const at::Tensor dweight,
108
- void* dbias_ptr,
109
- bool silu_activation) {
110
- // Pass in "dout" instead of "out", we're not gonna use "out" at all.
111
- set_conv_params_fwd(params, batch, dim, seqlen, width,
112
- x, weight, dout, bias_ptr, silu_activation);
113
-
114
- // Set the pointers and strides.
115
- params.dout_ptr = dout.data_ptr();
116
- params.dx_ptr = dx.data_ptr();
117
- params.dweight_ptr = dweight.data_ptr();
118
- params.dbias_ptr = dbias_ptr;
119
- // All stride are in elements, not bytes.
120
- params.dout_batch_stride = dout.stride(0);
121
- params.dout_c_stride = dout.stride(1);
122
- params.dout_l_stride = dout.stride(2);
123
- params.dweight_c_stride = dweight.stride(0);
124
- params.dweight_width_stride = dweight.stride(1);
125
- params.dx_batch_stride = dx.stride(0);
126
- params.dx_c_stride = dx.stride(1);
127
- params.dx_l_stride = dx.stride(2);
128
- }
129
-
130
- at::Tensor
131
- causal_conv1d_fwd(const at::Tensor &x, const at::Tensor &weight,
132
- const c10::optional<at::Tensor> &bias_,
133
- bool silu_activation) {
134
- auto input_type = x.scalar_type();
135
- auto weight_type = weight.scalar_type();
136
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
137
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
138
-
139
- TORCH_CHECK(x.is_cuda());
140
- TORCH_CHECK(weight.is_cuda());
141
-
142
- const auto sizes = x.sizes();
143
- const int batch_size = sizes[0];
144
- const int dim = sizes[1];
145
- const int seqlen = sizes[2];
146
- const int width = weight.size(-1);
147
-
148
- CHECK_SHAPE(x, batch_size, dim, seqlen);
149
- CHECK_SHAPE(weight, dim, width);
150
-
151
- TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
152
- const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
153
-
154
- if (is_channel_last) {
155
- TORCH_CHECK(dim % 8 == 0, "causal_conv1d only supports channel dimension divisible by 8 for now");
156
- }
157
- TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
158
-
159
-
160
- if (bias_.has_value()) {
161
- auto bias = bias_.value();
162
- TORCH_CHECK(bias.scalar_type() == weight_type);
163
- TORCH_CHECK(bias.is_cuda());
164
- TORCH_CHECK(bias.stride(-1) == 1);
165
- CHECK_SHAPE(bias, dim);
166
- }
167
-
168
- at::Tensor out = torch::empty_like(x);
169
-
170
- ConvParamsBase params;
171
- set_conv_params_fwd(params, batch_size, dim, seqlen, width, x, weight, out,
172
- bias_.has_value() ? bias_.value().data_ptr() : nullptr,
173
- silu_activation);
174
-
175
- // Otherwise the kernel will be launched from cuda:0 device
176
- // Cast to char to avoid compiler warning about narrowing
177
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
178
- auto stream = at::cuda::getCurrentCUDAStream().stream();
179
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_fwd", [&] {
180
- DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_fwd", [&] {
181
- if (!is_channel_last) {
182
- causal_conv1d_fwd_cuda<input_t, weight_t>(params, stream);
183
- } else {
184
- causal_conv1d_channellast_fwd_cuda<input_t, weight_t>(params, stream);
185
- }
186
- });
187
- });
188
- return out;
189
- }
190
-
191
- std::vector<at::Tensor>
192
- causal_conv1d_bwd(const at::Tensor &x, const at::Tensor &weight,
193
- const c10::optional<at::Tensor> &bias_,
194
- at::Tensor &dout,
195
- c10::optional<at::Tensor> &dx_,
196
- bool silu_activation) {
197
- auto input_type = x.scalar_type();
198
- auto weight_type = weight.scalar_type();
199
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
200
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
201
-
202
- TORCH_CHECK(x.is_cuda());
203
- TORCH_CHECK(weight.is_cuda());
204
- TORCH_CHECK(dout.is_cuda());
205
-
206
- const auto sizes = x.sizes();
207
- const int batch_size = sizes[0];
208
- const int dim = sizes[1];
209
- const int seqlen = sizes[2];
210
- const int width = weight.size(-1);
211
-
212
- TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
213
-
214
- CHECK_SHAPE(x, batch_size, dim, seqlen);
215
- CHECK_SHAPE(weight, dim, width);
216
- CHECK_SHAPE(dout, batch_size, dim, seqlen);
217
-
218
- TORCH_CHECK(x.stride(2) == 1 || x.stride(1) == 1);
219
- const bool is_channel_last = x.stride(1) == 1 && x.stride(2) > 1;
220
- if (!is_channel_last && dout.stride(2) != 1) { dout = dout.contiguous(); }
221
- if (is_channel_last && dout.stride(1) != 1) { dout = dout.transpose(-1, -2).contiguous().transpose(-1, -2); }
222
-
223
- if (bias_.has_value()) {
224
- auto bias = bias_.value();
225
- TORCH_CHECK(bias.scalar_type() == weight_type);
226
- TORCH_CHECK(bias.is_cuda());
227
- TORCH_CHECK(bias.stride(-1) == 1);
228
- CHECK_SHAPE(bias, dim);
229
- }
230
-
231
- at::Tensor dx;
232
- if (dx_.has_value()) {
233
- dx = dx_.value();
234
- TORCH_CHECK(dx.scalar_type() == input_type);
235
- TORCH_CHECK(dx.is_cuda());
236
- CHECK_SHAPE(dx, batch_size, dim, seqlen);
237
- if (!is_channel_last) { TORCH_CHECK(dx.stride(2) == 1); }
238
- if (is_channel_last) { TORCH_CHECK(dx.stride(1) == 1); }
239
- } else {
240
- dx = torch::empty_like(x);
241
- }
242
-
243
- // Otherwise the kernel will be launched from cuda:0 device
244
- // Cast to char to avoid compiler warning about narrowing
245
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
246
-
247
- at::Tensor dweight = torch::zeros_like(weight, weight.options().dtype(at::kFloat));
248
- at::Tensor dbias;
249
- if (bias_.has_value()) { dbias = torch::zeros_like(bias_.value(), bias_.value().options().dtype(at::kFloat)); }
250
-
251
- ConvParamsBwd params;
252
- set_conv_params_bwd(params, batch_size, dim, seqlen, width,
253
- x, weight, bias_.has_value() ? bias_.value().data_ptr() : nullptr,
254
- dout, dx, dweight, bias_.has_value() ? dbias.data_ptr() : nullptr,
255
- silu_activation);
256
-
257
- auto stream = at::cuda::getCurrentCUDAStream().stream();
258
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_bwd", [&] {
259
- DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_bwd", [&] {
260
- if (!is_channel_last) {
261
- causal_conv1d_bwd_cuda<input_t, weight_t>(params, stream);
262
- } else {
263
- causal_conv1d_channellast_bwd_cuda<input_t, weight_t>(params, stream);
264
- }
265
- });
266
- });
267
- return {dx, dweight.to(weight.dtype()), bias_.has_value() ? dbias.to(bias_.value().dtype()) : dbias};
268
- }
269
-
270
- at::Tensor
271
- causal_conv1d_update(const at::Tensor &x,
272
- const at::Tensor &conv_state,
273
- const at::Tensor &weight,
274
- const c10::optional<at::Tensor> &bias_,
275
- bool silu_activation) {
276
- auto input_type = x.scalar_type();
277
- auto weight_type = weight.scalar_type();
278
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
279
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::Half || weight_type == at::ScalarType::BFloat16);
280
- TORCH_CHECK(conv_state.scalar_type() == input_type);
281
-
282
- TORCH_CHECK(x.is_cuda());
283
- TORCH_CHECK(conv_state.is_cuda());
284
- TORCH_CHECK(weight.is_cuda());
285
-
286
- const auto sizes = x.sizes();
287
- const int batch_size = sizes[0];
288
- const int dim = sizes[1];
289
- const int width = weight.size(-1);
290
-
291
- CHECK_SHAPE(x, batch_size, dim);
292
- CHECK_SHAPE(conv_state, batch_size, dim, width);
293
- CHECK_SHAPE(weight, dim, width);
294
-
295
- TORCH_CHECK(width >= 2 && width <= 4, "causal_conv1d only supports width between 2 and 4");
296
-
297
- if (bias_.has_value()) {
298
- auto bias = bias_.value();
299
- TORCH_CHECK(bias.scalar_type() == weight_type);
300
- TORCH_CHECK(bias.is_cuda());
301
- TORCH_CHECK(bias.stride(-1) == 1);
302
- CHECK_SHAPE(bias, dim);
303
- }
304
-
305
- at::Tensor out = torch::empty_like(x);
306
-
307
- ConvParamsBase params;
308
- set_conv_params_fwd(params, batch_size, dim, /*seqlen=*/1, width, x, weight, out,
309
- bias_.has_value() ? bias_.value().data_ptr() : nullptr,
310
- silu_activation);
311
- params.conv_state_ptr = conv_state.data_ptr();
312
- // All stride are in elements, not bytes.
313
- params.conv_state_batch_stride = conv_state.stride(0);
314
- params.conv_state_c_stride = conv_state.stride(1);
315
- params.conv_state_l_stride = conv_state.stride(2);
316
-
317
- // Otherwise the kernel will be launched from cuda:0 device
318
- // Cast to char to avoid compiler warning about narrowing
319
- at::cuda::CUDAGuard device_guard{(char)x.get_device()};
320
- auto stream = at::cuda::getCurrentCUDAStream().stream();
321
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(x.scalar_type(), "causal_conv1d_update", [&] {
322
- DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(weight.scalar_type(), "causal_conv1d_update", [&] {
323
- causal_conv1d_update_cuda<input_t, weight_t>(params, stream);
324
- });
325
- });
326
- return out;
327
- }
328
-
329
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
330
- m.def("causal_conv1d_fwd", &causal_conv1d_fwd, "Causal conv1d forward");
331
- m.def("causal_conv1d_bwd", &causal_conv1d_bwd, "Causal conv1d backward");
332
- m.def("causal_conv1d_update", &causal_conv1d_update, "Causal conv1d update");
333
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/causal_conv1d.h DELETED
@@ -1,53 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- ////////////////////////////////////////////////////////////////////////////////////////////////////
8
-
9
- struct ConvParamsBase {
10
- using index_t = uint32_t;
11
-
12
- int batch, dim, seqlen, width;
13
- bool silu_activation;
14
-
15
- index_t x_batch_stride;
16
- index_t x_c_stride;
17
- index_t x_l_stride;
18
- index_t weight_c_stride;
19
- index_t weight_width_stride;
20
- index_t out_batch_stride;
21
- index_t out_c_stride;
22
- index_t out_l_stride;
23
-
24
- index_t conv_state_batch_stride;
25
- index_t conv_state_c_stride;
26
- index_t conv_state_l_stride;
27
-
28
- // Common data pointers.
29
- void *__restrict__ x_ptr;
30
- void *__restrict__ weight_ptr;
31
- void *__restrict__ bias_ptr;
32
- void *__restrict__ out_ptr;
33
-
34
- void *__restrict__ conv_state_ptr;
35
- };
36
-
37
- struct ConvParamsBwd: public ConvParamsBase {
38
- index_t dx_batch_stride;
39
- index_t dx_c_stride;
40
- index_t dx_l_stride;
41
- index_t dweight_c_stride;
42
- index_t dweight_width_stride;
43
- index_t dout_batch_stride;
44
- index_t dout_c_stride;
45
- index_t dout_l_stride;
46
-
47
- // Common data pointers.
48
- void *__restrict__ dx_ptr;
49
- void *__restrict__ dweight_ptr;
50
- void *__restrict__ dbias_ptr;
51
- void *__restrict__ dout_ptr;
52
- };
53
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/causal_conv1d_bwd.cu DELETED
@@ -1,525 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #include <c10/util/BFloat16.h>
6
- #include <c10/util/Half.h>
7
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
8
-
9
- #include <cub/block/block_load.cuh>
10
- #include <cub/block/block_store.cuh>
11
- #include <cub/block/block_reduce.cuh>
12
-
13
- #include "causal_conv1d.h"
14
- #include "causal_conv1d_common.h"
15
- #include "static_switch.h"
16
-
17
- template<int kNThreads_, int kWidth_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
18
- struct Causal_conv1d_bwd_kernel_traits {
19
- using input_t = input_t_;
20
- using weight_t = weight_t_;
21
- static constexpr int kNThreads = kNThreads_;
22
- static constexpr int kWidth = kWidth_;
23
- static constexpr bool kSiluAct = kSiluAct_;
24
- static constexpr int kNBytes = sizeof(input_t);
25
- static_assert(kNBytes == 2 || kNBytes == 4);
26
- static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
27
- static_assert(kWidth <= kNElts);
28
- // It's possible that we need to do 2 rounds of exchange if input_t is 16 bits
29
- // (since then we'd have 8 values of float, and each round we can exchange 4 floats).
30
- static constexpr int kNExchangeRounds = sizeof(float) / sizeof(input_t);
31
- static constexpr bool kIsVecLoad = kIsVecLoad_;
32
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
33
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
34
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
35
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
36
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
37
- using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
38
- static constexpr int kSmemIOSize = kIsVecLoad
39
- ? 0
40
- : std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
41
- static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts * (!kSiluAct ? 1 : kNExchangeRounds + 1);
42
- static constexpr int kSmemSize = std::max({kSmemExchangeSize,
43
- int(sizeof(typename BlockReduceFloatT::TempStorage))}) + (kIsVecLoad ? 0 : kSmemIOSize);
44
- };
45
-
46
- template<typename Ktraits>
47
- __global__ __launch_bounds__(Ktraits::kNThreads)
48
- void causal_conv1d_bwd_kernel(ConvParamsBwd params) {
49
- constexpr int kWidth = Ktraits::kWidth;
50
- constexpr int kNThreads = Ktraits::kNThreads;
51
- constexpr bool kSiluAct = Ktraits::kSiluAct;
52
- constexpr int kNElts = Ktraits::kNElts;
53
- constexpr int kNExchangeRounds = Ktraits::kNExchangeRounds;
54
- constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
55
- using input_t = typename Ktraits::input_t;
56
- using vec_t = typename Ktraits::vec_t;
57
- using weight_t = typename Ktraits::weight_t;
58
-
59
- // Shared memory.
60
- extern __shared__ char smem_[];
61
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
62
- auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
63
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
64
- auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
65
- vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
66
- vec_t *smem_exchange_x = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize) + kNThreads * kNExchangeRounds;
67
- auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
68
-
69
- const int tidx = threadIdx.x;
70
- const int batch_id = blockIdx.x;
71
- const int dim_id = blockIdx.y;
72
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
73
- + dim_id * params.x_c_stride;
74
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + dim_id * params.weight_c_stride;
75
- input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
76
- + dim_id * params.dout_c_stride;
77
- input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride
78
- + dim_id * params.dx_c_stride;
79
- float *dweight = reinterpret_cast<float *>(params.dweight_ptr) + dim_id * params.dweight_c_stride;
80
- float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[dim_id]);
81
-
82
- // Thread kNThreads - 1 will load the first elements of the next chunk so we initialize those to 0.
83
- if (tidx == 0) {
84
- if constexpr (!kSiluAct) {
85
- input_t zeros[kNElts] = {0};
86
- smem_exchange[0] = reinterpret_cast<vec_t *>(zeros)[0];
87
- } else {
88
- float zeros[kNElts] = {0};
89
- #pragma unroll
90
- for (int r = 0; r < kNExchangeRounds; ++r) {
91
- smem_exchange[r * kNThreads] = reinterpret_cast<vec_t *>(zeros)[r];
92
- }
93
- }
94
- }
95
-
96
- float weight_vals[kWidth];
97
- #pragma unroll
98
- for (int i = 0; i < kWidth; ++i) { weight_vals[i] = weight[i * params.weight_width_stride]; }
99
-
100
- float dweight_vals[kWidth] = {0};
101
- float dbias_val = 0;
102
-
103
- constexpr int kChunkSize = kNThreads * kNElts;
104
- const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
105
- x += (n_chunks - 1) * kChunkSize;
106
- dout += (n_chunks - 1) * kChunkSize;
107
- dx += (n_chunks - 1) * kChunkSize;
108
- for (int chunk = n_chunks - 1; chunk >= 0; --chunk) {
109
- input_t x_vals_load[2 * kNElts] = {0};
110
- input_t dout_vals_load[2 * kNElts] = {0};
111
- if constexpr(kIsVecLoad) {
112
- Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
113
- Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(dout), *reinterpret_cast<vec_t (*)[1]>(&dout_vals_load[0]), (params.seqlen - chunk * kChunkSize) / kNElts);
114
- } else {
115
- __syncthreads();
116
- Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
117
- __syncthreads();
118
- Ktraits::BlockLoadT(smem_load).Load(dout, *reinterpret_cast<input_t (*)[kNElts]>(&dout_vals_load[0]), params.seqlen - chunk * kChunkSize);
119
- }
120
- float dout_vals[2 * kNElts], x_vals[2 * kNElts];
121
- if constexpr (!kSiluAct) {
122
- __syncthreads();
123
- // Thread 0 don't write yet, so that thread kNThreads - 1 can read
124
- // the first elements of the next chunk.
125
- if (tidx > 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; }
126
- __syncthreads();
127
- reinterpret_cast<vec_t *>(dout_vals_load)[1] = smem_exchange[tidx < kNThreads - 1 ? tidx + 1 : 0];
128
- __syncthreads();
129
- // Now thread 0 can write the first elements of the current chunk.
130
- if (tidx == 0) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(dout_vals_load)[0]; }
131
- #pragma unroll
132
- for (int i = 0; i < 2 * kNElts; ++i) {
133
- dout_vals[i] = float(dout_vals_load[i]);
134
- x_vals[i] = float(x_vals_load[i]);
135
- }
136
- } else {
137
- if (tidx == 0 && chunk > 0) {
138
- if constexpr(kIsVecLoad) {
139
- reinterpret_cast<vec_t *>(x_vals_load)[0] = reinterpret_cast<vec_t *>(x)[-1];
140
- } else {
141
- #pragma unroll
142
- for (int i = 0; i < kNElts; ++i) {
143
- if (chunk * kChunkSize + i < params.seqlen) { x_vals_load[i] = x[-kNElts + i]; }
144
- }
145
- }
146
- }
147
- __syncthreads();
148
- smem_exchange_x[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1];
149
- __syncthreads();
150
- if (tidx > 0) { reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange_x[tidx - 1]; }
151
- #pragma unroll
152
- for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
153
- // Recompute the output
154
- #pragma unroll
155
- for (int i = 0; i < kNElts; ++i) {
156
- float out_val = bias_val;
157
- #pragma unroll
158
- for (int w = 0; w < kWidth; ++w) {
159
- out_val += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
160
- }
161
- float out_sigmoid_val = 1.0f / (1.0f + expf(-out_val));
162
- dout_vals[i] = float(dout_vals_load[i]) * out_sigmoid_val
163
- * (1.0f + out_val * (1.0f - out_sigmoid_val));
164
- }
165
- // Exchange the dout_vals. It's possible that we need to do 2 rounds of exchange
166
- // if input_t is 16 bits (since then we'd have 8 values of float)
167
- __syncthreads();
168
- // Thread 0 don't write yet, so that thread kNThreads - 1 can read
169
- // the first elements of the next chunk.
170
- if (tidx > 0) {
171
- #pragma unroll
172
- for (int r = 0; r < kNExchangeRounds; ++r) {
173
- smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r];
174
- }
175
- }
176
- __syncthreads();
177
- #pragma unroll
178
- for (int r = 0; r < kNExchangeRounds; ++r) {
179
- reinterpret_cast<vec_t *>(dout_vals)[kNExchangeRounds + r]
180
- = smem_exchange[r * kNThreads + (tidx < kNThreads - 1 ? tidx + 1 : 0)];
181
- }
182
- __syncthreads();
183
- // Now thread 0 can write the first elements of the current chunk.
184
- if (tidx == 0) {
185
- #pragma unroll
186
- for (int r = 0; r < kNExchangeRounds; ++r) {
187
- smem_exchange[r * kNThreads + tidx] = reinterpret_cast<vec_t *>(dout_vals)[r];
188
- }
189
- }
190
- }
191
- dout -= kChunkSize;
192
- x -= kChunkSize;
193
-
194
- #pragma unroll
195
- for (int i = 0; i < kNElts; ++i) { dbias_val += dout_vals[i]; }
196
-
197
- float dx_vals[kNElts] = {0};
198
- #pragma unroll
199
- for (int i = 0; i < kNElts; ++i) {
200
- #pragma unroll
201
- for (int w = 0; w < kWidth; ++w) {
202
- dx_vals[i] += weight_vals[w] * dout_vals[i + kWidth - w - 1];
203
- }
204
- }
205
-
206
- input_t dx_vals_store[kNElts];
207
- #pragma unroll
208
- for (int i = 0; i < kNElts; ++i) { dx_vals_store[i] = dx_vals[i]; }
209
- if constexpr(kIsVecLoad) {
210
- Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(dx), reinterpret_cast<vec_t (&)[1]>(dx_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
211
- } else {
212
- Ktraits::BlockStoreT(smem_store).Store(dx, dx_vals_store, params.seqlen - chunk * kChunkSize);
213
- }
214
- dx -= kChunkSize;
215
-
216
- #pragma unroll
217
- for (int w = 0; w < kWidth; ++w) {
218
- #pragma unroll
219
- for (int i = 0; i < kNElts; ++i) {
220
- dweight_vals[w] += x_vals[kNElts + i] * dout_vals[i + kWidth - w - 1];
221
- }
222
- }
223
- }
224
-
225
- #pragma unroll
226
- for (int w = 0; w < kWidth; ++w) {
227
- __syncthreads();
228
- dweight_vals[w] = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dweight_vals[w]);
229
- if (tidx == 0) {
230
- atomicAdd(&reinterpret_cast<float *>(dweight)[w * params.dweight_width_stride], dweight_vals[w]);
231
- }
232
- }
233
- if (params.bias_ptr != nullptr) {
234
- __syncthreads();
235
- dbias_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dbias_val);
236
- if (tidx == 0) {
237
- atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[dim_id], dbias_val);
238
- }
239
- }
240
- }
241
-
242
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
243
- void causal_conv1d_bwd_launch(ConvParamsBwd &params, cudaStream_t stream) {
244
- static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
245
- BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
246
- BOOL_SWITCH(params.silu_activation, kSiluAct, [&] {
247
- using Ktraits = Causal_conv1d_bwd_kernel_traits<kNThreads, kWidth, kSiluAct, kIsVecLoad, input_t, weight_t>;
248
- constexpr int kSmemSize = Ktraits::kSmemSize;
249
- dim3 grid(params.batch, params.dim);
250
- auto kernel = &causal_conv1d_bwd_kernel<Ktraits>;
251
- if (kSmemSize >= 48 * 1024) {
252
- C10_CUDA_CHECK(cudaFuncSetAttribute(
253
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
254
- }
255
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
256
- C10_CUDA_KERNEL_LAUNCH_CHECK();
257
- });
258
- });
259
- }
260
-
261
- template<typename input_t, typename weight_t>
262
- void causal_conv1d_bwd_cuda(ConvParamsBwd &params, cudaStream_t stream) {
263
- if (params.width == 2) {
264
- causal_conv1d_bwd_launch<128, 2, input_t, weight_t>(params, stream);
265
- } else if (params.width == 3) {
266
- causal_conv1d_bwd_launch<128, 3, input_t, weight_t>(params, stream);
267
- } else if (params.width == 4) {
268
- causal_conv1d_bwd_launch<128, 4, input_t, weight_t>(params, stream);
269
- }
270
- }
271
-
272
- template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kSiluAct_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
273
- struct Causal_conv1d_channellast_bwd_kernel_traits {
274
- // The cache line is 128 bytes, and we try to read 16 bytes per thread.
275
- // So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
276
- // That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
277
- // threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
278
- using input_t = input_t_;
279
- using weight_t = weight_t_;
280
- static constexpr bool kSiluAct = kSiluAct_;
281
- static constexpr int kNThreads = kNThreads_;
282
- static_assert(kNThreads % 32 == 0);
283
- static constexpr int kNWarps = kNThreads / 32;
284
- static constexpr int kWidth = kWidth_;
285
- static constexpr int kChunkSizeL = kChunkSizeL_;
286
- static constexpr int kNBytes = sizeof(input_t);
287
- static_assert(kNBytes == 2 || kNBytes == 4);
288
- static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
289
- static constexpr int kNEltsPerRow = 128 / kNBytes;
290
- static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
291
- static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
292
- static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
293
- static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
294
- static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
295
- static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
296
- static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
297
- static constexpr bool kIsVecLoad = kIsVecLoad_;
298
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
299
- // using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
300
- // using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
301
- // static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
302
- // sizeof(typename BlockStoreT::TempStorage)});
303
- // static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
304
- };
305
-
306
- template<typename Ktraits>
307
- __global__ __launch_bounds__(Ktraits::kNThreads)
308
- void causal_conv1d_channellast_bwd_kernel(ConvParamsBwd params) {
309
- constexpr int kWidth = Ktraits::kWidth;
310
- constexpr int kNThreads = Ktraits::kNThreads;
311
- constexpr bool kSiluAct = Ktraits::kSiluAct;
312
- constexpr int kNElts = Ktraits::kNElts;
313
- constexpr int kNWarp = Ktraits::kNWarps;
314
- constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
315
- constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
316
- constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
317
- constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
318
- using input_t = typename Ktraits::input_t;
319
- using vec_t = typename Ktraits::vec_t;
320
- using weight_t = typename Ktraits::weight_t;
321
-
322
- // Shared memory.
323
- __shared__ input_t dout_smem[kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts];
324
- __shared__ input_t x_smem[kWidth - 1 + kChunkSizeL + kWidth - 1][kChunkSizeC + kNElts];
325
-
326
- const int tid = threadIdx.x;
327
- const int l_idx = tid / kNThreadsPerC;
328
- const int c_idx = tid % kNThreadsPerC;
329
- const int batch_id = blockIdx.x;
330
- const int chunk_l_id = blockIdx.y;
331
- const int chunk_c_id = blockIdx.z;
332
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
333
- + (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
334
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
335
- + chunk_c_id * kChunkSizeC * params.weight_c_stride;
336
- input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
337
- + (chunk_l_id * kChunkSizeL + l_idx) * params.dout_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
338
- input_t *dx = reinterpret_cast<input_t *>(params.dx_ptr) + batch_id * params.dx_batch_stride
339
- + (chunk_l_id * kChunkSizeL + l_idx) * params.dx_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
340
- float *dweight = reinterpret_cast<float *>(params.dweight_ptr)
341
- + chunk_c_id * kChunkSizeC * params.dweight_c_stride;
342
-
343
- #pragma unroll
344
- for (int l = 0; l < Ktraits::kNLoads; ++l) {
345
- input_t dout_vals_load[kNElts] = {0};
346
- input_t x_vals_load[kNElts] = {0};
347
- if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
348
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
349
- reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + l * kLPerLoad * params.dout_l_stride);
350
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
351
- }
352
- reinterpret_cast<vec_t *>(dout_smem[l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0];
353
- reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
354
- }
355
- // Load the elements from the previous chunk or next chunk that are needed for convolution.
356
- if (l_idx < kWidth - 1) {
357
- input_t dout_vals_load[kNElts] = {0};
358
- input_t x_vals_load[kNElts] = {0};
359
- if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen
360
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
361
- reinterpret_cast<vec_t *>(dout_vals_load)[0] = *reinterpret_cast<vec_t *>(dout + kChunkSizeL * params.dout_l_stride);
362
- }
363
- if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
364
- && chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
365
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
366
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
367
- }
368
- reinterpret_cast<vec_t *>(dout_smem[kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(dout_vals_load)[0];
369
- reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
370
- }
371
- // Need to load (kWdith - 1) extra x's on the right to recompute the (kChunkSizeL + kWidth - 1) outputs
372
- if constexpr (kSiluAct) {
373
- if (l_idx < kWidth - 1) {
374
- input_t x_vals_load[kNElts] = {0};
375
- if ((chunk_l_id + 1) * kChunkSizeL + l_idx < params.seqlen
376
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
377
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + kChunkSizeL * params.x_l_stride);
378
- }
379
- reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + kChunkSizeL + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
380
- }
381
- }
382
-
383
- __syncthreads();
384
-
385
- constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
386
- static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
387
- constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
388
- static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
389
- // kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
390
- static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
391
- static_assert((kLPerThread & (kLPerThread - 1)) == 0);
392
- static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
393
- static_assert(kNThreadsPerRow <= 32);
394
-
395
- const int row_idx = tid / kNThreadsPerRow;
396
- const int col_idx = tid % kNThreadsPerRow;
397
-
398
- float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
399
- float weight_vals[kWidth] = {0};
400
- if (chunk_c_id * kChunkSizeC + row_idx < params.dim) {
401
- #pragma unroll
402
- for (int w = 0; w < kWidth; ++w) {
403
- weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
404
- }
405
- }
406
- float dout_vals[kLPerThread + kWidth - 1];
407
- float x_vals[kWidth - 1 + kLPerThread + kWidth - 1];
408
- #pragma unroll
409
- for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
410
- dout_vals[i] = float(dout_smem[col_idx * kLPerThread + i][row_idx]);
411
- x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
412
- }
413
-
414
- if constexpr (kSiluAct) { // Recompute the output
415
- #pragma unroll
416
- for (int i = kWidth - 1 + kLPerThread; i < kWidth - 1 + kLPerThread + kWidth - 1; ++i) {
417
- x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
418
- }
419
- #pragma unroll
420
- for (int i = 0; i < kLPerThread + kWidth - 1; ++i) {
421
- float out_val = bias_val;
422
- #pragma unroll
423
- for (int w = 0; w < kWidth; ++w) { out_val += weight_vals[w] * x_vals[i + w]; }
424
- float out_val_sigmoid = 1.f / (1.f + expf(-out_val));
425
- dout_vals[i] *= out_val_sigmoid * (1 + out_val * (1 - out_val_sigmoid));
426
- }
427
- }
428
-
429
- float dweight_vals[kWidth] = {0};
430
- SumOp<float> sum_op;
431
- #pragma unroll
432
- for (int w = 0; w < kWidth; ++w) {
433
- #pragma unroll
434
- for (int i = 0; i < kLPerThread; ++i) { dweight_vals[w] += x_vals[i + w] * dout_vals[i]; }
435
- dweight_vals[w] = Allreduce<kNThreadsPerRow>::run(dweight_vals[w], sum_op);
436
- if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) {
437
- atomicAdd(&reinterpret_cast<float *>(dweight)[row_idx * params.dweight_c_stride + w * params.dweight_width_stride], dweight_vals[w]);
438
- }
439
- }
440
-
441
- if (params.bias_ptr != nullptr) {
442
- float dbias_val = 0.f;
443
- for (int i = 0; i < kLPerThread; ++i) { dbias_val += dout_vals[i]; }
444
- dbias_val = Allreduce<kNThreadsPerRow>::run(dbias_val, sum_op);
445
- if (col_idx == 0 && chunk_c_id * kChunkSizeC + row_idx < params.dim) {
446
- atomicAdd(&reinterpret_cast<float *>(params.dbias_ptr)[chunk_c_id * kChunkSizeC + row_idx], dbias_val);
447
- }
448
- }
449
-
450
- float dx_vals[kLPerThread] = {0};
451
- #pragma unroll
452
- for (int i = 0; i < kLPerThread; ++i) {
453
- #pragma unroll
454
- for (int w = 0; w < kWidth; ++w) { dx_vals[i] += weight_vals[kWidth - 1 - w] * dout_vals[i + w]; }
455
- }
456
- // Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
457
- __syncwarp();
458
- #pragma unroll
459
- for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = dx_vals[i]; }
460
- __syncthreads();
461
-
462
- #pragma unroll
463
- for (int l = 0; l < Ktraits::kNLoads; ++l) {
464
- input_t dx_vals_store[kNElts];
465
- reinterpret_cast<vec_t *>(dx_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
466
- if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
467
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
468
- *reinterpret_cast<vec_t *>(dx + l * kLPerLoad * params.dx_l_stride) = reinterpret_cast<vec_t *>(dx_vals_store)[0];
469
- }
470
- }
471
-
472
- }
473
-
474
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
475
- void causal_conv1d_channellast_bwd_launch(ConvParamsBwd &params, cudaStream_t stream) {
476
- BOOL_SWITCH(params.silu_activation, kSiluAct, [&] {
477
- using Ktraits = Causal_conv1d_channellast_bwd_kernel_traits<kNThreads, kWidth, 64, kSiluAct, true, input_t, weight_t>;
478
- // constexpr int kSmemSize = Ktraits::kSmemSize;
479
- constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
480
- constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
481
- const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
482
- const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
483
- dim3 grid(params.batch, n_chunks_L, n_chunks_C);
484
- dim3 block(Ktraits::kNThreads);
485
- auto kernel = &causal_conv1d_channellast_bwd_kernel<Ktraits>;
486
- // if (kSmemSize >= 48 * 1024) {
487
- // C10_CUDA_CHECK(cudaFuncSetAttribute(
488
- // kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
489
- // }
490
- // kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
491
- kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
492
- C10_CUDA_KERNEL_LAUNCH_CHECK();
493
- });
494
- }
495
-
496
- template<typename input_t, typename weight_t>
497
- void causal_conv1d_channellast_bwd_cuda(ConvParamsBwd &params, cudaStream_t stream) {
498
- if (params.width == 2) {
499
- causal_conv1d_channellast_bwd_launch<128, 2, input_t, weight_t>(params, stream);
500
- } else if (params.width == 3) {
501
- causal_conv1d_channellast_bwd_launch<128, 3, input_t, weight_t>(params, stream);
502
- } else if (params.width == 4) {
503
- causal_conv1d_channellast_bwd_launch<128, 4, input_t, weight_t>(params, stream);
504
- }
505
- }
506
-
507
- template void causal_conv1d_bwd_cuda<float, float>(ConvParamsBwd &params, cudaStream_t stream);
508
- template void causal_conv1d_bwd_cuda<at::Half, float>(ConvParamsBwd &params, cudaStream_t stream);
509
- template void causal_conv1d_bwd_cuda<at::BFloat16, float>(ConvParamsBwd &params, cudaStream_t stream);
510
- template void causal_conv1d_bwd_cuda<float, at::Half>(ConvParamsBwd &params, cudaStream_t stream);
511
- template void causal_conv1d_bwd_cuda<at::Half, at::Half>(ConvParamsBwd &params, cudaStream_t stream);
512
- template void causal_conv1d_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd &params, cudaStream_t stream);
513
- template void causal_conv1d_bwd_cuda<float, at::BFloat16>(ConvParamsBwd &params, cudaStream_t stream);
514
- template void causal_conv1d_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd &params, cudaStream_t stream);
515
- template void causal_conv1d_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd &params, cudaStream_t stream);
516
-
517
- template void causal_conv1d_channellast_bwd_cuda<float, float>(ConvParamsBwd &params, cudaStream_t stream);
518
- template void causal_conv1d_channellast_bwd_cuda<at::Half, float>(ConvParamsBwd &params, cudaStream_t stream);
519
- template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, float>(ConvParamsBwd &params, cudaStream_t stream);
520
- template void causal_conv1d_channellast_bwd_cuda<float, at::Half>(ConvParamsBwd &params, cudaStream_t stream);
521
- template void causal_conv1d_channellast_bwd_cuda<at::Half, at::Half>(ConvParamsBwd &params, cudaStream_t stream);
522
- template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::Half>(ConvParamsBwd &params, cudaStream_t stream);
523
- template void causal_conv1d_channellast_bwd_cuda<float, at::BFloat16>(ConvParamsBwd &params, cudaStream_t stream);
524
- template void causal_conv1d_channellast_bwd_cuda<at::Half, at::BFloat16>(ConvParamsBwd &params, cudaStream_t stream);
525
- template void causal_conv1d_channellast_bwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/causal_conv1d_common.h DELETED
@@ -1,64 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <cuda_bf16.h>
8
- #include <cuda_fp16.h>
9
-
10
- ////////////////////////////////////////////////////////////////////////////////////////////////////
11
-
12
- template<int BYTES> struct BytesToType {};
13
-
14
- template<> struct BytesToType<16> {
15
- using Type = uint4;
16
- static_assert(sizeof(Type) == 16);
17
- };
18
-
19
- template<> struct BytesToType<8> {
20
- using Type = uint64_t;
21
- static_assert(sizeof(Type) == 8);
22
- };
23
-
24
- template<> struct BytesToType<4> {
25
- using Type = uint32_t;
26
- static_assert(sizeof(Type) == 4);
27
- };
28
-
29
- template<> struct BytesToType<2> {
30
- using Type = uint16_t;
31
- static_assert(sizeof(Type) == 2);
32
- };
33
-
34
- template<> struct BytesToType<1> {
35
- using Type = uint8_t;
36
- static_assert(sizeof(Type) == 1);
37
- };
38
-
39
- ////////////////////////////////////////////////////////////////////////////////////////////////////
40
-
41
- template<typename T>
42
- struct SumOp {
43
- __device__ inline T operator()(T const & x, T const & y) { return x + y; }
44
- };
45
-
46
- template<int THREADS>
47
- struct Allreduce {
48
- static_assert(THREADS == 32 || THREADS == 16 || THREADS == 8 || THREADS == 4);
49
- template<typename T, typename Operator>
50
- static __device__ inline T run(T x, Operator &op) {
51
- constexpr int OFFSET = THREADS / 2;
52
- x = op(x, __shfl_xor_sync(uint32_t(-1), x, OFFSET));
53
- return Allreduce<OFFSET>::run(x, op);
54
- }
55
- };
56
-
57
- template<>
58
- struct Allreduce<2> {
59
- template<typename T, typename Operator>
60
- static __device__ inline T run(T x, Operator &op) {
61
- x = op(x, __shfl_xor_sync(uint32_t(-1), x, 1));
62
- return x;
63
- }
64
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/causal_conv1d_fwd.cu DELETED
@@ -1,350 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #include <c10/util/BFloat16.h>
6
- #include <c10/util/Half.h>
7
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
8
-
9
- #include <cub/block/block_load.cuh>
10
- #include <cub/block/block_store.cuh>
11
-
12
- #include "causal_conv1d.h"
13
- #include "causal_conv1d_common.h"
14
- #include "static_switch.h"
15
-
16
- template<int kNThreads_, int kWidth_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
17
- struct Causal_conv1d_fwd_kernel_traits {
18
- using input_t = input_t_;
19
- using weight_t = weight_t_;
20
- static constexpr int kNThreads = kNThreads_;
21
- static constexpr int kWidth = kWidth_;
22
- static constexpr int kNBytes = sizeof(input_t);
23
- static_assert(kNBytes == 2 || kNBytes == 4);
24
- static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
25
- static_assert(kWidth <= kNElts);
26
- static constexpr bool kIsVecLoad = kIsVecLoad_;
27
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
28
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNElts, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
29
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, 1, cub::BLOCK_LOAD_DIRECT>;
30
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNElts, cub::BLOCK_STORE_WARP_TRANSPOSE>;
31
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, 1, cub::BLOCK_STORE_DIRECT>;
32
- static constexpr int kSmemIOSize = kIsVecLoad
33
- ? 0
34
- : std::max({sizeof(typename BlockLoadT::TempStorage), sizeof(typename BlockStoreT::TempStorage)});
35
- static constexpr int kSmemExchangeSize = kNThreads * kNBytes * kNElts;
36
- static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize;
37
- };
38
-
39
- template<typename Ktraits>
40
- __global__ __launch_bounds__(Ktraits::kNThreads)
41
- void causal_conv1d_fwd_kernel(ConvParamsBase params) {
42
- constexpr int kWidth = Ktraits::kWidth;
43
- constexpr int kNThreads = Ktraits::kNThreads;
44
- constexpr int kNElts = Ktraits::kNElts;
45
- constexpr bool kIsVecLoad = Ktraits::kIsVecLoad;
46
- using input_t = typename Ktraits::input_t;
47
- using vec_t = typename Ktraits::vec_t;
48
- using weight_t = typename Ktraits::weight_t;
49
-
50
- // Shared memory.
51
- extern __shared__ char smem_[];
52
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
53
- auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_);
54
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
55
- auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_);
56
- vec_t *smem_exchange = reinterpret_cast<vec_t *>(smem_ + Ktraits::kSmemIOSize);
57
-
58
- const int tidx = threadIdx.x;
59
- const int batch_id = blockIdx.x;
60
- const int channel_id = blockIdx.y;
61
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
62
- + channel_id * params.x_c_stride;
63
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
64
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
65
- + channel_id * params.out_c_stride;
66
- float bias_val = params.bias_ptr == nullptr ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
67
-
68
- // Thread 0 will load the last elements of the previous chunk, so we initialize those to 0.
69
- if (tidx == 0) {
70
- input_t zeros[kNElts] = {0};
71
- smem_exchange[kNThreads - 1] = reinterpret_cast<vec_t *>(zeros)[0];
72
- }
73
-
74
- float weight_vals[kWidth];
75
- #pragma unroll
76
- for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
77
-
78
- constexpr int kChunkSize = kNThreads * kNElts;
79
- const int n_chunks = (params.seqlen + kChunkSize - 1) / kChunkSize;
80
- for (int chunk = 0; chunk < n_chunks; ++chunk) {
81
- input_t x_vals_load[2 * kNElts] = {0};
82
- if constexpr(kIsVecLoad) {
83
- Ktraits::BlockLoadVecT(smem_load_vec).Load(reinterpret_cast<vec_t*>(x), *reinterpret_cast<vec_t (*)[1]>(&x_vals_load[kNElts]), (params.seqlen - chunk * kChunkSize) / kNElts);
84
- } else {
85
- __syncthreads();
86
- Ktraits::BlockLoadT(smem_load).Load(x, *reinterpret_cast<input_t (*)[kNElts]>(&x_vals_load[kNElts]), params.seqlen - chunk * kChunkSize);
87
- }
88
- x += kChunkSize;
89
- __syncthreads();
90
- // Thread kNThreads - 1 don't write yet, so that thread 0 can read
91
- // the last elements of the previous chunk.
92
- if (tidx < kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
93
- __syncthreads();
94
- reinterpret_cast<vec_t *>(x_vals_load)[0] = smem_exchange[tidx > 0 ? tidx - 1 : kNThreads - 1];
95
- __syncthreads();
96
- // Now thread kNThreads - 1 can write the last elements of the current chunk.
97
- if (tidx == kNThreads - 1) { smem_exchange[tidx] = reinterpret_cast<vec_t *>(x_vals_load)[1]; }
98
-
99
- float x_vals[2 * kNElts];
100
- #pragma unroll
101
- for (int i = 0; i < 2 * kNElts; ++i) { x_vals[i] = float(x_vals_load[i]); }
102
-
103
- float out_vals[kNElts];
104
- #pragma unroll
105
- for (int i = 0; i < kNElts; ++i) {
106
- out_vals[i] = bias_val;
107
- #pragma unroll
108
- for (int w = 0; w < kWidth; ++w) {
109
- out_vals[i] += weight_vals[w] * x_vals[kNElts + i - (kWidth - w - 1)];
110
- }
111
- }
112
-
113
- if (params.silu_activation) {
114
- #pragma unroll
115
- for (int i = 0; i < kNElts; ++i) {
116
- out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i]));
117
- }
118
- }
119
-
120
- input_t out_vals_store[kNElts];
121
- #pragma unroll
122
- for (int i = 0; i < kNElts; ++i) { out_vals_store[i] = out_vals[i]; }
123
- if constexpr(kIsVecLoad) {
124
- Ktraits::BlockStoreVecT(smem_store_vec).Store(reinterpret_cast<vec_t*>(out), reinterpret_cast<vec_t (&)[1]>(out_vals_store), (params.seqlen - chunk * kChunkSize) / kNElts);
125
- } else {
126
- Ktraits::BlockStoreT(smem_store).Store(out, out_vals_store, params.seqlen - chunk * kChunkSize);
127
- }
128
- out += kChunkSize;
129
- }
130
- }
131
-
132
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
133
- void causal_conv1d_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
134
- static constexpr int kNElts = sizeof(input_t) == 4 ? 4 : 8;
135
- BOOL_SWITCH(params.seqlen % kNElts == 0, kIsVecLoad, [&] {
136
- using Ktraits = Causal_conv1d_fwd_kernel_traits<kNThreads, kWidth, kIsVecLoad, input_t, weight_t>;
137
- constexpr int kSmemSize = Ktraits::kSmemSize;
138
- dim3 grid(params.batch, params.dim);
139
- auto kernel = &causal_conv1d_fwd_kernel<Ktraits>;
140
- if (kSmemSize >= 48 * 1024) {
141
- C10_CUDA_CHECK(cudaFuncSetAttribute(
142
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
143
- }
144
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
145
- C10_CUDA_KERNEL_LAUNCH_CHECK();
146
- });
147
- }
148
-
149
- template<typename input_t, typename weight_t>
150
- void causal_conv1d_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
151
- if (params.width == 2) {
152
- causal_conv1d_fwd_launch<128, 2, input_t, weight_t>(params, stream);
153
- } else if (params.width == 3) {
154
- causal_conv1d_fwd_launch<128, 3, input_t, weight_t>(params, stream);
155
- } else if (params.width == 4) {
156
- causal_conv1d_fwd_launch<128, 4, input_t, weight_t>(params, stream);
157
- }
158
- }
159
-
160
- template<int kNThreads_, int kWidth_, int kChunkSizeL_, bool kIsVecLoad_, typename input_t_, typename weight_t_>
161
- struct Causal_conv1d_channellast_fwd_kernel_traits {
162
- // The cache line is 128 bytes, and we try to read 16 bytes per thread.
163
- // So we have 8 threads per "row", so 32 or 64 elements in the channel dimension.
164
- // That leaves 4 columns per warp, and so 16 columns per block (assuming each block has 128
165
- // threads). Each each load is 16 x 32|64 elements in the L x C dimensions.
166
- using input_t = input_t_;
167
- using weight_t = weight_t_;
168
- static constexpr int kNThreads = kNThreads_;
169
- static_assert(kNThreads % 32 == 0);
170
- static constexpr int kNWarps = kNThreads / 32;
171
- static constexpr int kWidth = kWidth_;
172
- static constexpr int kChunkSizeL = kChunkSizeL_;
173
- static constexpr int kNBytes = sizeof(input_t);
174
- static_assert(kNBytes == 2 || kNBytes == 4);
175
- static constexpr int kNElts = kNBytes == 4 ? 4 : 8;
176
- static constexpr int kNEltsPerRow = 128 / kNBytes;
177
- static constexpr int kNThreadsPerRow = kNEltsPerRow / kNElts; // Always 8 for now
178
- static_assert(kNThreadsPerRow * kNBytes * kNElts == 128);
179
- static constexpr int kNColsPerWarp = 32 / kNThreadsPerRow; // Always 4 for now
180
- static_assert(kNColsPerWarp * kNThreadsPerRow == 32);
181
- static constexpr int kNColsPerLoad = kNColsPerWarp * kNWarps;
182
- static constexpr int kNLoads = kChunkSizeL / kNColsPerLoad;
183
- static_assert(kNLoads * kNColsPerLoad == kChunkSizeL);
184
- static constexpr bool kIsVecLoad = kIsVecLoad_;
185
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
186
- // using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
187
- // using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
188
- // static constexpr int kSmemSize = std::max({sizeof(typename BlockLoadT::TempStorage),
189
- // sizeof(typename BlockStoreT::TempStorage)});
190
- // static constexpr int kSmemSize = kChunkSizeL * kNEltsPerRow * kNBytes;
191
- };
192
-
193
- template<typename Ktraits>
194
- __global__ __launch_bounds__(Ktraits::kNThreads)
195
- void causal_conv1d_channellast_fwd_kernel(ConvParamsBase params) {
196
- constexpr int kWidth = Ktraits::kWidth;
197
- constexpr int kNThreads = Ktraits::kNThreads;
198
- constexpr int kNElts = Ktraits::kNElts;
199
- constexpr int kNWarp = Ktraits::kNWarps;
200
- constexpr int kNThreadsPerC = Ktraits::kNThreadsPerRow;
201
- constexpr int kLPerLoad = Ktraits::kNColsPerLoad;
202
- constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
203
- constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
204
- using input_t = typename Ktraits::input_t;
205
- using vec_t = typename Ktraits::vec_t;
206
- using weight_t = typename Ktraits::weight_t;
207
-
208
- // Shared memory.
209
- __shared__ input_t x_smem[kWidth - 1 + kChunkSizeL][kChunkSizeC + kNElts];
210
-
211
- const int tid = threadIdx.x;
212
- const int l_idx = tid / kNThreadsPerC;
213
- const int c_idx = tid % kNThreadsPerC;
214
- const int batch_id = blockIdx.x;
215
- const int chunk_l_id = blockIdx.y;
216
- const int chunk_c_id = blockIdx.z;
217
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
218
- + (chunk_l_id * kChunkSizeL + l_idx) * params.x_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
219
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr)
220
- + chunk_c_id * kChunkSizeC * params.weight_c_stride;
221
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
222
- + (chunk_l_id * kChunkSizeL + l_idx) * params.out_l_stride + chunk_c_id * kChunkSizeC + c_idx * kNElts;
223
-
224
- #pragma unroll
225
- for (int l = 0; l < Ktraits::kNLoads; ++l) {
226
- input_t x_vals_load[kNElts] = {0};
227
- if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
228
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
229
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x + l * kLPerLoad * params.x_l_stride);
230
- }
231
- reinterpret_cast<vec_t *>(x_smem[kWidth - 1 + l * kLPerLoad + l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
232
- }
233
- // Load the elements from the previous chunk that are needed for convolution.
234
- if (l_idx < kWidth - 1) {
235
- input_t x_vals_load[kNElts] = {0};
236
- if (chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) >= 0
237
- && chunk_l_id * kChunkSizeL + l_idx - (kWidth - 1) < params.seqlen
238
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
239
- reinterpret_cast<vec_t *>(x_vals_load)[0] = *reinterpret_cast<vec_t *>(x - (kWidth - 1) * params.x_l_stride);
240
- }
241
- reinterpret_cast<vec_t *>(x_smem[l_idx])[c_idx] = reinterpret_cast<vec_t *>(x_vals_load)[0];
242
- }
243
-
244
- __syncthreads();
245
-
246
- constexpr int kLPerThread = std::min(kChunkSizeL * kChunkSizeC / kNThreads, kChunkSizeL);
247
- static_assert(kLPerThread * kNThreads == kChunkSizeL * kChunkSizeC);
248
- constexpr int kNThreadsPerRow = kChunkSizeL / kLPerThread;
249
- static_assert(kNThreadsPerRow * kLPerThread == kChunkSizeL);
250
- // kChunkSizeL, kLPerThread, kNThreadsPerRow should be powers of 2 for simplicity
251
- static_assert((kChunkSizeL & (kChunkSizeL - 1)) == 0);
252
- static_assert((kLPerThread & (kLPerThread - 1)) == 0);
253
- static_assert((kNThreadsPerRow & (kNThreadsPerRow - 1)) == 0);
254
- static_assert(kNThreadsPerRow <= 32);
255
-
256
- const int row_idx = tid / kNThreadsPerRow;
257
- const int col_idx = tid % kNThreadsPerRow;
258
-
259
- float bias_val = params.bias_ptr == nullptr || chunk_c_id * kChunkSizeC + row_idx >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[chunk_c_id * kChunkSizeC + row_idx]);
260
- float weight_vals[kWidth] = {0};
261
- if (chunk_c_id + kChunkSizeC + row_idx < params.dim) {
262
- #pragma unroll
263
- for (int w = 0; w < kWidth; ++w) {
264
- weight_vals[w] = weight[row_idx * params.weight_c_stride + w * params.weight_width_stride];
265
- }
266
- }
267
- float x_vals[kWidth - 1 + kLPerThread];
268
- #pragma unroll
269
- for (int i = 0; i < kWidth - 1 + kLPerThread; ++i) {
270
- x_vals[i] = float(x_smem[col_idx * kLPerThread + i][row_idx]);
271
- }
272
-
273
- float out_vals[kLPerThread];
274
- #pragma unroll
275
- for (int i = 0; i < kLPerThread; ++i) {
276
- out_vals[i] = bias_val;
277
- #pragma unroll
278
- for (int w = 0; w < kWidth; ++w) { out_vals[i] += weight_vals[w] * x_vals[i + w]; }
279
- if (params.silu_activation) {out_vals[i] = out_vals[i] / (1 + expf(-out_vals[i])); }
280
- }
281
-
282
- // Since kNThreadsPerRow is a power of 2 and <= 32, we only need syncwarp and not syncthreads.
283
- __syncwarp();
284
- #pragma unroll
285
- for (int i = 0; i < kLPerThread; ++i) { x_smem[col_idx * kLPerThread + i][row_idx] = out_vals[i]; }
286
- __syncthreads();
287
-
288
- #pragma unroll
289
- for (int l = 0; l < Ktraits::kNLoads; ++l) {
290
- input_t out_vals_store[kNElts];
291
- reinterpret_cast<vec_t *>(out_vals_store)[0] = reinterpret_cast<vec_t *>(x_smem[l * kLPerLoad + l_idx])[c_idx];
292
- if (chunk_l_id * kChunkSizeL + l * kLPerLoad + l_idx < params.seqlen
293
- && chunk_c_id * kChunkSizeC + c_idx * kNElts < params.dim) {
294
- *reinterpret_cast<vec_t *>(out + l * kLPerLoad * params.out_l_stride) = reinterpret_cast<vec_t *>(out_vals_store)[0];
295
- }
296
- }
297
-
298
- }
299
-
300
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
301
- void causal_conv1d_channellast_fwd_launch(ConvParamsBase &params, cudaStream_t stream) {
302
- using Ktraits = Causal_conv1d_channellast_fwd_kernel_traits<kNThreads, kWidth, 64, true, input_t, weight_t>;
303
- // constexpr int kSmemSize = Ktraits::kSmemSize;
304
- constexpr int kChunkSizeL = Ktraits::kChunkSizeL;
305
- constexpr int kChunkSizeC = Ktraits::kNEltsPerRow;
306
- const int n_chunks_L = (params.seqlen + kChunkSizeL - 1) / kChunkSizeL;
307
- const int n_chunks_C = (params.dim + kChunkSizeC - 1) / kChunkSizeC;
308
- // printf("n_chunks_L: %d, n_chunks_C: %d\n", n_chunks_L, n_chunks_C);
309
- dim3 grid(params.batch, n_chunks_L, n_chunks_C);
310
- dim3 block(Ktraits::kNThreads);
311
- auto kernel = &causal_conv1d_channellast_fwd_kernel<Ktraits>;
312
- // if (kSmemSize >= 48 * 1024) {
313
- // C10_CUDA_CHECK(cudaFuncSetAttribute(
314
- // kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
315
- // }
316
- // kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
317
- kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
318
- C10_CUDA_KERNEL_LAUNCH_CHECK();
319
- }
320
-
321
- template<typename input_t, typename weight_t>
322
- void causal_conv1d_channellast_fwd_cuda(ConvParamsBase &params, cudaStream_t stream) {
323
- if (params.width == 2) {
324
- causal_conv1d_channellast_fwd_launch<128, 2, input_t, weight_t>(params, stream);
325
- } else if (params.width == 3) {
326
- causal_conv1d_channellast_fwd_launch<128, 3, input_t, weight_t>(params, stream);
327
- } else if (params.width == 4) {
328
- causal_conv1d_channellast_fwd_launch<128, 4, input_t, weight_t>(params, stream);
329
- }
330
- }
331
-
332
- template void causal_conv1d_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
333
- template void causal_conv1d_fwd_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
334
- template void causal_conv1d_fwd_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
335
- template void causal_conv1d_fwd_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
336
- template void causal_conv1d_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
337
- template void causal_conv1d_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
338
- template void causal_conv1d_fwd_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
339
- template void causal_conv1d_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
340
- template void causal_conv1d_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
341
-
342
- template void causal_conv1d_channellast_fwd_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
343
- template void causal_conv1d_channellast_fwd_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
344
- template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
345
- template void causal_conv1d_channellast_fwd_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
346
- template void causal_conv1d_channellast_fwd_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
347
- template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
348
- template void causal_conv1d_channellast_fwd_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
349
- template void causal_conv1d_channellast_fwd_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
350
- template void causal_conv1d_channellast_fwd_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/causal_conv1d_update.cu DELETED
@@ -1,96 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #include <c10/util/BFloat16.h>
6
- #include <c10/util/Half.h>
7
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
8
-
9
- #include <cub/block/block_load.cuh>
10
- #include <cub/block/block_store.cuh>
11
-
12
- #include "causal_conv1d.h"
13
- #include "causal_conv1d_common.h"
14
- #include "static_switch.h"
15
-
16
- template<int kNThreads_, int kWidth_, typename input_t_, typename weight_t_>
17
- struct Causal_conv1d_update_kernel_traits {
18
- using input_t = input_t_;
19
- using weight_t = weight_t_;
20
- static constexpr int kNThreads = kNThreads_;
21
- static constexpr int kWidth = kWidth_;
22
- static constexpr int kNBytes = sizeof(input_t);
23
- static_assert(kNBytes == 2 || kNBytes == 4);
24
- };
25
-
26
- template<typename Ktraits>
27
- __global__ __launch_bounds__(Ktraits::kNThreads)
28
- void causal_conv1d_update_kernel(ConvParamsBase params) {
29
- constexpr int kWidth = Ktraits::kWidth;
30
- constexpr int kNThreads = Ktraits::kNThreads;
31
- using input_t = typename Ktraits::input_t;
32
- using weight_t = typename Ktraits::weight_t;
33
-
34
- const int tidx = threadIdx.x;
35
- const int batch_id = blockIdx.x;
36
- const int channel_id = blockIdx.y * kNThreads + tidx;
37
- input_t *x = reinterpret_cast<input_t *>(params.x_ptr) + batch_id * params.x_batch_stride
38
- + channel_id * params.x_c_stride;
39
- input_t *conv_state = reinterpret_cast<input_t *>(params.conv_state_ptr) + batch_id * params.conv_state_batch_stride
40
- + channel_id * params.conv_state_c_stride;
41
- weight_t *weight = reinterpret_cast<weight_t *>(params.weight_ptr) + channel_id * params.weight_c_stride;
42
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
43
- + channel_id * params.out_c_stride;
44
- float bias_val = params.bias_ptr == nullptr || channel_id >= params.dim ? 0.f : float(reinterpret_cast<weight_t *>(params.bias_ptr)[channel_id]);
45
-
46
- float weight_vals[kWidth] = {0};
47
- if (channel_id < params.dim) {
48
- #pragma unroll
49
- for (int i = 0; i < kWidth; ++i) { weight_vals[i] = float(weight[i * params.weight_width_stride]); }
50
- }
51
-
52
- float x_vals[kWidth] = {0};
53
- if (channel_id < params.dim) {
54
- #pragma unroll
55
- for (int i = 0; i < kWidth - 1; ++i) { x_vals[i] = float(conv_state[(i + 1) * params.conv_state_l_stride]); }
56
- x_vals[kWidth - 1] = float(x[0]);
57
- #pragma unroll
58
- for (int i = 0; i < kWidth; ++i) { conv_state[i * params.conv_state_l_stride] = input_t(x_vals[i]); }
59
- }
60
-
61
- float out_val = bias_val;
62
- #pragma unroll
63
- for (int i = 0; i < kWidth; ++i) { out_val += weight_vals[i] * x_vals[i]; }
64
- if (params.silu_activation) { out_val = out_val / (1 + expf(-out_val)); }
65
- if (channel_id < params.dim) { out[0] = input_t(out_val); }
66
- }
67
-
68
- template<int kNThreads, int kWidth, typename input_t, typename weight_t>
69
- void causal_conv1d_update_launch(ConvParamsBase &params, cudaStream_t stream) {
70
- using Ktraits = Causal_conv1d_update_kernel_traits<kNThreads, kWidth, input_t, weight_t>;
71
- dim3 grid(params.batch, (params.dim + kNThreads - 1) / kNThreads);
72
- auto kernel = &causal_conv1d_update_kernel<Ktraits>;
73
- kernel<<<grid, Ktraits::kNThreads, 0, stream>>>(params);
74
- C10_CUDA_KERNEL_LAUNCH_CHECK();
75
- }
76
-
77
- template<typename input_t, typename weight_t>
78
- void causal_conv1d_update_cuda(ConvParamsBase &params, cudaStream_t stream) {
79
- if (params.width == 2) {
80
- causal_conv1d_update_launch<64, 2, input_t, weight_t>(params, stream);
81
- } else if (params.width == 3) {
82
- causal_conv1d_update_launch<64, 3, input_t, weight_t>(params, stream);
83
- } else if (params.width == 4) {
84
- causal_conv1d_update_launch<64, 4, input_t, weight_t>(params, stream);
85
- }
86
- }
87
-
88
- template void causal_conv1d_update_cuda<float, float>(ConvParamsBase &params, cudaStream_t stream);
89
- template void causal_conv1d_update_cuda<at::Half, float>(ConvParamsBase &params, cudaStream_t stream);
90
- template void causal_conv1d_update_cuda<at::BFloat16, float>(ConvParamsBase &params, cudaStream_t stream);
91
- template void causal_conv1d_update_cuda<float, at::Half>(ConvParamsBase &params, cudaStream_t stream);
92
- template void causal_conv1d_update_cuda<at::Half, at::Half>(ConvParamsBase &params, cudaStream_t stream);
93
- template void causal_conv1d_update_cuda<at::BFloat16, at::Half>(ConvParamsBase &params, cudaStream_t stream);
94
- template void causal_conv1d_update_cuda<float, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
95
- template void causal_conv1d_update_cuda<at::Half, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
96
- template void causal_conv1d_update_cuda<at::BFloat16, at::BFloat16>(ConvParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/csrc/static_switch.h DELETED
@@ -1,25 +0,0 @@
1
- // Inspired by https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
2
- // and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
3
-
4
- #pragma once
5
-
6
- /// @param COND - a boolean expression to switch by
7
- /// @param CONST_NAME - a name given for the constexpr bool variable.
8
- /// @param ... - code to execute for true and false
9
- ///
10
- /// Usage:
11
- /// ```
12
- /// BOOL_SWITCH(flag, BoolConst, [&] {
13
- /// some_function<BoolConst>(...);
14
- /// });
15
- /// ```
16
- #define BOOL_SWITCH(COND, CONST_NAME, ...) \
17
- [&] { \
18
- if (COND) { \
19
- static constexpr bool CONST_NAME = true; \
20
- return __VA_ARGS__(); \
21
- } else { \
22
- static constexpr bool CONST_NAME = false; \
23
- return __VA_ARGS__(); \
24
- } \
25
- }()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/setup.py DELETED
@@ -1,264 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao.
2
- import sys
3
- import warnings
4
- import os
5
- import re
6
- import ast
7
- from pathlib import Path
8
- from packaging.version import parse, Version
9
- import platform
10
-
11
- from setuptools import setup, find_packages
12
- import subprocess
13
-
14
- import urllib.request
15
- import urllib.error
16
- from wheel.bdist_wheel import bdist_wheel as _bdist_wheel
17
-
18
- import torch
19
- from torch.utils.cpp_extension import (
20
- BuildExtension,
21
- CppExtension,
22
- CUDAExtension,
23
- CUDA_HOME,
24
- )
25
-
26
-
27
- with open("README.md", "r", encoding="utf-8") as fh:
28
- long_description = fh.read()
29
-
30
-
31
- # ninja build does not work unless include_dirs are abs path
32
- this_dir = os.path.dirname(os.path.abspath(__file__))
33
-
34
- PACKAGE_NAME = "causal_conv1d"
35
-
36
- BASE_WHEEL_URL = "https://github.com/Dao-AILab/causal-conv1d/releases/download/{tag_name}/{wheel_name}"
37
-
38
- # FORCE_BUILD: Force a fresh build locally, instead of attempting to find prebuilt wheels
39
- # SKIP_CUDA_BUILD: Intended to allow CI to use a simple `python setup.py sdist` run to copy over raw files, without any cuda compilation
40
- FORCE_BUILD = os.getenv("CAUSAL_CONV1D_FORCE_BUILD", "FALSE") == "TRUE"
41
- SKIP_CUDA_BUILD = os.getenv("CAUSAL_CONV1D_SKIP_CUDA_BUILD", "FALSE") == "TRUE"
42
- # For CI, we want the option to build with C++11 ABI since the nvcr images use C++11 ABI
43
- FORCE_CXX11_ABI = os.getenv("CAUSAL_CONV1D_FORCE_CXX11_ABI", "FALSE") == "TRUE"
44
-
45
-
46
- def get_platform():
47
- """
48
- Returns the platform name as used in wheel filenames.
49
- """
50
- if sys.platform.startswith("linux"):
51
- return "linux_x86_64"
52
- elif sys.platform == "darwin":
53
- mac_version = ".".join(platform.mac_ver()[0].split(".")[:2])
54
- return f"macosx_{mac_version}_x86_64"
55
- elif sys.platform == "win32":
56
- return "win_amd64"
57
- else:
58
- raise ValueError("Unsupported platform: {}".format(sys.platform))
59
-
60
-
61
- def get_cuda_bare_metal_version(cuda_dir):
62
- raw_output = subprocess.check_output(
63
- [cuda_dir + "/bin/nvcc", "-V"], universal_newlines=True
64
- )
65
- output = raw_output.split()
66
- release_idx = output.index("release") + 1
67
- bare_metal_version = parse(output[release_idx].split(",")[0])
68
-
69
- return raw_output, bare_metal_version
70
-
71
-
72
- def check_if_cuda_home_none(global_option: str) -> None:
73
- if CUDA_HOME is not None:
74
- return
75
- # warn instead of error because user could be downloading prebuilt wheels, so nvcc won't be necessary
76
- # in that case.
77
- warnings.warn(
78
- f"{global_option} was requested, but nvcc was not found. Are you sure your environment has nvcc available? "
79
- "If you're installing within a container from https://hub.docker.com/r/pytorch/pytorch, "
80
- "only images whose names contain 'devel' will provide nvcc."
81
- )
82
-
83
-
84
- def append_nvcc_threads(nvcc_extra_args):
85
- return nvcc_extra_args + ["--threads", "4"]
86
-
87
-
88
- cmdclass = {}
89
- ext_modules = []
90
-
91
- if not SKIP_CUDA_BUILD:
92
- print("\n\ntorch.__version__ = {}\n\n".format(torch.__version__))
93
- TORCH_MAJOR = int(torch.__version__.split(".")[0])
94
- TORCH_MINOR = int(torch.__version__.split(".")[1])
95
-
96
- check_if_cuda_home_none("causal_conv1d")
97
- # Check, if CUDA11 is installed for compute capability 8.0
98
- cc_flag = []
99
- if CUDA_HOME is not None:
100
- _, bare_metal_version = get_cuda_bare_metal_version(CUDA_HOME)
101
- if bare_metal_version < Version("11.6"):
102
- raise RuntimeError(
103
- "causal_conv1d is only supported on CUDA 11.6 and above. "
104
- "Note: make sure nvcc has a supported version by running nvcc -V."
105
- )
106
-
107
- cc_flag.append("-gencode")
108
- cc_flag.append("arch=compute_70,code=sm_70")
109
- cc_flag.append("-gencode")
110
- cc_flag.append("arch=compute_80,code=sm_80")
111
- if bare_metal_version >= Version("11.8"):
112
- cc_flag.append("-gencode")
113
- cc_flag.append("arch=compute_90,code=sm_90")
114
-
115
- # HACK: The compiler flag -D_GLIBCXX_USE_CXX11_ABI is set to be the same as
116
- # torch._C._GLIBCXX_USE_CXX11_ABI
117
- # https://github.com/pytorch/pytorch/blob/8472c24e3b5b60150096486616d98b7bea01500b/torch/utils/cpp_extension.py#L920
118
- if FORCE_CXX11_ABI:
119
- torch._C._GLIBCXX_USE_CXX11_ABI = True
120
-
121
- ext_modules.append(
122
- CUDAExtension(
123
- name="causal_conv1d_cuda",
124
- sources=[
125
- "csrc/causal_conv1d.cpp",
126
- "csrc/causal_conv1d_fwd.cu",
127
- "csrc/causal_conv1d_bwd.cu",
128
- "csrc/causal_conv1d_update.cu",
129
- ],
130
- extra_compile_args={
131
- "cxx": ["-O3"],
132
- "nvcc": append_nvcc_threads(
133
- [
134
- "-O3",
135
- "-U__CUDA_NO_HALF_OPERATORS__",
136
- "-U__CUDA_NO_HALF_CONVERSIONS__",
137
- "-U__CUDA_NO_BFLOAT16_OPERATORS__",
138
- "-U__CUDA_NO_BFLOAT16_CONVERSIONS__",
139
- "-U__CUDA_NO_BFLOAT162_OPERATORS__",
140
- "-U__CUDA_NO_BFLOAT162_CONVERSIONS__",
141
- "--expt-relaxed-constexpr",
142
- "--expt-extended-lambda",
143
- "--use_fast_math",
144
- "--ptxas-options=-v",
145
- "-lineinfo",
146
- ]
147
- + cc_flag
148
- ),
149
- },
150
- include_dirs=[this_dir],
151
- )
152
- )
153
-
154
-
155
- def get_package_version():
156
- with open(Path(this_dir) / "causal_conv1d" / "__init__.py", "r") as f:
157
- version_match = re.search(r"^__version__\s*=\s*(.*)$", f.read(), re.MULTILINE)
158
- public_version = ast.literal_eval(version_match.group(1))
159
- local_version = os.environ.get("CAUSAL_CONV1D_LOCAL_VERSION")
160
- if local_version:
161
- return f"{public_version}+{local_version}"
162
- else:
163
- return str(public_version)
164
-
165
-
166
- def get_wheel_url():
167
- # Determine the version numbers that will be used to determine the correct wheel
168
- # We're using the CUDA version used to build torch, not the one currently installed
169
- # _, cuda_version_raw = get_cuda_bare_metal_version(CUDA_HOME)
170
- torch_cuda_version = parse(torch.version.cuda)
171
- torch_version_raw = parse(torch.__version__)
172
- # For CUDA 11, we only compile for CUDA 11.8, and for CUDA 12 we only compile for CUDA 12.2
173
- # to save CI time. Minor versions should be compatible.
174
- torch_cuda_version = parse("11.8") if torch_cuda_version.major == 11 else parse("12.2")
175
- python_version = f"cp{sys.version_info.major}{sys.version_info.minor}"
176
- platform_name = get_platform()
177
- causal_conv1d_version = get_package_version()
178
- # cuda_version = f"{cuda_version_raw.major}{cuda_version_raw.minor}"
179
- cuda_version = f"{torch_cuda_version.major}{torch_cuda_version.minor}"
180
- torch_version = f"{torch_version_raw.major}.{torch_version_raw.minor}"
181
- cxx11_abi = str(torch._C._GLIBCXX_USE_CXX11_ABI).upper()
182
-
183
- # Determine wheel URL based on CUDA version, torch version, python version and OS
184
- wheel_filename = f"{PACKAGE_NAME}-{causal_conv1d_version}+cu{cuda_version}torch{torch_version}cxx11abi{cxx11_abi}-{python_version}-{python_version}-{platform_name}.whl"
185
- wheel_url = BASE_WHEEL_URL.format(
186
- tag_name=f"v{causal_conv1d_version}", wheel_name=wheel_filename
187
- )
188
- return wheel_url, wheel_filename
189
-
190
-
191
- class CachedWheelsCommand(_bdist_wheel):
192
- """
193
- The CachedWheelsCommand plugs into the default bdist wheel, which is ran by pip when it cannot
194
- find an existing wheel (which is currently the case for all installs). We use
195
- the environment parameters to detect whether there is already a pre-built version of a compatible
196
- wheel available and short-circuits the standard full build pipeline.
197
- """
198
-
199
- def run(self):
200
- if FORCE_BUILD:
201
- return super().run()
202
-
203
- wheel_url, wheel_filename = get_wheel_url()
204
- print("Guessing wheel URL: ", wheel_url)
205
- try:
206
- urllib.request.urlretrieve(wheel_url, wheel_filename)
207
-
208
- # Make the archive
209
- # Lifted from the root wheel processing command
210
- # https://github.com/pypa/wheel/blob/cf71108ff9f6ffc36978069acb28824b44ae028e/src/wheel/bdist_wheel.py#LL381C9-L381C85
211
- if not os.path.exists(self.dist_dir):
212
- os.makedirs(self.dist_dir)
213
-
214
- impl_tag, abi_tag, plat_tag = self.get_tag()
215
- archive_basename = f"{self.wheel_dist_name}-{impl_tag}-{abi_tag}-{plat_tag}"
216
-
217
- wheel_path = os.path.join(self.dist_dir, archive_basename + ".whl")
218
- print("Raw wheel path", wheel_path)
219
- os.rename(wheel_filename, wheel_path)
220
- except urllib.error.HTTPError:
221
- print("Precompiled wheel not found. Building from source...")
222
- # If the wheel could not be downloaded, build from source
223
- super().run()
224
-
225
-
226
- setup(
227
- name=PACKAGE_NAME,
228
- version=get_package_version(),
229
- packages=find_packages(
230
- exclude=(
231
- "build",
232
- "csrc",
233
- "include",
234
- "tests",
235
- "dist",
236
- "docs",
237
- "benchmarks",
238
- "causal_conv1d.egg-info",
239
- )
240
- ),
241
- author="Tri Dao",
242
- author_email="tri@tridao.me",
243
- description="Causal depthwise conv1d in CUDA, with a PyTorch interface",
244
- long_description=long_description,
245
- long_description_content_type="text/markdown",
246
- url="https://github.com/Dao-AILab/causal-conv1d",
247
- classifiers=[
248
- "Programming Language :: Python :: 3",
249
- "License :: OSI Approved :: BSD License",
250
- "Operating System :: Unix",
251
- ],
252
- ext_modules=ext_modules,
253
- cmdclass={"bdist_wheel": CachedWheelsCommand, "build_ext": BuildExtension}
254
- if ext_modules
255
- else {
256
- "bdist_wheel": CachedWheelsCommand,
257
- },
258
- python_requires=">=3.7",
259
- install_requires=[
260
- "torch",
261
- "packaging",
262
- "ninja",
263
- ],
264
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal-conv1d/tests/test_causal_conv1d.py DELETED
@@ -1,173 +0,0 @@
1
- # Copyright (C) 2023, Tri Dao.
2
-
3
- import math
4
-
5
- import torch
6
- import pytest
7
-
8
- from einops import rearrange
9
-
10
- from causal_conv1d.causal_conv1d_interface import causal_conv1d_fn, causal_conv1d_ref
11
- from causal_conv1d.causal_conv1d_interface import causal_conv1d_update, causal_conv1d_update_ref
12
-
13
-
14
- @pytest.mark.parametrize("channel_last", [False, True])
15
- # @pytest.mark.parametrize('channel_last', [True])
16
- @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
17
- # @pytest.mark.parametrize('itype', [torch.float16])
18
- @pytest.mark.parametrize("silu_activation", [False, True])
19
- # @pytest.mark.parametrize('silu_activation', [True])
20
- @pytest.mark.parametrize("has_bias", [False, True])
21
- # @pytest.mark.parametrize('has_bias', [True])
22
- @pytest.mark.parametrize("width", [2, 3, 4])
23
- # @pytest.mark.parametrize('width', [2])
24
- @pytest.mark.parametrize(
25
- "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
26
- )
27
- # @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
28
- # @pytest.mark.parametrize('seqlen', [128])
29
- def test_causal_conv1d(seqlen, width, has_bias, silu_activation, itype, channel_last):
30
- device = "cuda"
31
- rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
32
- if itype == torch.bfloat16:
33
- rtol, atol = 1e-2, 5e-2
34
- rtolw, atolw = (1e-3, 1e-3)
35
- # set seed
36
- torch.random.manual_seed(0)
37
- batch_size = 2
38
- # batch_size = 1
39
- dim = 4096 + 32 # Try dim not divisible by 64
40
- # dim = 64
41
- if not channel_last:
42
- x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
43
- else:
44
- x = rearrange(
45
- torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
46
- ).requires_grad_()
47
- weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
48
- if has_bias:
49
- bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
50
- else:
51
- bias = None
52
- x_ref = x.detach().clone().requires_grad_()
53
- weight_ref = weight.detach().clone().requires_grad_()
54
- bias_ref = bias.detach().clone().requires_grad_() if bias is not None else None
55
- activation = None if not silu_activation else "silu"
56
- out = causal_conv1d_fn(x, weight, bias, activation=activation)
57
- out_ref = causal_conv1d_ref(x_ref, weight_ref, bias_ref, activation=activation)
58
-
59
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
60
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
61
- assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
62
-
63
- g = torch.randn_like(out)
64
- out_ref.backward(g)
65
- out.backward(g)
66
-
67
- print(f"dx max diff: {(x.grad - x_ref.grad).abs().max().item()}")
68
- print(f"dweight max diff: {(weight.grad - weight_ref.grad).abs().max().item()}")
69
- if has_bias:
70
- print(f"dbias max diff: {(bias.grad - bias_ref.grad).abs().max().item()}")
71
-
72
- assert torch.allclose(x.grad, x_ref.grad.to(dtype=itype), rtol=rtol, atol=atol)
73
- assert torch.allclose(weight.grad, weight_ref.grad, rtol=rtolw, atol=atolw)
74
- if has_bias:
75
- assert torch.allclose(bias.grad, bias_ref.grad, rtol=rtolw, atol=atolw)
76
-
77
-
78
- @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
79
- # @pytest.mark.parametrize('itype', [torch.float16])
80
- @pytest.mark.parametrize("silu_activation", [False, True])
81
- # @pytest.mark.parametrize('silu_activation', [False])
82
- @pytest.mark.parametrize("has_bias", [False, True])
83
- # @pytest.mark.parametrize('has_bias', [True])
84
- @pytest.mark.parametrize("width", [2, 3, 4])
85
- # @pytest.mark.parametrize('width', [2])
86
- @pytest.mark.parametrize("dim", [2048, 2048 + 16, 4096])
87
- # @pytest.mark.parametrize("dim", [2048])
88
- def test_causal_conv1d_update(dim, width, has_bias, silu_activation, itype):
89
- device = "cuda"
90
- rtol, atol = (3e-4, 1e-3) if itype == torch.float32 else (3e-3, 5e-3)
91
- if itype == torch.bfloat16:
92
- rtol, atol = 1e-2, 5e-2
93
- rtolw, atolw = (1e-3, 1e-3)
94
- # set seed
95
- torch.random.manual_seed(0)
96
- batch_size = 2
97
- # batch_size = 1
98
- # dim = 64
99
- x = torch.randn(batch_size, dim, device=device, dtype=itype)
100
- conv_state = torch.randn(batch_size, dim, width, device=device, dtype=itype)
101
- weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
102
- if has_bias:
103
- bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
104
- else:
105
- bias = None
106
- conv_state_ref = conv_state.detach().clone()
107
- activation = None if not silu_activation else "silu"
108
- out = causal_conv1d_update(x, conv_state, weight, bias, activation=activation)
109
- out_ref = causal_conv1d_update_ref(x, conv_state_ref, weight, bias, activation=activation)
110
-
111
- print(f"Output max diff: {(out - out_ref).abs().max().item()}")
112
- print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
113
- assert torch.equal(conv_state, conv_state_ref)
114
- assert torch.allclose(out, out_ref, rtol=rtol, atol=atol)
115
-
116
-
117
- # @pytest.mark.parametrize("channel_last", [False, True])
118
- @pytest.mark.parametrize('channel_last', [True])
119
- # @pytest.mark.parametrize("itype", [torch.float32, torch.float16, torch.bfloat16])
120
- @pytest.mark.parametrize('itype', [torch.bfloat16])
121
- # @pytest.mark.parametrize("silu_activation", [False, True])
122
- @pytest.mark.parametrize('silu_activation', [True])
123
- # @pytest.mark.parametrize("has_bias", [False, True])
124
- @pytest.mark.parametrize('has_bias', [True])
125
- # @pytest.mark.parametrize("width", [2, 3, 4])
126
- @pytest.mark.parametrize('width', [4])
127
- @pytest.mark.parametrize(
128
- # "seqlen", [8, 16, 32, 64, 128, 151, 256, 372, 512, 784, 1024, 1134, 2048, 4096]
129
- "seqlen", [2048]
130
- )
131
- # @pytest.mark.parametrize('seqlen', [8, 16, 32, 64, 128, 256, 512, 784, 1024, 2048, 4096])
132
- # @pytest.mark.parametrize('seqlen', [128])
133
- def test_causal_conv1d_race_condition(seqlen, width, has_bias, silu_activation, itype, channel_last):
134
- device = "cuda"
135
- # set seed
136
- torch.random.manual_seed(0)
137
- batch_size = 2
138
- # batch_size = 1
139
- dim = 4096 + 32 # Try dim not divisible by 64
140
- # dim = 64
141
- if not channel_last:
142
- x = torch.randn(batch_size, 4096 + dim + 64, seqlen, device=device, dtype=itype)[:, 4096:4096 + dim, :].requires_grad_()
143
- else:
144
- x = rearrange(
145
- torch.randn(batch_size, seqlen, 4096 + dim + 64, device=device, dtype=itype)[:, :, 4096:4096 + dim], "b s d -> b d s"
146
- ).requires_grad_()
147
- weight = torch.randn(dim, width, device=device, dtype=torch.float32, requires_grad=True)
148
- if has_bias:
149
- bias = torch.randn(dim, device=device, dtype=torch.float32, requires_grad=True)
150
- else:
151
- bias = None
152
- activation = None if not silu_activation else "silu"
153
- out0 = causal_conv1d_fn(x, weight, bias, activation=activation)
154
- g = torch.randn_like(out0)
155
- dx0, dw0, db0 = torch.autograd.grad(out0, (x, weight, bias), g)
156
- dw_atol = 1e-4
157
- db_atol = 1e-4
158
-
159
- for i in range(10000):
160
- out = causal_conv1d_fn(x, weight, bias, activation=activation)
161
- dx, dw, db = torch.autograd.grad(out, (x, weight, bias), g)
162
- dw_equal = torch.allclose(dw, dw0, atol=dw_atol)
163
- # if not dw_equal:
164
- # breakpoint()
165
- if has_bias:
166
- db_equal = torch.allclose(db, db0, atol=db_atol)
167
- # if not db_equal:
168
- # breakpoint()
169
- assert torch.equal(out, out0)
170
- assert torch.equal(dx, dx0)
171
- assert dw_equal
172
- if has_bias:
173
- assert dw_equal
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
causal_conv1d-1.0.0-cp310-cp310-linux_x86_64.whl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78328bff9f0cf4814aa3c4029d63aa75128694e07ddae688b16215e3d8a2e7e7
3
+ size 8424758
install.sh DELETED
@@ -1,3 +0,0 @@
1
- pip install torch torchvision --extra-index-url https://download.pytorch.org/whl/cu118
2
- pip install -e causal-conv1d
3
- pip install -e mamba
 
 
 
 
mamba/.gitmodules DELETED
@@ -1,3 +0,0 @@
1
- [submodule "3rdparty/lm-evaluation-harness"]
2
- path = 3rdparty/lm-evaluation-harness
3
- url = https://github.com/EleutherAI/lm-evaluation-harness/
 
 
 
 
mamba/AUTHORS DELETED
@@ -1,2 +0,0 @@
1
- Tri Dao, tri@tridao.me
2
- Albert Gu, agu@andrew.cmu.edu
 
 
 
mamba/LICENSE DELETED
@@ -1,201 +0,0 @@
1
- Apache License
2
- Version 2.0, January 2004
3
- http://www.apache.org/licenses/
4
-
5
- TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
-
7
- 1. Definitions.
8
-
9
- "License" shall mean the terms and conditions for use, reproduction,
10
- and distribution as defined by Sections 1 through 9 of this document.
11
-
12
- "Licensor" shall mean the copyright owner or entity authorized by
13
- the copyright owner that is granting the License.
14
-
15
- "Legal Entity" shall mean the union of the acting entity and all
16
- other entities that control, are controlled by, or are under common
17
- control with that entity. For the purposes of this definition,
18
- "control" means (i) the power, direct or indirect, to cause the
19
- direction or management of such entity, whether by contract or
20
- otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
- outstanding shares, or (iii) beneficial ownership of such entity.
22
-
23
- "You" (or "Your") shall mean an individual or Legal Entity
24
- exercising permissions granted by this License.
25
-
26
- "Source" form shall mean the preferred form for making modifications,
27
- including but not limited to software source code, documentation
28
- source, and configuration files.
29
-
30
- "Object" form shall mean any form resulting from mechanical
31
- transformation or translation of a Source form, including but
32
- not limited to compiled object code, generated documentation,
33
- and conversions to other media types.
34
-
35
- "Work" shall mean the work of authorship, whether in Source or
36
- Object form, made available under the License, as indicated by a
37
- copyright notice that is included in or attached to the work
38
- (an example is provided in the Appendix below).
39
-
40
- "Derivative Works" shall mean any work, whether in Source or Object
41
- form, that is based on (or derived from) the Work and for which the
42
- editorial revisions, annotations, elaborations, or other modifications
43
- represent, as a whole, an original work of authorship. For the purposes
44
- of this License, Derivative Works shall not include works that remain
45
- separable from, or merely link (or bind by name) to the interfaces of,
46
- the Work and Derivative Works thereof.
47
-
48
- "Contribution" shall mean any work of authorship, including
49
- the original version of the Work and any modifications or additions
50
- to that Work or Derivative Works thereof, that is intentionally
51
- submitted to Licensor for inclusion in the Work by the copyright owner
52
- or by an individual or Legal Entity authorized to submit on behalf of
53
- the copyright owner. For the purposes of this definition, "submitted"
54
- means any form of electronic, verbal, or written communication sent
55
- to the Licensor or its representatives, including but not limited to
56
- communication on electronic mailing lists, source code control systems,
57
- and issue tracking systems that are managed by, or on behalf of, the
58
- Licensor for the purpose of discussing and improving the Work, but
59
- excluding communication that is conspicuously marked or otherwise
60
- designated in writing by the copyright owner as "Not a Contribution."
61
-
62
- "Contributor" shall mean Licensor and any individual or Legal Entity
63
- on behalf of whom a Contribution has been received by Licensor and
64
- subsequently incorporated within the Work.
65
-
66
- 2. Grant of Copyright License. Subject to the terms and conditions of
67
- this License, each Contributor hereby grants to You a perpetual,
68
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
- copyright license to reproduce, prepare Derivative Works of,
70
- publicly display, publicly perform, sublicense, and distribute the
71
- Work and such Derivative Works in Source or Object form.
72
-
73
- 3. Grant of Patent License. Subject to the terms and conditions of
74
- this License, each Contributor hereby grants to You a perpetual,
75
- worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
- (except as stated in this section) patent license to make, have made,
77
- use, offer to sell, sell, import, and otherwise transfer the Work,
78
- where such license applies only to those patent claims licensable
79
- by such Contributor that are necessarily infringed by their
80
- Contribution(s) alone or by combination of their Contribution(s)
81
- with the Work to which such Contribution(s) was submitted. If You
82
- institute patent litigation against any entity (including a
83
- cross-claim or counterclaim in a lawsuit) alleging that the Work
84
- or a Contribution incorporated within the Work constitutes direct
85
- or contributory patent infringement, then any patent licenses
86
- granted to You under this License for that Work shall terminate
87
- as of the date such litigation is filed.
88
-
89
- 4. Redistribution. You may reproduce and distribute copies of the
90
- Work or Derivative Works thereof in any medium, with or without
91
- modifications, and in Source or Object form, provided that You
92
- meet the following conditions:
93
-
94
- (a) You must give any other recipients of the Work or
95
- Derivative Works a copy of this License; and
96
-
97
- (b) You must cause any modified files to carry prominent notices
98
- stating that You changed the files; and
99
-
100
- (c) You must retain, in the Source form of any Derivative Works
101
- that You distribute, all copyright, patent, trademark, and
102
- attribution notices from the Source form of the Work,
103
- excluding those notices that do not pertain to any part of
104
- the Derivative Works; and
105
-
106
- (d) If the Work includes a "NOTICE" text file as part of its
107
- distribution, then any Derivative Works that You distribute must
108
- include a readable copy of the attribution notices contained
109
- within such NOTICE file, excluding those notices that do not
110
- pertain to any part of the Derivative Works, in at least one
111
- of the following places: within a NOTICE text file distributed
112
- as part of the Derivative Works; within the Source form or
113
- documentation, if provided along with the Derivative Works; or,
114
- within a display generated by the Derivative Works, if and
115
- wherever such third-party notices normally appear. The contents
116
- of the NOTICE file are for informational purposes only and
117
- do not modify the License. You may add Your own attribution
118
- notices within Derivative Works that You distribute, alongside
119
- or as an addendum to the NOTICE text from the Work, provided
120
- that such additional attribution notices cannot be construed
121
- as modifying the License.
122
-
123
- You may add Your own copyright statement to Your modifications and
124
- may provide additional or different license terms and conditions
125
- for use, reproduction, or distribution of Your modifications, or
126
- for any such Derivative Works as a whole, provided Your use,
127
- reproduction, and distribution of the Work otherwise complies with
128
- the conditions stated in this License.
129
-
130
- 5. Submission of Contributions. Unless You explicitly state otherwise,
131
- any Contribution intentionally submitted for inclusion in the Work
132
- by You to the Licensor shall be under the terms and conditions of
133
- this License, without any additional terms or conditions.
134
- Notwithstanding the above, nothing herein shall supersede or modify
135
- the terms of any separate license agreement you may have executed
136
- with Licensor regarding such Contributions.
137
-
138
- 6. Trademarks. This License does not grant permission to use the trade
139
- names, trademarks, service marks, or product names of the Licensor,
140
- except as required for reasonable and customary use in describing the
141
- origin of the Work and reproducing the content of the NOTICE file.
142
-
143
- 7. Disclaimer of Warranty. Unless required by applicable law or
144
- agreed to in writing, Licensor provides the Work (and each
145
- Contributor provides its Contributions) on an "AS IS" BASIS,
146
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
- implied, including, without limitation, any warranties or conditions
148
- of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
- PARTICULAR PURPOSE. You are solely responsible for determining the
150
- appropriateness of using or redistributing the Work and assume any
151
- risks associated with Your exercise of permissions under this License.
152
-
153
- 8. Limitation of Liability. In no event and under no legal theory,
154
- whether in tort (including negligence), contract, or otherwise,
155
- unless required by applicable law (such as deliberate and grossly
156
- negligent acts) or agreed to in writing, shall any Contributor be
157
- liable to You for damages, including any direct, indirect, special,
158
- incidental, or consequential damages of any character arising as a
159
- result of this License or out of the use or inability to use the
160
- Work (including but not limited to damages for loss of goodwill,
161
- work stoppage, computer failure or malfunction, or any and all
162
- other commercial damages or losses), even if such Contributor
163
- has been advised of the possibility of such damages.
164
-
165
- 9. Accepting Warranty or Additional Liability. While redistributing
166
- the Work or Derivative Works thereof, You may choose to offer,
167
- and charge a fee for, acceptance of support, warranty, indemnity,
168
- or other liability obligations and/or rights consistent with this
169
- License. However, in accepting such obligations, You may act only
170
- on Your own behalf and on Your sole responsibility, not on behalf
171
- of any other Contributor, and only if You agree to indemnify,
172
- defend, and hold each Contributor harmless for any liability
173
- incurred by, or claims asserted against, such Contributor by reason
174
- of your accepting any such warranty or additional liability.
175
-
176
- END OF TERMS AND CONDITIONS
177
-
178
- APPENDIX: How to apply the Apache License to your work.
179
-
180
- To apply the Apache License to your work, attach the following
181
- boilerplate notice, with the fields enclosed by brackets "[]"
182
- replaced with your own identifying information. (Don't include
183
- the brackets!) The text should be enclosed in the appropriate
184
- comment syntax for the file format. We also recommend that a
185
- file or class name and description of purpose be included on the
186
- same "printed page" as the copyright notice for easier
187
- identification within third-party archives.
188
-
189
- Copyright 2023 Tri Dao, Albert Gu
190
-
191
- Licensed under the Apache License, Version 2.0 (the "License");
192
- you may not use this file except in compliance with the License.
193
- You may obtain a copy of the License at
194
-
195
- http://www.apache.org/licenses/LICENSE-2.0
196
-
197
- Unless required by applicable law or agreed to in writing, software
198
- distributed under the License is distributed on an "AS IS" BASIS,
199
- WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
- See the License for the specific language governing permissions and
201
- limitations under the License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/README.md DELETED
@@ -1,149 +0,0 @@
1
- # Mamba
2
-
3
- ![Mamba](assets/selection.png "Selective State Space")
4
- > **Mamba: Linear-Time Sequence Modeling with Selective State Spaces**\
5
- > Albert Gu*, Tri Dao*\
6
- > Paper: https://arxiv.org/abs/2312.00752
7
-
8
- ## About
9
-
10
- Mamba is a new state space model architecture showing promising performance on information-dense data such as language modeling, where previous subquadratic models fall short of Transformers.
11
- It is based on the line of progress on [structured state space models](https://github.com/state-spaces/s4),
12
- with an efficient hardware-aware design and implementation in the spirit of [FlashAttention](https://github.com/Dao-AILab/flash-attention).
13
-
14
- ## Installation
15
-
16
- - `pip install causal-conv1d`: an efficient implementation of a simple causal Conv1d layer used inside the Mamba block.
17
- - `pip install mamba-ssm`: the core Mamba package.
18
-
19
- It can also be built from source with `pip install .` from this repository.
20
-
21
- If `pip` complains about PyTorch versions, try passing `--no-build-isolation` to `pip`.
22
-
23
- Other requirements:
24
- - Linux
25
- - NVIDIA GPU
26
- - PyTorch 1.12+
27
- - CUDA 11.6+
28
-
29
- ## Usage
30
-
31
- We expose several levels of interface with the Mamba model.
32
-
33
- ### Selective SSM
34
-
35
- Mamba is based on a selective SSM layer, which is the focus of the paper (Section 3; Algorithm 2).
36
-
37
- Source: [ops/selective_scan_interface.py](mamba_ssm/ops/selective_scan_interface.py).
38
-
39
- ### Mamba Block
40
-
41
- The main module of this repository is the Mamba architecture block wrapping the selective SSM.
42
-
43
- Source: [modules/mamba_simple.py](mamba_ssm/modules/mamba_simple.py).
44
-
45
- Usage:
46
- ```
47
- from mamba_ssm import Mamba
48
-
49
- batch, length, dim = 2, 64, 16
50
- x = torch.randn(batch, length, dim).to("cuda")
51
- model = Mamba(
52
- # This module uses roughly 3 * expand * d_model^2 parameters
53
- d_model=dim, # Model dimension d_model
54
- d_state=16, # SSM state expansion factor
55
- d_conv=4, # Local convolution width
56
- expand=2, # Block expansion factor
57
- ).to("cuda")
58
- y = model(x)
59
- assert y.shape == x.shape
60
- ```
61
-
62
- ### Mamba Language Model
63
-
64
- Finally, we provide an example of a complete language model: a deep sequence model backbone (with repeating Mamba blocks) + language model head.
65
-
66
- Source: [models/mixer_seq_simple.py](mamba_ssm/models/mixer_seq_simple.py).
67
-
68
- This is an example of how to integrate Mamba into an end-to-end neural network.
69
- This example is used in the generation scripts below.
70
-
71
-
72
-
73
- ## Pretrained Models
74
-
75
- Pretrained models are uploaded to
76
- [HuggingFace](https://huggingface.co/state-spaces): `mamba-130m`, `mamba-370m`,
77
- `mamba-790m`, `mamba-1.4b`, `mamba-2.8b`.
78
-
79
- The models will be autodownloaded by the generation script below.
80
-
81
- These models were trained on the [Pile](https://huggingface.co/datasets/EleutherAI/pile), and follow the standard model dimensions described by GPT-3 and followed by many open source models:
82
-
83
- | Parameters | Layers | Model dim. |
84
- |------------|--------|------------|
85
- | 130M | 12 | 768 |
86
- | 370M | 24 | 1024 |
87
- | 790M | 24 | 1536 |
88
- | 1.4B | 24 | 2048 |
89
- | 2.8B | 32 | 2560 |
90
-
91
- (The layer count of Mamba should be doubled, as two Mamba blocks are needed for each "layer" (MHA block + MLP block) of a Transformer.)
92
-
93
- Note: these are base models trained only for 300B tokens, without any form of downstream modification (instruction tuning, etc.).
94
- Performance is expected to be comparable or better than other architectures trained on similar data, but not to match larger or fine-tuned models.
95
-
96
-
97
- ## Evaluations
98
-
99
- To run zero-shot evaluations of models (corresponding to Table 3 of the paper),
100
- we use the
101
- [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor)
102
- library.
103
-
104
- 1. Pull the `lm-evaluation-harness` repo by `git submodule update --init
105
- --recursive`. We use the `big-refactor` branch.
106
- 2. Install `lm-evaluation-harness`: `pip install -e 3rdparty/lm-evaluation-harness`
107
- 3. Run evaluation with (more documentation at the [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness/tree/big-refactor) repo):
108
- ```
109
- python evals/lm_harness_eval.py --model mamba --model_args pretrained=state-spaces/mamba-130m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
110
- python evals/lm_harness_eval.py --model hf --model_args pretrained=EleutherAI/pythia-160m --tasks lambada_openai,hellaswag,piqa,arc_easy,arc_challenge,winogrande --device cuda --batch_size 64
111
- ```
112
-
113
- Note that the result of each task might differ from reported values by 0.1-0.3 due to noise in the evaluation process.
114
-
115
- ## Inference
116
-
117
- The script [benchmarks/benchmark_generation_mamba_simple.py](benchmarks/benchmark_generation_mamba_simple.py)
118
- 1. autoloads a model from the HuggingFace Hub,
119
- 2. generates completions of a user-specified prompt,
120
- 3. benchmarks the inference speed of this generation.
121
-
122
- Other configurable options include the top-p (nucleus sampling) probability, and the softmax temperature.
123
-
124
- ### Examples
125
-
126
- To test generation latency (e.g. batch size = 1) with different sampling strategies:
127
-
128
- ```
129
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.5
130
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --prompt "My cat wrote all this CUDA code for a new language model and" --topp 0.9 --temperature 0.5
131
- ```
132
-
133
- To test generation throughput with random prompts (e.g. large batch size):
134
- ```
135
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "state-spaces/mamba-2.8b" --batch 128
136
- python benchmarks/benchmark_generation_mamba_simple.py --model-name "EleutherAI/pythia-2.8b" --batch 128
137
- ```
138
-
139
- ## Citation
140
-
141
- If you use this codebase, or otherwise found our work valuable, please cite Mamba:
142
- ```
143
- @article{mamba,
144
- title={Mamba: Linear-Time Sequence Modeling with Selective State Spaces},
145
- author={Gu, Albert and Dao, Tri},
146
- journal={arXiv preprint arXiv:2312.00752},
147
- year={2023}
148
- }
149
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/assets/selection.png DELETED
Binary file (819 kB)
 
mamba/benchmarks/benchmark_generation_mamba_simple.py DELETED
@@ -1,88 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao, Albert Gu.
2
-
3
- import argparse
4
- import time
5
- import json
6
-
7
- import torch
8
- import torch.nn.functional as F
9
-
10
- from einops import rearrange
11
-
12
- from transformers import AutoTokenizer, AutoModelForCausalLM
13
-
14
- from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
15
-
16
-
17
- parser = argparse.ArgumentParser(description="Generation benchmarking")
18
- parser.add_argument("--model-name", type=str, default="state-spaces/mamba-130m")
19
- parser.add_argument("--prompt", type=str, default=None)
20
- parser.add_argument("--promptlen", type=int, default=100)
21
- parser.add_argument("--genlen", type=int, default=100)
22
- parser.add_argument("--temperature", type=float, default=1.0)
23
- parser.add_argument("--topk", type=int, default=1)
24
- parser.add_argument("--topp", type=float, default=1.0)
25
- parser.add_argument("--batch", type=int, default=1)
26
- args = parser.parse_args()
27
-
28
- repeats = 3
29
- device = "cuda"
30
- dtype = torch.float16
31
-
32
- print(f"Loading model {args.model_name}")
33
- is_mamba = args.model_name.startswith("state-spaces/mamba-") or "mamba" in args.model_name
34
-
35
- if is_mamba:
36
- tokenizer = AutoTokenizer.from_pretrained("/home/zhulianghui/VisionProjects/mamba/ckpts/gpt-neox-20b-tokenizer")
37
- model = MambaLMHeadModel.from_pretrained(args.model_name, device=device, dtype=dtype)
38
- else:
39
- tokenizer = AutoTokenizer.from_pretrained(args.model_name)
40
- model = AutoModelForCausalLM.from_pretrained(args.model_name, device_map={"": device}, torch_dtype=dtype)
41
- model.eval()
42
- print(f"Number of parameters: {sum(p.numel() for p in model.parameters() if p.requires_grad)}")
43
-
44
- torch.random.manual_seed(0)
45
- if args.prompt is None:
46
- input_ids = torch.randint(1, 1000, (args.batch, args.promptlen), dtype=torch.long, device="cuda")
47
- attn_mask = torch.ones_like(input_ids, dtype=torch.long, device="cuda")
48
- else:
49
- tokens = tokenizer(args.prompt, return_tensors="pt")
50
- input_ids = tokens.input_ids.to(device=device)
51
- attn_mask = tokens.attention_mask.to(device=device)
52
- max_length = input_ids.shape[1] + args.genlen
53
-
54
- if is_mamba:
55
- fn = lambda: model.generate(
56
- input_ids=input_ids,
57
- max_length=max_length,
58
- cg=True,
59
- return_dict_in_generate=True,
60
- output_scores=True,
61
- enable_timing=False,
62
- temperature=args.temperature,
63
- top_k=args.topk,
64
- top_p=args.topp,
65
- )
66
- else:
67
- fn = lambda: model.generate(
68
- input_ids=input_ids,
69
- attention_mask=attn_mask,
70
- max_length=max_length,
71
- return_dict_in_generate=True,
72
- pad_token_id=tokenizer.eos_token_id,
73
- do_sample=True,
74
- temperature=args.temperature,
75
- top_k=args.topk,
76
- top_p=args.topp,
77
- )
78
- out = fn()
79
- if args.prompt is not None:
80
- print(tokenizer.batch_decode(out.sequences.tolist()))
81
-
82
- torch.cuda.synchronize()
83
- start = time.time()
84
- for _ in range(repeats):
85
- fn()
86
- torch.cuda.synchronize()
87
- print(f"Prompt length: {len(input_ids[0])}, generation length: {len(out.sequences[0]) - len(input_ids[0])}")
88
- print(f"{args.model_name} prompt processing + decoding time: {(time.time() - start) / repeats * 1000:.0f}ms")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/reverse_scan.cuh DELETED
@@ -1,401 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <cub/config.cuh>
8
-
9
- #include <cub/util_ptx.cuh>
10
- #include <cub/util_type.cuh>
11
- #include <cub/block/block_raking_layout.cuh>
12
- // #include <cub/detail/uninitialized_copy.cuh>
13
- #include "uninitialized_copy.cuh"
14
-
15
- /**
16
- * Perform a reverse sequential reduction over \p LENGTH elements of the \p input array. The aggregate is returned.
17
- */
18
- template <
19
- int LENGTH,
20
- typename T,
21
- typename ReductionOp>
22
- __device__ __forceinline__ T ThreadReverseReduce(const T (&input)[LENGTH], ReductionOp reduction_op) {
23
- static_assert(LENGTH > 0);
24
- T retval = input[LENGTH - 1];
25
- #pragma unroll
26
- for (int i = LENGTH - 2; i >= 0; --i) { retval = reduction_op(retval, input[i]); }
27
- return retval;
28
- }
29
-
30
- /**
31
- * Perform a sequential inclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
32
- */
33
- template <
34
- int LENGTH,
35
- typename T,
36
- typename ScanOp>
37
- __device__ __forceinline__ T ThreadReverseScanInclusive(
38
- const T (&input)[LENGTH],
39
- T (&output)[LENGTH],
40
- ScanOp scan_op,
41
- const T postfix)
42
- {
43
- T inclusive = postfix;
44
- #pragma unroll
45
- for (int i = LENGTH - 1; i >= 0; --i) {
46
- inclusive = scan_op(inclusive, input[i]);
47
- output[i] = inclusive;
48
- }
49
- }
50
-
51
- /**
52
- * Perform a sequential exclusive postfix reverse scan over the statically-sized \p input array, seeded with the specified \p postfix. The aggregate is returned.
53
- */
54
- template <
55
- int LENGTH,
56
- typename T,
57
- typename ScanOp>
58
- __device__ __forceinline__ T ThreadReverseScanExclusive(
59
- const T (&input)[LENGTH],
60
- T (&output)[LENGTH],
61
- ScanOp scan_op,
62
- const T postfix)
63
- {
64
- // Careful, output maybe be aliased to input
65
- T exclusive = postfix;
66
- T inclusive;
67
- #pragma unroll
68
- for (int i = LENGTH - 1; i >= 0; --i) {
69
- inclusive = scan_op(exclusive, input[i]);
70
- output[i] = exclusive;
71
- exclusive = inclusive;
72
- }
73
- return inclusive;
74
- }
75
-
76
-
77
- /**
78
- * \brief WarpReverseScan provides SHFL-based variants of parallel postfix scan of items partitioned across a CUDA thread warp.
79
- *
80
- * LOGICAL_WARP_THREADS must be a power-of-two
81
- */
82
- template <
83
- typename T, ///< Data type being scanned
84
- int LOGICAL_WARP_THREADS ///< Number of threads per logical warp
85
- >
86
- struct WarpReverseScan {
87
- //---------------------------------------------------------------------
88
- // Constants and type definitions
89
- //---------------------------------------------------------------------
90
-
91
- /// Whether the logical warp size and the PTX warp size coincide
92
- static constexpr bool IS_ARCH_WARP = (LOGICAL_WARP_THREADS == CUB_WARP_THREADS(0));
93
- /// The number of warp scan steps
94
- static constexpr int STEPS = cub::Log2<LOGICAL_WARP_THREADS>::VALUE;
95
- static_assert(LOGICAL_WARP_THREADS == 1 << STEPS);
96
-
97
-
98
- //---------------------------------------------------------------------
99
- // Thread fields
100
- //---------------------------------------------------------------------
101
-
102
- /// Lane index in logical warp
103
- unsigned int lane_id;
104
-
105
- /// Logical warp index in 32-thread physical warp
106
- unsigned int warp_id;
107
-
108
- /// 32-thread physical warp member mask of logical warp
109
- unsigned int member_mask;
110
-
111
- //---------------------------------------------------------------------
112
- // Construction
113
- //---------------------------------------------------------------------
114
-
115
- /// Constructor
116
- explicit __device__ __forceinline__
117
- WarpReverseScan()
118
- : lane_id(cub::LaneId())
119
- , warp_id(IS_ARCH_WARP ? 0 : (lane_id / LOGICAL_WARP_THREADS))
120
- , member_mask(cub::WarpMask<LOGICAL_WARP_THREADS>(warp_id))
121
- {
122
- if (!IS_ARCH_WARP) {
123
- lane_id = lane_id % LOGICAL_WARP_THREADS;
124
- }
125
- }
126
-
127
-
128
- /// Broadcast
129
- __device__ __forceinline__ T Broadcast(
130
- T input, ///< [in] The value to broadcast
131
- int src_lane) ///< [in] Which warp lane is to do the broadcasting
132
- {
133
- return cub::ShuffleIndex<LOGICAL_WARP_THREADS>(input, src_lane, member_mask);
134
- }
135
-
136
-
137
- /// Inclusive scan
138
- template <typename ScanOpT>
139
- __device__ __forceinline__ void InclusiveReverseScan(
140
- T input, ///< [in] Calling thread's input item.
141
- T &inclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
142
- ScanOpT scan_op) ///< [in] Binary scan operator
143
- {
144
- inclusive_output = input;
145
- #pragma unroll
146
- for (int STEP = 0; STEP < STEPS; STEP++) {
147
- int offset = 1 << STEP;
148
- T temp = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
149
- inclusive_output, offset, LOGICAL_WARP_THREADS - 1, member_mask
150
- );
151
- // Perform scan op if from a valid peer
152
- inclusive_output = static_cast<int>(lane_id) >= LOGICAL_WARP_THREADS - offset
153
- ? inclusive_output : scan_op(temp, inclusive_output);
154
- }
155
- }
156
-
157
- /// Exclusive scan
158
- // Get exclusive from inclusive
159
- template <typename ScanOpT>
160
- __device__ __forceinline__ void ExclusiveReverseScan(
161
- T input, ///< [in] Calling thread's input item.
162
- T &exclusive_output, ///< [out] Calling thread's output item. May be aliased with \p input.
163
- ScanOpT scan_op, ///< [in] Binary scan operator
164
- T &warp_aggregate) ///< [out] Warp-wide aggregate reduction of input items.
165
- {
166
- T inclusive_output;
167
- InclusiveReverseScan(input, inclusive_output, scan_op);
168
- warp_aggregate = cub::ShuffleIndex<LOGICAL_WARP_THREADS>(inclusive_output, 0, member_mask);
169
- // initial value unknown
170
- exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
171
- inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
172
- );
173
- }
174
-
175
- /**
176
- * \brief Computes both inclusive and exclusive reverse scans using the specified binary scan functor across the calling warp. Because no initial value is supplied, the \p exclusive_output computed for the last <em>warp-lane</em> is undefined.
177
- */
178
- template <typename ScanOpT>
179
- __device__ __forceinline__ void ReverseScan(
180
- T input, ///< [in] Calling thread's input item.
181
- T &inclusive_output, ///< [out] Calling thread's inclusive-scan output item.
182
- T &exclusive_output, ///< [out] Calling thread's exclusive-scan output item.
183
- ScanOpT scan_op) ///< [in] Binary scan operator
184
- {
185
- InclusiveReverseScan(input, inclusive_output, scan_op);
186
- // initial value unknown
187
- exclusive_output = cub::ShuffleDown<LOGICAL_WARP_THREADS>(
188
- inclusive_output, 1, LOGICAL_WARP_THREADS - 1, member_mask
189
- );
190
- }
191
-
192
- };
193
-
194
- /**
195
- * \brief BlockReverseScan provides variants of raking-based parallel postfix scan across a CUDA thread block.
196
- */
197
- template <
198
- typename T, ///< Data type being scanned
199
- int BLOCK_DIM_X, ///< The thread block length in threads along the X dimension
200
- bool MEMOIZE=false ///< Whether or not to buffer outer raking scan partials to incur fewer shared memory reads at the expense of higher register pressure
201
- >
202
- struct BlockReverseScan {
203
- //---------------------------------------------------------------------
204
- // Types and constants
205
- //---------------------------------------------------------------------
206
-
207
- /// Constants
208
- /// The thread block size in threads
209
- static constexpr int BLOCK_THREADS = BLOCK_DIM_X;
210
-
211
- /// Layout type for padded thread block raking grid
212
- using BlockRakingLayout = cub::BlockRakingLayout<T, BLOCK_THREADS>;
213
- // The number of reduction elements is not a multiple of the number of raking threads for now
214
- static_assert(BlockRakingLayout::UNGUARDED);
215
-
216
- /// Number of raking threads
217
- static constexpr int RAKING_THREADS = BlockRakingLayout::RAKING_THREADS;
218
- /// Number of raking elements per warp synchronous raking thread
219
- static constexpr int SEGMENT_LENGTH = BlockRakingLayout::SEGMENT_LENGTH;
220
- /// Cooperative work can be entirely warp synchronous
221
- static constexpr bool WARP_SYNCHRONOUS = (int(BLOCK_THREADS) == int(RAKING_THREADS));
222
-
223
- /// WarpReverseScan utility type
224
- using WarpReverseScan = WarpReverseScan<T, RAKING_THREADS>;
225
-
226
- /// Shared memory storage layout type
227
- struct _TempStorage {
228
- typename BlockRakingLayout::TempStorage raking_grid; ///< Padded thread block raking grid
229
- };
230
-
231
-
232
- /// Alias wrapper allowing storage to be unioned
233
- struct TempStorage : cub::Uninitialized<_TempStorage> {};
234
-
235
-
236
- //---------------------------------------------------------------------
237
- // Per-thread fields
238
- //---------------------------------------------------------------------
239
-
240
- // Thread fields
241
- _TempStorage &temp_storage;
242
- unsigned int linear_tid;
243
- T cached_segment[SEGMENT_LENGTH];
244
-
245
-
246
- //---------------------------------------------------------------------
247
- // Utility methods
248
- //---------------------------------------------------------------------
249
-
250
- /// Performs upsweep raking reduction, returning the aggregate
251
- template <typename ScanOp>
252
- __device__ __forceinline__ T Upsweep(ScanOp scan_op) {
253
- T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
254
- // Read data into registers
255
- #pragma unroll
256
- for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
257
- T raking_partial = cached_segment[SEGMENT_LENGTH - 1];
258
- #pragma unroll
259
- for (int i = SEGMENT_LENGTH - 2; i >= 0; --i) {
260
- raking_partial = scan_op(raking_partial, cached_segment[i]);
261
- }
262
- return raking_partial;
263
- }
264
-
265
-
266
- /// Performs exclusive downsweep raking scan
267
- template <typename ScanOp>
268
- __device__ __forceinline__ void ExclusiveDownsweep(
269
- ScanOp scan_op,
270
- T raking_partial)
271
- {
272
- T *smem_raking_ptr = BlockRakingLayout::RakingPtr(temp_storage.raking_grid, linear_tid);
273
- // Read data back into registers
274
- if (!MEMOIZE) {
275
- #pragma unroll
276
- for (int i = 0; i < SEGMENT_LENGTH; ++i) { cached_segment[i] = smem_raking_ptr[i]; }
277
- }
278
- ThreadReverseScanExclusive(cached_segment, cached_segment, scan_op, raking_partial);
279
- // Write data back to smem
280
- #pragma unroll
281
- for (int i = 0; i < SEGMENT_LENGTH; ++i) { smem_raking_ptr[i] = cached_segment[i]; }
282
- }
283
-
284
-
285
- //---------------------------------------------------------------------
286
- // Constructors
287
- //---------------------------------------------------------------------
288
-
289
- /// Constructor
290
- __device__ __forceinline__ BlockReverseScan(
291
- TempStorage &temp_storage)
292
- :
293
- temp_storage(temp_storage.Alias()),
294
- linear_tid(cub::RowMajorTid(BLOCK_DIM_X, 1, 1))
295
- {}
296
-
297
-
298
- /// Computes an exclusive thread block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes one input element. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
299
- template <
300
- typename ScanOp,
301
- typename BlockPostfixCallbackOp>
302
- __device__ __forceinline__ void ExclusiveReverseScan(
303
- T input, ///< [in] Calling thread's input item
304
- T &exclusive_output, ///< [out] Calling thread's output item (may be aliased to \p input)
305
- ScanOp scan_op, ///< [in] Binary scan operator
306
- BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a thread block-wide postfix to be applied to all inputs.
307
- {
308
- if (WARP_SYNCHRONOUS) {
309
- // Short-circuit directly to warp-synchronous scan
310
- T block_aggregate;
311
- WarpReverseScan warp_scan;
312
- warp_scan.ExclusiveReverseScan(input, exclusive_output, scan_op, block_aggregate);
313
- // Obtain warp-wide postfix in lane0, then broadcast to other lanes
314
- T block_postfix = block_postfix_callback_op(block_aggregate);
315
- block_postfix = warp_scan.Broadcast(block_postfix, 0);
316
- exclusive_output = linear_tid == BLOCK_THREADS - 1 ? block_postfix : scan_op(block_postfix, exclusive_output);
317
- } else {
318
- // Place thread partial into shared memory raking grid
319
- T *placement_ptr = BlockRakingLayout::PlacementPtr(temp_storage.raking_grid, linear_tid);
320
- detail::uninitialized_copy(placement_ptr, input);
321
- cub::CTA_SYNC();
322
- // Reduce parallelism down to just raking threads
323
- if (linear_tid < RAKING_THREADS) {
324
- WarpReverseScan warp_scan;
325
- // Raking upsweep reduction across shared partials
326
- T upsweep_partial = Upsweep(scan_op);
327
- // Warp-synchronous scan
328
- T exclusive_partial, block_aggregate;
329
- warp_scan.ExclusiveReverseScan(upsweep_partial, exclusive_partial, scan_op, block_aggregate);
330
- // Obtain block-wide postfix in lane0, then broadcast to other lanes
331
- T block_postfix = block_postfix_callback_op(block_aggregate);
332
- block_postfix = warp_scan.Broadcast(block_postfix, 0);
333
- // Update postfix with warpscan exclusive partial
334
- T downsweep_postfix = linear_tid == RAKING_THREADS - 1
335
- ? block_postfix : scan_op(block_postfix, exclusive_partial);
336
- // Exclusive raking downsweep scan
337
- ExclusiveDownsweep(scan_op, downsweep_postfix);
338
- }
339
- cub::CTA_SYNC();
340
- // Grab thread postfix from shared memory
341
- exclusive_output = *placement_ptr;
342
-
343
- // // Compute warp scan in each warp.
344
- // // The exclusive output from the last lane in each warp is invalid.
345
- // T inclusive_output;
346
- // WarpReverseScan warp_scan;
347
- // warp_scan.ReverseScan(input, inclusive_output, exclusive_output, scan_op);
348
-
349
- // // Compute the warp-wide postfix and block-wide aggregate for each warp. Warp postfix for the last warp is invalid.
350
- // T block_aggregate;
351
- // T warp_postfix = ComputeWarpPostfix(scan_op, inclusive_output, block_aggregate);
352
-
353
- // // Apply warp postfix to our lane's partial
354
- // if (warp_id != 0) {
355
- // exclusive_output = scan_op(warp_postfix, exclusive_output);
356
- // if (lane_id == 0) { exclusive_output = warp_postfix; }
357
- // }
358
-
359
- // // Use the first warp to determine the thread block postfix, returning the result in lane0
360
- // if (warp_id == 0) {
361
- // T block_postfix = block_postfix_callback_op(block_aggregate);
362
- // if (lane_id == 0) {
363
- // // Share the postfix with all threads
364
- // detail::uninitialized_copy(&temp_storage.block_postfix,
365
- // block_postfix);
366
-
367
- // exclusive_output = block_postfix; // The block postfix is the exclusive output for tid0
368
- // }
369
- // }
370
-
371
- // cub::CTA_SYNC();
372
-
373
- // // Incorporate thread block postfix into outputs
374
- // T block_postfix = temp_storage.block_postfix;
375
- // if (linear_tid > 0) { exclusive_output = scan_op(block_postfix, exclusive_output); }
376
- }
377
- }
378
-
379
-
380
- /**
381
- * \brief Computes an inclusive block-wide postfix scan using the specified binary \p scan_op functor. Each thread contributes an array of consecutive input elements. the call-back functor \p block_postfix_callback_op is invoked by the first warp in the block, and the value returned by <em>lane</em><sub>0</sub> in that warp is used as the "seed" value that logically postfixes the thread block's scan inputs. Also provides every thread with the block-wide \p block_aggregate of all inputs.
382
- */
383
- template <
384
- int ITEMS_PER_THREAD,
385
- typename ScanOp,
386
- typename BlockPostfixCallbackOp>
387
- __device__ __forceinline__ void InclusiveReverseScan(
388
- T (&input)[ITEMS_PER_THREAD], ///< [in] Calling thread's input items
389
- T (&output)[ITEMS_PER_THREAD], ///< [out] Calling thread's output items (may be aliased to \p input)
390
- ScanOp scan_op, ///< [in] Binary scan functor
391
- BlockPostfixCallbackOp &block_postfix_callback_op) ///< [in-out] <b>[<em>warp</em><sub>0</sub> only]</b> Call-back functor for specifying a block-wide postfix to be applied to the logical input sequence.
392
- {
393
- // Reduce consecutive thread items in registers
394
- T thread_postfix = ThreadReverseReduce(input, scan_op);
395
- // Exclusive thread block-scan
396
- ExclusiveReverseScan(thread_postfix, thread_postfix, scan_op, block_postfix_callback_op);
397
- // Inclusive scan in registers with postfix as seed
398
- ThreadReverseScanInclusive(input, output, scan_op, thread_postfix);
399
- }
400
-
401
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan.cpp DELETED
@@ -1,497 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #include <ATen/cuda/CUDAContext.h>
6
- #include <c10/cuda/CUDAGuard.h>
7
- #include <torch/extension.h>
8
- #include <vector>
9
-
10
- #include "selective_scan.h"
11
-
12
- #define CHECK_SHAPE(x, ...) TORCH_CHECK(x.sizes() == torch::IntArrayRef({__VA_ARGS__}), #x " must have shape (" #__VA_ARGS__ ")")
13
-
14
- #define DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(ITYPE, NAME, ...) \
15
- if (ITYPE == at::ScalarType::Half) { \
16
- using input_t = at::Half; \
17
- __VA_ARGS__(); \
18
- } else if (ITYPE == at::ScalarType::BFloat16) { \
19
- using input_t = at::BFloat16; \
20
- __VA_ARGS__(); \
21
- } else if (ITYPE == at::ScalarType::Float) { \
22
- using input_t = float; \
23
- __VA_ARGS__(); \
24
- } else { \
25
- AT_ERROR(#NAME, " not implemented for input type '", toString(ITYPE), "'"); \
26
- }
27
-
28
- #define DISPATCH_WTYPE_FLOAT_AND_HALF_AND_BF16(WTYPE, NAME, ...) \
29
- if (WTYPE == at::ScalarType::Half) { \
30
- using weight_t = at::Half; \
31
- __VA_ARGS__(); \
32
- } else if (WTYPE == at::ScalarType::BFloat16) { \
33
- using weight_t = at::BFloat16; \
34
- __VA_ARGS__(); \
35
- } else if (WTYPE == at::ScalarType::Float) { \
36
- using weight_t = float; \
37
- __VA_ARGS__(); \
38
- } else { \
39
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
40
- }
41
-
42
- #define DISPATCH_WTYPE_FLOAT_AND_COMPLEX(WTYPE, NAME, ...) \
43
- if (WTYPE == at::ScalarType::Float) { \
44
- using weight_t = float; \
45
- __VA_ARGS__(); \
46
- } else if (WTYPE == at::ScalarType::ComplexFloat) { \
47
- using weight_t = c10::complex<float>; \
48
- __VA_ARGS__(); \
49
- } else { \
50
- AT_ERROR(#NAME, " not implemented for weight type '", toString(WTYPE), "'"); \
51
- }
52
-
53
- template<typename input_t, typename weight_t>
54
- void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream);
55
-
56
- template <typename input_t, typename weight_t>
57
- void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream);
58
-
59
- void set_ssm_params_fwd(SSMParamsBase &params,
60
- // sizes
61
- const size_t batch,
62
- const size_t dim,
63
- const size_t seqlen,
64
- const size_t dstate,
65
- const size_t n_groups,
66
- const size_t n_chunks,
67
- const bool is_variable_B,
68
- const bool is_variable_C,
69
- // device pointers
70
- const at::Tensor u,
71
- const at::Tensor delta,
72
- const at::Tensor A,
73
- const at::Tensor B,
74
- const at::Tensor C,
75
- const at::Tensor out,
76
- const at::Tensor z,
77
- const at::Tensor out_z,
78
- void* D_ptr,
79
- void* delta_bias_ptr,
80
- void* x_ptr,
81
- bool has_z,
82
- bool delta_softplus) {
83
-
84
- // Reset the parameters
85
- memset(&params, 0, sizeof(params));
86
-
87
- params.batch = batch;
88
- params.dim = dim;
89
- params.seqlen = seqlen;
90
- params.dstate = dstate;
91
- params.n_groups = n_groups;
92
- params.n_chunks = n_chunks;
93
- params.dim_ngroups_ratio = dim / n_groups;
94
-
95
- params.delta_softplus = delta_softplus;
96
-
97
- params.is_variable_B = is_variable_B;
98
- params.is_variable_C = is_variable_C;
99
-
100
- // Set the pointers and strides.
101
- params.u_ptr = u.data_ptr();
102
- params.delta_ptr = delta.data_ptr();
103
- params.A_ptr = A.data_ptr();
104
- params.B_ptr = B.data_ptr();
105
- params.C_ptr = C.data_ptr();
106
- params.D_ptr = D_ptr;
107
- params.delta_bias_ptr = delta_bias_ptr;
108
- params.out_ptr = out.data_ptr();
109
- params.x_ptr = x_ptr;
110
- params.z_ptr = has_z ? z.data_ptr() : nullptr;
111
- params.out_z_ptr = has_z ? out_z.data_ptr() : nullptr;
112
- // All stride are in elements, not bytes.
113
- params.A_d_stride = A.stride(0);
114
- params.A_dstate_stride = A.stride(1);
115
- if (!is_variable_B) {
116
- params.B_d_stride = B.stride(0);
117
- } else {
118
- params.B_batch_stride = B.stride(0);
119
- params.B_group_stride = B.stride(1);
120
- }
121
- params.B_dstate_stride = !is_variable_B ? B.stride(1) : B.stride(2);
122
- if (!is_variable_C) {
123
- params.C_d_stride = C.stride(0);
124
- } else {
125
- params.C_batch_stride = C.stride(0);
126
- params.C_group_stride = C.stride(1);
127
- }
128
- params.C_dstate_stride = !is_variable_C ? C.stride(1) : C.stride(2);
129
- params.u_batch_stride = u.stride(0);
130
- params.u_d_stride = u.stride(1);
131
- params.delta_batch_stride = delta.stride(0);
132
- params.delta_d_stride = delta.stride(1);
133
- if (has_z) {
134
- params.z_batch_stride = z.stride(0);
135
- params.z_d_stride = z.stride(1);
136
- params.out_z_batch_stride = out_z.stride(0);
137
- params.out_z_d_stride = out_z.stride(1);
138
- }
139
- params.out_batch_stride = out.stride(0);
140
- params.out_d_stride = out.stride(1);
141
- }
142
-
143
- void set_ssm_params_bwd(SSMParamsBwd &params,
144
- // sizes
145
- const size_t batch,
146
- const size_t dim,
147
- const size_t seqlen,
148
- const size_t dstate,
149
- const size_t n_groups,
150
- const size_t n_chunks,
151
- const bool is_variable_B,
152
- const bool is_variable_C,
153
- // device pointers
154
- const at::Tensor u,
155
- const at::Tensor delta,
156
- const at::Tensor A,
157
- const at::Tensor B,
158
- const at::Tensor C,
159
- const at::Tensor z,
160
- const at::Tensor out,
161
- const at::Tensor out_z,
162
- void* D_ptr,
163
- void* delta_bias_ptr,
164
- void* x_ptr,
165
- const at::Tensor dout,
166
- const at::Tensor du,
167
- const at::Tensor ddelta,
168
- const at::Tensor dA,
169
- const at::Tensor dB,
170
- const at::Tensor dC,
171
- const at::Tensor dz,
172
- void* dD_ptr,
173
- void* ddelta_bias_ptr,
174
- bool has_z,
175
- bool delta_softplus,
176
- bool recompute_out_z) {
177
- // Pass in "dout" instead of "out", we're not gonna use "out" unless we have z
178
- set_ssm_params_fwd(params, batch, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
179
- u, delta, A, B, C, has_z ? out : dout,
180
- has_z ? z : dout,
181
- // If not recompute_out_z, pass dout instead of out_z.
182
- // This won't be used by the bwd kernel
183
- recompute_out_z ? out_z : dout,
184
- D_ptr, delta_bias_ptr, x_ptr, has_z, delta_softplus);
185
- if (!recompute_out_z) { params.out_z_ptr = nullptr; }
186
-
187
- // Set the pointers and strides.
188
- params.dout_ptr = dout.data_ptr();
189
- params.du_ptr = du.data_ptr();
190
- params.dA_ptr = dA.data_ptr();
191
- params.dB_ptr = dB.data_ptr();
192
- params.dC_ptr = dC.data_ptr();
193
- params.dD_ptr = dD_ptr;
194
- params.ddelta_ptr = ddelta.data_ptr();
195
- params.ddelta_bias_ptr = ddelta_bias_ptr;
196
- params.dz_ptr = has_z ? dz.data_ptr() : nullptr;
197
- // All stride are in elements, not bytes.
198
- params.dout_batch_stride = dout.stride(0);
199
- params.dout_d_stride = dout.stride(1);
200
- params.dA_d_stride = dA.stride(0);
201
- params.dA_dstate_stride = dA.stride(1);
202
- if (!is_variable_B) {
203
- params.dB_d_stride = dB.stride(0);
204
- } else {
205
- params.dB_batch_stride = dB.stride(0);
206
- params.dB_group_stride = dB.stride(1);
207
- }
208
- params.dB_dstate_stride = !is_variable_B ? dB.stride(1) : dB.stride(2);
209
- if (!is_variable_C) {
210
- params.dC_d_stride = dC.stride(0);
211
- } else {
212
- params.dC_batch_stride = dC.stride(0);
213
- params.dC_group_stride = dC.stride(1);
214
- }
215
- params.dC_dstate_stride = !is_variable_C ? dC.stride(1) : dC.stride(2);
216
- params.du_batch_stride = du.stride(0);
217
- params.du_d_stride = du.stride(1);
218
- params.ddelta_batch_stride = ddelta.stride(0);
219
- params.ddelta_d_stride = ddelta.stride(1);
220
- if (has_z) {
221
- params.dz_batch_stride = dz.stride(0);
222
- params.dz_d_stride = dz.stride(1);
223
- }
224
- }
225
-
226
- std::vector<at::Tensor>
227
- selective_scan_fwd(const at::Tensor &u, const at::Tensor &delta,
228
- const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
229
- const c10::optional<at::Tensor> &D_,
230
- const c10::optional<at::Tensor> &z_,
231
- const c10::optional<at::Tensor> &delta_bias_,
232
- bool delta_softplus) {
233
- auto input_type = u.scalar_type();
234
- auto weight_type = A.scalar_type();
235
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
236
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
237
-
238
- const bool is_variable_B = B.dim() >= 3;
239
- const bool is_variable_C = C.dim() >= 3;
240
- const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
241
-
242
- TORCH_CHECK(delta.scalar_type() == input_type);
243
- TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
244
- TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
245
-
246
- TORCH_CHECK(u.is_cuda());
247
- TORCH_CHECK(delta.is_cuda());
248
- TORCH_CHECK(A.is_cuda());
249
- TORCH_CHECK(B.is_cuda());
250
- TORCH_CHECK(C.is_cuda());
251
-
252
- TORCH_CHECK(u.stride(-1) == 1);
253
- TORCH_CHECK(delta.stride(-1) == 1);
254
-
255
- const auto sizes = u.sizes();
256
- const int batch_size = sizes[0];
257
- const int dim = sizes[1];
258
- const int seqlen = sizes[2];
259
- const int dstate = A.size(1);
260
- const int n_groups = is_variable_B ? B.size(1) : 1;
261
-
262
- TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
263
-
264
- CHECK_SHAPE(u, batch_size, dim, seqlen);
265
- CHECK_SHAPE(delta, batch_size, dim, seqlen);
266
- CHECK_SHAPE(A, dim, dstate);
267
- if (!is_variable_B) {
268
- CHECK_SHAPE(B, dim, dstate);
269
- } else {
270
- CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
271
- TORCH_CHECK(B.stride(-1) == 1);
272
- }
273
- if (!is_variable_C) {
274
- CHECK_SHAPE(C, dim, dstate);
275
- } else {
276
- CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
277
- TORCH_CHECK(C.stride(-1) == 1);
278
- }
279
-
280
- if (D_.has_value()) {
281
- auto D = D_.value();
282
- TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
283
- TORCH_CHECK(D.is_cuda());
284
- TORCH_CHECK(D.stride(-1) == 1);
285
- CHECK_SHAPE(D, dim);
286
- }
287
-
288
- if (delta_bias_.has_value()) {
289
- auto delta_bias = delta_bias_.value();
290
- TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
291
- TORCH_CHECK(delta_bias.is_cuda());
292
- TORCH_CHECK(delta_bias.stride(-1) == 1);
293
- CHECK_SHAPE(delta_bias, dim);
294
- }
295
-
296
- at::Tensor z, out_z;
297
- const bool has_z = z_.has_value();
298
- if (has_z) {
299
- z = z_.value();
300
- TORCH_CHECK(z.scalar_type() == input_type);
301
- TORCH_CHECK(z.is_cuda());
302
- TORCH_CHECK(z.stride(-1) == 1);
303
- CHECK_SHAPE(z, batch_size, dim, seqlen);
304
- out_z = torch::empty_like(z);
305
- }
306
-
307
- const int n_chunks = (seqlen + 2048 - 1) / 2048;
308
- // const int n_chunks = (seqlen + 1024 - 1) / 1024;
309
- // at::Tensor out = torch::empty_like(u);
310
- // Right now u has BHL layout and delta has HBL layout, and we want out to have HBL layout
311
- at::Tensor out = torch::empty_like(delta);
312
- at::Tensor x;
313
- x = torch::empty({batch_size, dim, n_chunks, dstate * 2}, u.options().dtype(weight_type));
314
-
315
- SSMParamsBase params;
316
- set_ssm_params_fwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
317
- u, delta, A, B, C, out, z, out_z,
318
- D_.has_value() ? D_.value().data_ptr() : nullptr,
319
- delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
320
- x.data_ptr(),
321
- has_z,
322
- delta_softplus);
323
-
324
- // Otherwise the kernel will be launched from cuda:0 device
325
- // Cast to char to avoid compiler warning about narrowing
326
- at::cuda::CUDAGuard device_guard{(char)u.get_device()};
327
- auto stream = at::cuda::getCurrentCUDAStream().stream();
328
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_fwd", [&] {
329
- DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_fwd", [&] {
330
- selective_scan_fwd_cuda<input_t, weight_t>(params, stream);
331
- });
332
- });
333
- std::vector<at::Tensor> result = {out, x};
334
- if (has_z) { result.push_back(out_z); }
335
- return result;
336
- }
337
-
338
- std::vector<at::Tensor>
339
- selective_scan_bwd(const at::Tensor &u, const at::Tensor &delta,
340
- const at::Tensor &A, const at::Tensor &B, const at::Tensor &C,
341
- const c10::optional<at::Tensor> &D_,
342
- const c10::optional<at::Tensor> &z_,
343
- const c10::optional<at::Tensor> &delta_bias_,
344
- const at::Tensor &dout,
345
- const c10::optional<at::Tensor> &x_,
346
- const c10::optional<at::Tensor> &out_,
347
- c10::optional<at::Tensor> &dz_,
348
- bool delta_softplus,
349
- bool recompute_out_z) {
350
- auto input_type = u.scalar_type();
351
- auto weight_type = A.scalar_type();
352
- TORCH_CHECK(input_type == at::ScalarType::Float || input_type == at::ScalarType::Half || input_type == at::ScalarType::BFloat16);
353
- TORCH_CHECK(weight_type == at::ScalarType::Float || weight_type == at::ScalarType::ComplexFloat);
354
-
355
- const bool is_variable_B = B.dim() >= 3;
356
- const bool is_variable_C = C.dim() >= 3;
357
- const bool is_complex = weight_type == at::ScalarType::ComplexFloat;
358
-
359
- TORCH_CHECK(delta.scalar_type() == input_type);
360
- TORCH_CHECK(B.scalar_type() == (!is_variable_B ? weight_type : input_type));
361
- TORCH_CHECK(C.scalar_type() == (!is_variable_C ? weight_type : input_type));
362
- TORCH_CHECK(dout.scalar_type() == input_type);
363
-
364
- TORCH_CHECK(u.is_cuda());
365
- TORCH_CHECK(delta.is_cuda());
366
- TORCH_CHECK(A.is_cuda());
367
- TORCH_CHECK(B.is_cuda());
368
- TORCH_CHECK(C.is_cuda());
369
- TORCH_CHECK(dout.is_cuda());
370
-
371
- TORCH_CHECK(u.stride(-1) == 1);
372
- TORCH_CHECK(delta.stride(-1) == 1);
373
- TORCH_CHECK(dout.stride(-1) == 1);
374
-
375
- const auto sizes = u.sizes();
376
- const int batch_size = sizes[0];
377
- const int dim = sizes[1];
378
- const int seqlen = sizes[2];
379
- const int dstate = A.size(1);
380
- const int n_groups = is_variable_B ? B.size(1) : 1;
381
-
382
- TORCH_CHECK(dstate <= 256, "selective_scan only supports state dimension <= 256");
383
-
384
- CHECK_SHAPE(u, batch_size, dim, seqlen);
385
- CHECK_SHAPE(delta, batch_size, dim, seqlen);
386
- CHECK_SHAPE(A, dim, dstate);
387
- if (!is_variable_B) {
388
- CHECK_SHAPE(B, dim, dstate);
389
- } else {
390
- CHECK_SHAPE(B, batch_size, n_groups, dstate, !is_complex ? seqlen : seqlen * 2);
391
- TORCH_CHECK(B.stride(-1) == 1);
392
- }
393
- if (!is_variable_C) {
394
- CHECK_SHAPE(C, dim, dstate);
395
- } else {
396
- CHECK_SHAPE(C, batch_size, n_groups, dstate, !is_complex ? seqlen: seqlen * 2);
397
- TORCH_CHECK(C.stride(-1) == 1);
398
- }
399
- CHECK_SHAPE(dout, batch_size, dim, seqlen);
400
-
401
- if (D_.has_value()) {
402
- auto D = D_.value();
403
- TORCH_CHECK(D.scalar_type() == at::ScalarType::Float);
404
- TORCH_CHECK(D.is_cuda());
405
- TORCH_CHECK(D.stride(-1) == 1);
406
- CHECK_SHAPE(D, dim);
407
- }
408
-
409
- if (delta_bias_.has_value()) {
410
- auto delta_bias = delta_bias_.value();
411
- TORCH_CHECK(delta_bias.scalar_type() == at::ScalarType::Float);
412
- TORCH_CHECK(delta_bias.is_cuda());
413
- TORCH_CHECK(delta_bias.stride(-1) == 1);
414
- CHECK_SHAPE(delta_bias, dim);
415
- }
416
-
417
- at::Tensor z, out, dz, out_z;
418
- const bool has_z = z_.has_value();
419
- if (has_z) {
420
- z = z_.value();
421
- TORCH_CHECK(z.scalar_type() == input_type);
422
- TORCH_CHECK(z.is_cuda());
423
- TORCH_CHECK(z.stride(-1) == 1);
424
- CHECK_SHAPE(z, batch_size, dim, seqlen);
425
-
426
- TORCH_CHECK(out_.has_value());
427
- out = out_.value();
428
- TORCH_CHECK(out.scalar_type() == input_type);
429
- TORCH_CHECK(out.is_cuda());
430
- TORCH_CHECK(out.stride(-1) == 1);
431
- CHECK_SHAPE(out, batch_size, dim, seqlen);
432
-
433
- if (dz_.has_value()) {
434
- dz = dz_.value();
435
- TORCH_CHECK(dz.scalar_type() == input_type);
436
- TORCH_CHECK(dz.is_cuda());
437
- TORCH_CHECK(dz.stride(-1) == 1);
438
- CHECK_SHAPE(dz, batch_size, dim, seqlen);
439
- } else {
440
- dz = torch::empty_like(z);
441
- }
442
- if (recompute_out_z) {
443
- out_z = torch::empty_like(out);
444
- }
445
- }
446
-
447
- const int n_chunks = (seqlen + 2048 - 1) / 2048;
448
- // const int n_chunks = (seqlen + 1024 - 1) / 1024;
449
- if (n_chunks > 1) { TORCH_CHECK(x_.has_value()); }
450
- if (x_.has_value()) {
451
- auto x = x_.value();
452
- TORCH_CHECK(x.scalar_type() == weight_type);
453
- TORCH_CHECK(x.is_cuda());
454
- TORCH_CHECK(x.is_contiguous());
455
- CHECK_SHAPE(x, batch_size, dim, n_chunks, 2 * dstate);
456
- }
457
-
458
- at::Tensor du = torch::empty_like(u);
459
- at::Tensor ddelta = torch::empty_like(delta);
460
- at::Tensor dA = torch::zeros_like(A);
461
- at::Tensor dB = !is_variable_B ? torch::zeros_like(B) : torch::zeros_like(B, B.options().dtype(torch::kFloat32));
462
- at::Tensor dC = !is_variable_C ? torch::zeros_like(C) : torch::zeros_like(C, C.options().dtype(torch::kFloat32));
463
- at::Tensor dD;
464
- if (D_.has_value()) { dD = torch::zeros_like(D_.value()); }
465
- at::Tensor ddelta_bias;
466
- if (delta_bias_.has_value()) { ddelta_bias = torch::zeros_like(delta_bias_.value()); }
467
-
468
- SSMParamsBwd params;
469
- set_ssm_params_bwd(params, batch_size, dim, seqlen, dstate, n_groups, n_chunks, is_variable_B, is_variable_C,
470
- u, delta, A, B, C, z, out, out_z,
471
- D_.has_value() ? D_.value().data_ptr() : nullptr,
472
- delta_bias_.has_value() ? delta_bias_.value().data_ptr() : nullptr,
473
- x_.has_value() ? x_.value().data_ptr() : nullptr,
474
- dout, du, ddelta, dA, dB, dC, dz,
475
- D_.has_value() ? dD.data_ptr() : nullptr,
476
- delta_bias_.has_value() ? ddelta_bias.data_ptr() : nullptr,
477
- has_z, delta_softplus, recompute_out_z);
478
-
479
- // Otherwise the kernel will be launched from cuda:0 device
480
- // Cast to char to avoid compiler warning about narrowing
481
- at::cuda::CUDAGuard device_guard{(char)u.get_device()};
482
- auto stream = at::cuda::getCurrentCUDAStream().stream();
483
- DISPATCH_ITYPE_FLOAT_AND_HALF_AND_BF16(u.scalar_type(), "selective_scan_bwd", [&] {
484
- DISPATCH_WTYPE_FLOAT_AND_COMPLEX(A.scalar_type(), "selective_scan_bwd", [&] {
485
- selective_scan_bwd_cuda<input_t, weight_t>(params, stream);
486
- });
487
- });
488
- std::vector<at::Tensor> result = {du, ddelta, dA, dB.to(B.dtype()), dC.to(C.dtype()), dD, ddelta_bias};
489
- if (has_z) { result.push_back(dz); }
490
- if (recompute_out_z) { result.push_back(out_z); }
491
- return result;
492
- }
493
-
494
- PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
495
- m.def("fwd", &selective_scan_fwd, "Selective scan forward");
496
- m.def("bwd", &selective_scan_bwd, "Selective scan backward");
497
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan.h DELETED
@@ -1,101 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- ////////////////////////////////////////////////////////////////////////////////////////////////////
8
-
9
- struct SSMScanParamsBase {
10
- using index_t = uint32_t;
11
-
12
- int batch, seqlen, n_chunks;
13
- index_t a_batch_stride;
14
- index_t b_batch_stride;
15
- index_t out_batch_stride;
16
-
17
- // Common data pointers.
18
- void *__restrict__ a_ptr;
19
- void *__restrict__ b_ptr;
20
- void *__restrict__ out_ptr;
21
- void *__restrict__ x_ptr;
22
- };
23
-
24
- ////////////////////////////////////////////////////////////////////////////////////////////////////
25
-
26
- struct SSMParamsBase {
27
- using index_t = uint32_t;
28
-
29
- int batch, dim, seqlen, dstate, n_groups, n_chunks;
30
- int dim_ngroups_ratio;
31
- bool is_variable_B;
32
- bool is_variable_C;
33
-
34
- bool delta_softplus;
35
-
36
- index_t A_d_stride;
37
- index_t A_dstate_stride;
38
- index_t B_batch_stride;
39
- index_t B_d_stride;
40
- index_t B_dstate_stride;
41
- index_t B_group_stride;
42
- index_t C_batch_stride;
43
- index_t C_d_stride;
44
- index_t C_dstate_stride;
45
- index_t C_group_stride;
46
- index_t u_batch_stride;
47
- index_t u_d_stride;
48
- index_t delta_batch_stride;
49
- index_t delta_d_stride;
50
- index_t z_batch_stride;
51
- index_t z_d_stride;
52
- index_t out_batch_stride;
53
- index_t out_d_stride;
54
- index_t out_z_batch_stride;
55
- index_t out_z_d_stride;
56
-
57
- // Common data pointers.
58
- void *__restrict__ A_ptr;
59
- void *__restrict__ B_ptr;
60
- void *__restrict__ C_ptr;
61
- void *__restrict__ D_ptr;
62
- void *__restrict__ u_ptr;
63
- void *__restrict__ delta_ptr;
64
- void *__restrict__ delta_bias_ptr;
65
- void *__restrict__ out_ptr;
66
- void *__restrict__ x_ptr;
67
- void *__restrict__ z_ptr;
68
- void *__restrict__ out_z_ptr;
69
- };
70
-
71
- struct SSMParamsBwd: public SSMParamsBase {
72
- index_t dout_batch_stride;
73
- index_t dout_d_stride;
74
- index_t dA_d_stride;
75
- index_t dA_dstate_stride;
76
- index_t dB_batch_stride;
77
- index_t dB_group_stride;
78
- index_t dB_d_stride;
79
- index_t dB_dstate_stride;
80
- index_t dC_batch_stride;
81
- index_t dC_group_stride;
82
- index_t dC_d_stride;
83
- index_t dC_dstate_stride;
84
- index_t du_batch_stride;
85
- index_t du_d_stride;
86
- index_t dz_batch_stride;
87
- index_t dz_d_stride;
88
- index_t ddelta_batch_stride;
89
- index_t ddelta_d_stride;
90
-
91
- // Common data pointers.
92
- void *__restrict__ dout_ptr;
93
- void *__restrict__ dA_ptr;
94
- void *__restrict__ dB_ptr;
95
- void *__restrict__ dC_ptr;
96
- void *__restrict__ dD_ptr;
97
- void *__restrict__ du_ptr;
98
- void *__restrict__ dz_ptr;
99
- void *__restrict__ ddelta_ptr;
100
- void *__restrict__ ddelta_bias_ptr;
101
- };
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_bf16_complex.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::BFloat16, complex_t>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_bf16_real.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::BFloat16, float>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_fp16_complex.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::Half, complex_t>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_fp16_real.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<at::Half, float>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_fp32_complex.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<float, complex_t>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_fp32_real.cu DELETED
@@ -1,9 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_bwd_kernel.cuh"
8
-
9
- template void selective_scan_bwd_cuda<float, float>(SSMParamsBwd &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_bwd_kernel.cuh DELETED
@@ -1,531 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <c10/util/BFloat16.h>
8
- #include <c10/util/Half.h>
9
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
10
- #include <ATen/cuda/Atomic.cuh> // For atomicAdd on complex
11
-
12
- #include <cub/block/block_load.cuh>
13
- #include <cub/block/block_store.cuh>
14
- #include <cub/block/block_scan.cuh>
15
- #include <cub/block/block_reduce.cuh>
16
-
17
- #include "selective_scan.h"
18
- #include "selective_scan_common.h"
19
- #include "reverse_scan.cuh"
20
- #include "static_switch.h"
21
-
22
- template<typename scalar_t> __device__ __forceinline__ scalar_t conj(scalar_t x);
23
- template<> __device__ __forceinline__ float conj<float>(float x) { return x; }
24
- template<> __device__ __forceinline__ complex_t conj<complex_t>(complex_t x) { return std::conj(x); }
25
-
26
- template<int kNThreads_, int kNItems_, bool kIsEvenLen_, bool kIsVariableB_, bool kIsVariableC_,
27
- bool kDeltaSoftplus_, bool kHasZ_, typename input_t_, typename weight_t_>
28
- struct Selective_Scan_bwd_kernel_traits {
29
- static_assert(kNItems_ % 4 == 0);
30
- using input_t = input_t_;
31
- using weight_t = weight_t_;
32
- static constexpr int kNThreads = kNThreads_;
33
- static constexpr int kNItems = kNItems_;
34
- static constexpr int kNBytes = sizeof(input_t);
35
- static_assert(kNBytes == 2 || kNBytes == 4);
36
- static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
37
- static_assert(kNItems % kNElts == 0);
38
- static constexpr int kNLoads = kNItems / kNElts;
39
- static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
40
- static constexpr bool kIsEvenLen = kIsEvenLen_;
41
- static constexpr bool kIsVariableB = kIsVariableB_;
42
- static constexpr bool kIsVariableC = kIsVariableC_;
43
- static constexpr bool kDeltaSoftplus = kDeltaSoftplus_;
44
- static constexpr bool kHasZ = kHasZ_;
45
- // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads with float improves occupancy.
46
- // For complex this would lead to massive register spilling, so we keep it at 2.
47
- static constexpr int kMinBlocks = kNThreads == 128 && !kIsComplex ? 3 : 2;
48
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
49
- using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
50
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
51
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
52
- using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
53
- using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
54
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
55
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads, cub::BLOCK_STORE_WARP_TRANSPOSE>;
56
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
57
- using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
58
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
59
- using BlockReverseScanT = BlockReverseScan<scan_t, kNThreads>;
60
- using BlockReduceT = cub::BlockReduce<scan_t, kNThreads>;
61
- using BlockReduceFloatT = cub::BlockReduce<float, kNThreads>;
62
- using BlockReduceComplexT = cub::BlockReduce<complex_t, kNThreads>;
63
- using BlockExchangeT = cub::BlockExchange<float, kNThreads, !kIsComplex ? kNItems : kNItems * 2>;
64
- static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
65
- sizeof(typename BlockLoadVecT::TempStorage),
66
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
67
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
68
- sizeof(typename BlockStoreT::TempStorage),
69
- sizeof(typename BlockStoreVecT::TempStorage)});
70
- static constexpr int kSmemExchangeSize = (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockExchangeT::TempStorage);
71
- static constexpr int kSmemReduceSize = sizeof(typename BlockReduceT::TempStorage);
72
- static constexpr int kSmemSize = kSmemIOSize + kSmemExchangeSize + kSmemReduceSize + sizeof(typename BlockScanT::TempStorage) + sizeof(typename BlockReverseScanT::TempStorage);
73
- };
74
-
75
- template<typename Ktraits>
76
- __global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
77
- void selective_scan_bwd_kernel(SSMParamsBwd params) {
78
- constexpr bool kIsComplex = Ktraits::kIsComplex;
79
- constexpr bool kIsVariableB = Ktraits::kIsVariableB;
80
- constexpr bool kIsVariableC = Ktraits::kIsVariableC;
81
- constexpr bool kDeltaSoftplus = Ktraits::kDeltaSoftplus;
82
- constexpr bool kHasZ = Ktraits::kHasZ;
83
- constexpr int kNThreads = Ktraits::kNThreads;
84
- constexpr int kNItems = Ktraits::kNItems;
85
- using input_t = typename Ktraits::input_t;
86
- using weight_t = typename Ktraits::weight_t;
87
- using scan_t = typename Ktraits::scan_t;
88
-
89
- // Shared memory.
90
- extern __shared__ char smem_[];
91
- // cast to lvalue reference of expected type
92
- // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
93
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
94
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
95
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
96
- auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
97
- auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
98
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
99
- auto& smem_exchange = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
100
- auto& smem_exchange1 = *reinterpret_cast<typename Ktraits::BlockExchangeT::TempStorage*>(smem_ + Ktraits::kSmemIOSize + sizeof(typename Ktraits::BlockExchangeT::TempStorage));
101
- auto& smem_reduce = *reinterpret_cast<typename Ktraits::BlockReduceT::TempStorage*>(reinterpret_cast<char *>(&smem_exchange) + Ktraits::kSmemExchangeSize);
102
- auto& smem_reduce_float = *reinterpret_cast<typename Ktraits::BlockReduceFloatT::TempStorage*>(&smem_reduce);
103
- auto& smem_reduce_complex = *reinterpret_cast<typename Ktraits::BlockReduceComplexT::TempStorage*>(&smem_reduce);
104
- auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(reinterpret_cast<char *>(&smem_reduce) + Ktraits::kSmemReduceSize);
105
- auto& smem_reverse_scan = *reinterpret_cast<typename Ktraits::BlockReverseScanT::TempStorage*>(reinterpret_cast<char *>(&smem_scan) + sizeof(typename Ktraits::BlockScanT::TempStorage));
106
- weight_t *smem_delta_a = reinterpret_cast<weight_t *>(smem_ + Ktraits::kSmemSize);
107
- scan_t *smem_running_postfix = reinterpret_cast<scan_t *>(smem_delta_a + 2 * MAX_DSTATE + kNThreads);
108
- weight_t *smem_da = reinterpret_cast<weight_t *>(smem_running_postfix + MAX_DSTATE);
109
- weight_t *smem_dbc = reinterpret_cast<weight_t *>(smem_da + MAX_DSTATE);
110
-
111
- const int batch_id = blockIdx.x;
112
- const int dim_id = blockIdx.y;
113
- const int group_id = dim_id / (params.dim_ngroups_ratio);
114
- input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
115
- + dim_id * params.u_d_stride;
116
- input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
117
- + dim_id * params.delta_d_stride;
118
- input_t *dout = reinterpret_cast<input_t *>(params.dout_ptr) + batch_id * params.dout_batch_stride
119
- + dim_id * params.dout_d_stride;
120
- weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * params.A_d_stride;
121
- weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * params.B_d_stride;
122
- input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
123
- weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * params.C_d_stride;
124
- input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
125
- weight_t *dA = reinterpret_cast<weight_t *>(params.dA_ptr) + dim_id * params.dA_d_stride;
126
- weight_t *dB = reinterpret_cast<weight_t *>(params.dB_ptr)
127
- + (!kIsVariableB ? dim_id * params.dB_d_stride : batch_id * (!kIsComplex ? params.dB_batch_stride : params.dB_batch_stride / 2) + group_id * params.dB_group_stride);
128
- weight_t *dC = reinterpret_cast<weight_t *>(params.dC_ptr)
129
- + (!kIsVariableC ? dim_id * params.dC_d_stride : batch_id * (!kIsComplex ? params.dC_batch_stride : params.dC_batch_stride / 2) + group_id * params.dC_group_stride);
130
- float *dD = params.dD_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.dD_ptr) + dim_id;
131
- float D_val = params.D_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.D_ptr)[dim_id];
132
- float *ddelta_bias = params.ddelta_bias_ptr == nullptr ? nullptr : reinterpret_cast<float *>(params.ddelta_bias_ptr) + dim_id;
133
- float delta_bias = params.delta_bias_ptr == nullptr ? 0 : reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id];
134
- scan_t *x = params.x_ptr == nullptr
135
- ? nullptr
136
- : reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id) * (params.n_chunks) * params.dstate;
137
- float dD_val = 0;
138
- float ddelta_bias_val = 0;
139
-
140
- constexpr int kChunkSize = kNThreads * kNItems;
141
- u += (params.n_chunks - 1) * kChunkSize;
142
- delta += (params.n_chunks - 1) * kChunkSize;
143
- dout += (params.n_chunks - 1) * kChunkSize;
144
- Bvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
145
- Cvar += (params.n_chunks - 1) * kChunkSize * (!kIsComplex ? 1 : 2);
146
- for (int chunk = params.n_chunks - 1; chunk >= 0; --chunk) {
147
- input_t u_vals[kNItems];
148
- input_t delta_vals_load[kNItems];
149
- input_t dout_vals_load[kNItems];
150
- __syncthreads();
151
- load_input<Ktraits>(u, u_vals, smem_load, params.seqlen - chunk * kChunkSize);
152
- u -= kChunkSize;
153
- __syncthreads();
154
- load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
155
- // Will reload delta at the same location if kDeltaSoftplus
156
- if constexpr (!kDeltaSoftplus) { delta -= kChunkSize; }
157
- __syncthreads();
158
- load_input<Ktraits>(dout, dout_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
159
- dout -= kChunkSize;
160
-
161
- float dout_vals[kNItems], delta_vals[kNItems];
162
- #pragma unroll
163
- for (int i = 0; i < kNItems; ++i) {
164
- dout_vals[i] = float(dout_vals_load[i]);
165
- delta_vals[i] = float(delta_vals_load[i]) + delta_bias;
166
- if constexpr (kDeltaSoftplus) {
167
- delta_vals[i] = delta_vals[i] <= 20.f ? log1pf(expf(delta_vals[i])) : delta_vals[i];
168
- }
169
- }
170
-
171
- if constexpr (kHasZ) {
172
- input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
173
- + dim_id * params.z_d_stride + chunk * kChunkSize;
174
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
175
- + dim_id * params.out_d_stride + chunk * kChunkSize;
176
- input_t *dz = reinterpret_cast<input_t *>(params.dz_ptr) + batch_id * params.dz_batch_stride
177
- + dim_id * params.dz_d_stride + chunk * kChunkSize;
178
- input_t z_vals[kNItems], out_vals[kNItems];
179
- __syncthreads();
180
- load_input<Ktraits>(z, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
181
- __syncthreads();
182
- load_input<Ktraits>(out, out_vals, smem_load, params.seqlen - chunk * kChunkSize);
183
- float dz_vals[kNItems], z_silu_vals[kNItems];
184
- #pragma unroll
185
- for (int i = 0; i < kNItems; ++i) {
186
- float z_val = z_vals[i];
187
- float z_sigmoid_val = 1.0f / (1.0f + expf(-z_val));
188
- z_silu_vals[i] = z_val * z_sigmoid_val;
189
- dz_vals[i] = dout_vals[i] * float(out_vals[i]) * z_sigmoid_val
190
- * (1.0f + z_val * (1.0f - z_sigmoid_val));
191
- dout_vals[i] *= z_silu_vals[i];
192
- }
193
- __syncthreads();
194
- store_output<Ktraits>(dz, dz_vals, smem_store, params.seqlen - chunk * kChunkSize);
195
- if (params.out_z_ptr != nullptr) { // Recompute and store out_z
196
- float out_z_vals[kNItems];
197
- #pragma unroll
198
- for (int i = 0; i < kNItems; ++i) { out_z_vals[i] = float(out_vals[i]) * z_silu_vals[i]; }
199
- // if (blockIdx.x == 0 && blockIdx.y == 0 && threadIdx.x == 0) {
200
- // printf("out_val=%f, z_silu_val = %f, out_z_val = %f\n", float(out_vals[0]), z_silu_vals[0], out_z_vals[0]);
201
- // }
202
- input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
203
- + dim_id * params.out_z_d_stride + chunk * kChunkSize;
204
- __syncthreads();
205
- store_output<Ktraits>(out_z, out_z_vals, smem_store, params.seqlen - chunk * kChunkSize);
206
- }
207
- }
208
-
209
- float du_vals[kNItems];
210
- #pragma unroll
211
- for (int i = 0; i < kNItems; ++i) { du_vals[i] = D_val * dout_vals[i]; }
212
- #pragma unroll
213
- for (int i = 0; i < kNItems; ++i) { dD_val += dout_vals[i] * float(u_vals[i]); }
214
-
215
- float ddelta_vals[kNItems] = {0};
216
- __syncthreads();
217
- for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
218
- const weight_t A_val = A[state_idx * params.A_dstate_stride];
219
- // Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
220
- weight_t A_scaled;
221
- constexpr float kLog2e = M_LOG2E;
222
- if constexpr (!kIsComplex) {
223
- A_scaled = A_val * kLog2e;
224
- } else {
225
- A_scaled = complex_t(A_val.real_ * kLog2e, A_val.imag_);
226
- }
227
- weight_t B_val, C_val;
228
- weight_t B_vals[kNItems], C_vals[kNItems];
229
- if constexpr (!kIsVariableB) {
230
- B_val = B[state_idx * params.B_dstate_stride];
231
- } else {
232
- load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
233
- smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
234
- }
235
- if constexpr (!kIsVariableC) {
236
- C_val = C[state_idx * params.C_dstate_stride];
237
- } else {
238
- auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
239
- load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
240
- smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
241
- }
242
- // const weight_t A_val = smem_a[state_idx];
243
- scan_t thread_data[kNItems], thread_reverse_data[kNItems];
244
- if constexpr (!kIsComplex) {
245
- #pragma unroll
246
- for (int i = 0; i < kNItems; ++i) {
247
- const float delta_a_exp = exp2f(delta_vals[i] * A_scaled);
248
- thread_data[i] = make_float2(delta_a_exp, !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
249
- if (i == 0) {
250
- smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
251
- } else {
252
- thread_reverse_data[i - 1].x = delta_a_exp;
253
- }
254
- thread_reverse_data[i].y = dout_vals[i] *
255
- (!kIsVariableC
256
- ? (!kIsVariableB ? B_val * C_val : C_val)
257
- : (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
258
- }
259
- __syncthreads();
260
- thread_reverse_data[kNItems - 1].x = threadIdx.x == kNThreads - 1
261
- ? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
262
- : smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
263
- // Initialize running total
264
- scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float2(1.f, 0.f);
265
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
266
- Ktraits::BlockScanT(smem_scan).InclusiveScan(
267
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
268
- );
269
- scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float2(1.f, 0.f);
270
- SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
271
- Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
272
- thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
273
- );
274
- if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
275
- weight_t dA_val = 0, dBC_val = 0;
276
- weight_t dB_vals[kNItems], dC_vals[kNItems];
277
- #pragma unroll
278
- for (int i = 0; i < kNItems; ++i) {
279
- const float dx = thread_reverse_data[i].y;
280
- const float ddelta_u = !kIsVariableB ? dx : dx * B_vals[i];
281
- du_vals[i] += ddelta_u * delta_vals[i];
282
- const float a = thread_data[i].y - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]);
283
- ddelta_vals[i] += ddelta_u * float(u_vals[i]) + dx * A_val * a;
284
- dA_val += dx * delta_vals[i] * a;
285
- if constexpr (!kIsVariableB || !kIsVariableC) {
286
- if constexpr (!kIsVariableB) { // dBC_val is dB_val
287
- dBC_val += dout_vals[i] * (!kIsVariableC ? thread_data[i].y : thread_data[i].y * C_vals[i]);
288
- } else { // dBC_val is dC_val
289
- dBC_val += dout_vals[i] * thread_data[i].y;
290
- }
291
- }
292
- if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
293
- if constexpr (kIsVariableC) {
294
- dC_vals[i] = dout_vals[i] * (!kIsVariableB ? thread_data[i].y * B_val : thread_data[i].y);
295
- }
296
- }
297
- // Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
298
- if constexpr (kIsVariableB || kIsVariableC) {
299
- if constexpr (kIsVariableB) {
300
- Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals, dB_vals);
301
- }
302
- if constexpr (kIsVariableC) {
303
- auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
304
- Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals, dC_vals);
305
- }
306
- const int seqlen_remaining = params.seqlen - chunk * kChunkSize - threadIdx.x;
307
- weight_t *dB_cur = dB + state_idx * params.dB_dstate_stride + chunk * kChunkSize + threadIdx.x;
308
- weight_t *dC_cur = dC + state_idx * params.dC_dstate_stride + chunk * kChunkSize + threadIdx.x;
309
- #pragma unroll
310
- for (int i = 0; i < kNItems; ++i) {
311
- if (i * kNThreads < seqlen_remaining) {
312
- if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals[i]); }
313
- if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals[i]); }
314
- }
315
- }
316
- }
317
- if constexpr (!kIsVariableB || !kIsVariableC) {
318
- float2 dA_dBC_val = make_float2(dA_val, dBC_val);
319
- dA_dBC_val = Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
320
- dA_val = dA_dBC_val.x;
321
- if (threadIdx.x == 0) {
322
- smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dA_dBC_val.y : dA_dBC_val.y + smem_dbc[state_idx];
323
- }
324
- } else {
325
- dA_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dA_val);
326
- }
327
- if (threadIdx.x == 0) {
328
- smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
329
- }
330
- } else {
331
- #pragma unroll
332
- for (int i = 0; i < kNItems; ++i) {
333
- // Pytorch's implementation of complex exp (which calls thrust) is very slow
334
- complex_t delta_a_exp = cexp2f(delta_vals[i] * A_scaled);
335
- weight_t B_delta_u_val = !kIsVariableB ? delta_vals[i] * float(u_vals[i]) : B_vals[i] * delta_vals[i] * float(u_vals[i]);
336
- thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
337
- if (i == 0) {
338
- smem_delta_a[threadIdx.x == 0 ? state_idx + (chunk % 2) * MAX_DSTATE : threadIdx.x + 2 * MAX_DSTATE] = delta_a_exp;
339
- } else {
340
- thread_reverse_data[i - 1].x = delta_a_exp.real_;
341
- thread_reverse_data[i - 1].y = -delta_a_exp.imag_;
342
- }
343
- complex_t dout_BC = 2 * dout_vals[i]
344
- * conj(!kIsVariableC
345
- ? (!kIsVariableB ? B_val * C_val : C_val)
346
- : (!kIsVariableB ? B_val * C_vals[i] : C_vals[i]));
347
- thread_reverse_data[i].z = dout_BC.real_;
348
- thread_reverse_data[i].w = dout_BC.imag_;
349
- }
350
- __syncthreads();
351
- complex_t delta_a_exp = threadIdx.x == kNThreads - 1
352
- ? (chunk == params.n_chunks - 1 ? 1.f : smem_delta_a[state_idx + ((chunk + 1) % 2) * MAX_DSTATE])
353
- : smem_delta_a[threadIdx.x + 1 + 2 * MAX_DSTATE];
354
- thread_reverse_data[kNItems - 1].x = delta_a_exp.real_;
355
- thread_reverse_data[kNItems - 1].y = -delta_a_exp.imag_;
356
- // Initialize running total
357
- scan_t running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? x[(chunk - 1) * params.dstate + state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
358
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
359
- Ktraits::BlockScanT(smem_scan).InclusiveScan(
360
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
361
- );
362
- scan_t running_postfix = chunk < params.n_chunks - 1 && threadIdx.x % 32 == 0 ? smem_running_postfix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
363
- SSMScanPrefixCallbackOp<weight_t> postfix_op(running_postfix);
364
- Ktraits::BlockReverseScanT(smem_reverse_scan).InclusiveReverseScan(
365
- thread_reverse_data, thread_reverse_data, SSMScanOp<weight_t>(), postfix_op
366
- );
367
- if (threadIdx.x == 0) { smem_running_postfix[state_idx] = postfix_op.running_prefix; }
368
- weight_t dA_val = 0, dBC_val = 0;
369
- weight_t dB_vals[kNItems], dC_vals[kNItems];
370
- #pragma unroll
371
- for (int i = 0; i < kNItems; ++i) {
372
- complex_t x = complex_t(thread_data[i].z, thread_data[i].w);
373
- complex_t dx = complex_t(thread_reverse_data[i].z, thread_reverse_data[i].w);
374
- float ddelta_u = !kIsVariableB ? dx.real_ : (dx * conj(B_vals[i])).real_;
375
- if constexpr (!kIsVariableB || !kIsVariableC) {
376
- if constexpr (!kIsVariableB) { // dBC_val is dB_val
377
- dBC_val += (2 * dout_vals[i]) * conj(!kIsVariableC ? x : x * C_vals[i]);
378
- } else { // dBC_val is dC_val
379
- dBC_val += (2 * dout_vals[i]) * conj(x);
380
- }
381
- }
382
- const complex_t a_conj = conj(x - (!kIsVariableB ? delta_vals[i] * float(u_vals[i]) : delta_vals[i] * float(u_vals[i]) * B_vals[i]));
383
- du_vals[i] += ddelta_u * delta_vals[i];
384
- ddelta_vals[i] += ddelta_u * float(u_vals[i]) + (dx * conj(A_val) * a_conj).real_;
385
- dA_val += delta_vals[i] * dx * a_conj;
386
- if constexpr (kIsVariableB) { dB_vals[i] = dx * delta_vals[i] * float(u_vals[i]); }
387
- if constexpr (kIsVariableC) {
388
- dC_vals[i] = (2 * dout_vals[i]) * conj(!kIsVariableB ? x * B_val : x);
389
- }
390
- }
391
- // Block-exchange to make the atomicAdd's coalesced, otherwise they're much slower
392
- if constexpr (kIsVariableB || kIsVariableC) {
393
- float dB_vals_f[kNItems * 2], dC_vals_f[kNItems * 2];
394
- if constexpr (kIsVariableB) {
395
- #pragma unroll
396
- for (int i = 0; i < kNItems; ++i) {
397
- dB_vals_f[i * 2] = dB_vals[i].real_;
398
- dB_vals_f[i * 2 + 1] = dB_vals[i].imag_;
399
- }
400
- Ktraits::BlockExchangeT(smem_exchange).BlockedToStriped(dB_vals_f, dB_vals_f);
401
- }
402
- if constexpr (kIsVariableC) {
403
- #pragma unroll
404
- for (int i = 0; i < kNItems; ++i) {
405
- dC_vals_f[i * 2] = dC_vals[i].real_;
406
- dC_vals_f[i * 2 + 1] = dC_vals[i].imag_;
407
- }
408
- auto &smem_exchange_C = !kIsVariableB ? smem_exchange : smem_exchange1;
409
- Ktraits::BlockExchangeT(smem_exchange_C).BlockedToStriped(dC_vals_f, dC_vals_f);
410
- }
411
- const int seqlen_remaining = (params.seqlen - chunk * kChunkSize) * 2 - threadIdx.x;
412
- float *dB_cur = reinterpret_cast<float *>(dB) + state_idx * params.dB_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
413
- float *dC_cur = reinterpret_cast<float *>(dC) + state_idx * params.dC_dstate_stride + chunk * kChunkSize * 2 + threadIdx.x;
414
- #pragma unroll
415
- for (int i = 0; i < kNItems * 2; ++i) {
416
- if (i * kNThreads < seqlen_remaining) {
417
- if constexpr (kIsVariableB) { gpuAtomicAdd(dB_cur + i * kNThreads, dB_vals_f[i]); }
418
- if constexpr (kIsVariableC) { gpuAtomicAdd(dC_cur + i * kNThreads, dC_vals_f[i]); }
419
- }
420
- }
421
- }
422
- if constexpr (!kIsVariableB || !kIsVariableC) {
423
- float4 dA_dBC_val = make_float4(dA_val.real_, dA_val.imag_, dBC_val.real_, dBC_val.imag_);
424
- dA_dBC_val = Ktraits::BlockReduceT(smem_reduce).Sum(dA_dBC_val);
425
- dA_val = complex_t(dA_dBC_val.x, dA_dBC_val.y);
426
- dBC_val = complex_t(dA_dBC_val.z, dA_dBC_val.w);
427
- if (threadIdx.x == 0) {
428
- smem_dbc[state_idx] = chunk == params.n_chunks - 1 ? dBC_val : dBC_val + smem_dbc[state_idx];
429
- }
430
- } else {
431
- dA_val = Ktraits::BlockReduceComplexT(smem_reduce_complex).Sum(dA_val);
432
- }
433
- if (threadIdx.x == 0) {
434
- smem_da[state_idx] = chunk == params.n_chunks - 1 ? dA_val : dA_val + smem_da[state_idx];
435
- }
436
- }
437
- }
438
-
439
- if constexpr (kDeltaSoftplus) {
440
- __syncthreads();
441
- input_t delta_vals_load[kNItems];
442
- load_input<Ktraits>(delta, delta_vals_load, smem_load, params.seqlen - chunk * kChunkSize);
443
- delta -= kChunkSize;
444
- #pragma unroll
445
- for (int i = 0; i < kNItems; ++i) {
446
- float delta_val = float(delta_vals_load[i]) + delta_bias;
447
- float delta_val_neg_exp = expf(-delta_val);
448
- ddelta_vals[i] = delta_val <= 20.f
449
- ? ddelta_vals[i] / (1.f + delta_val_neg_exp)
450
- : ddelta_vals[i];
451
- }
452
- }
453
- for (int i = 0; i < kNItems; ++i) { ddelta_bias_val += ddelta_vals[i]; }
454
-
455
- input_t *du = reinterpret_cast<input_t *>(params.du_ptr) + batch_id * params.du_batch_stride
456
- + dim_id * params.du_d_stride + chunk * kChunkSize;
457
- input_t *ddelta = reinterpret_cast<input_t *>(params.ddelta_ptr) + batch_id * params.ddelta_batch_stride
458
- + dim_id * params.ddelta_d_stride + chunk * kChunkSize;
459
- __syncthreads();
460
- store_output<Ktraits>(du, du_vals, smem_store, params.seqlen - chunk * kChunkSize);
461
- __syncthreads();
462
- store_output<Ktraits>(ddelta, ddelta_vals, smem_store, params.seqlen - chunk * kChunkSize);
463
-
464
- Bvar -= kChunkSize * (!kIsComplex ? 1 : 2);
465
- Cvar -= kChunkSize * (!kIsComplex ? 1 : 2);
466
- }
467
- if (params.dD_ptr != nullptr) {
468
- dD_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(dD_val);
469
- if (threadIdx.x == 0) { gpuAtomicAdd(dD, dD_val); }
470
- }
471
- if (params.ddelta_bias_ptr != nullptr) {
472
- __syncthreads();
473
- ddelta_bias_val = Ktraits::BlockReduceFloatT(smem_reduce_float).Sum(ddelta_bias_val);
474
- if (threadIdx.x == 0) { gpuAtomicAdd(ddelta_bias, ddelta_bias_val); }
475
- }
476
- for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
477
- gpuAtomicAdd(&(dA[state_idx * params.dA_dstate_stride]), smem_da[state_idx]);
478
- weight_t dBC_val;
479
- if (!kIsVariableB || !kIsVariableC) { dBC_val = smem_dbc[state_idx]; }
480
- if constexpr (!kIsVariableB) {
481
- gpuAtomicAdd(&(dB[state_idx * params.dB_dstate_stride]),
482
- !kIsVariableC ? dBC_val * conj(C[state_idx * params.C_dstate_stride]) : dBC_val);
483
- }
484
- if constexpr (!kIsVariableC) {
485
- gpuAtomicAdd(&(dC[state_idx * params.dC_dstate_stride]),
486
- !kIsVariableB ? dBC_val * conj(B[state_idx * params.B_dstate_stride]) : dBC_val);
487
- }
488
- }
489
- }
490
-
491
- template<int kNThreads, int kNItems, typename input_t, typename weight_t>
492
- void selective_scan_bwd_launch(SSMParamsBwd &params, cudaStream_t stream) {
493
- BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
494
- BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
495
- BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
496
- BOOL_SWITCH(params.delta_softplus, kDeltaSoftplus, [&] {
497
- BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
498
- using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, kIsEvenLen, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
499
- // using Ktraits = Selective_Scan_bwd_kernel_traits<kNThreads, kNItems, true, kIsVariableB, kIsVariableC, kDeltaSoftplus, kHasZ, input_t, weight_t>;
500
- // TODO: check this
501
- constexpr int kSmemSize = Ktraits::kSmemSize + MAX_DSTATE * sizeof(typename Ktraits::scan_t) + (kNThreads + 4 * MAX_DSTATE) * sizeof(typename Ktraits::weight_t);
502
- // printf("smem_size = %d\n", kSmemSize);
503
- dim3 grid(params.batch, params.dim);
504
- auto kernel = &selective_scan_bwd_kernel<Ktraits>;
505
- if (kSmemSize >= 48 * 1024) {
506
- C10_CUDA_CHECK(cudaFuncSetAttribute(
507
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
508
- }
509
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
510
- C10_CUDA_KERNEL_LAUNCH_CHECK();
511
- });
512
- });
513
- });
514
- });
515
- });
516
- }
517
-
518
- template<typename input_t, typename weight_t>
519
- void selective_scan_bwd_cuda(SSMParamsBwd &params, cudaStream_t stream) {
520
- if (params.seqlen <= 128) {
521
- selective_scan_bwd_launch<32, 4, input_t, weight_t>(params, stream);
522
- } else if (params.seqlen <= 256) {
523
- selective_scan_bwd_launch<32, 8, input_t, weight_t>(params, stream);
524
- } else if (params.seqlen <= 512) {
525
- selective_scan_bwd_launch<32, 16, input_t, weight_t>(params, stream);
526
- } else if (params.seqlen <= 1024) {
527
- selective_scan_bwd_launch<64, 16, input_t, weight_t>(params, stream);
528
- } else {
529
- selective_scan_bwd_launch<128, 16, input_t, weight_t>(params, stream);
530
- }
531
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_common.h DELETED
@@ -1,221 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <cuda_bf16.h>
8
- #include <cuda_fp16.h>
9
- #include <c10/util/complex.h> // For scalar_value_type
10
-
11
- #define MAX_DSTATE 256
12
-
13
- using complex_t = c10::complex<float>;
14
-
15
- inline __device__ float2 operator+(const float2 & a, const float2 & b){
16
- return {a.x + b.x, a.y + b.y};
17
- }
18
-
19
- inline __device__ float3 operator+(const float3 &a, const float3 &b) {
20
- return {a.x + b.x, a.y + b.y, a.z + b.z};
21
- }
22
-
23
- inline __device__ float4 operator+(const float4 & a, const float4 & b){
24
- return {a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w};
25
- }
26
-
27
- ////////////////////////////////////////////////////////////////////////////////////////////////////
28
-
29
- template<int BYTES> struct BytesToType {};
30
-
31
- template<> struct BytesToType<16> {
32
- using Type = uint4;
33
- static_assert(sizeof(Type) == 16);
34
- };
35
-
36
- template<> struct BytesToType<8> {
37
- using Type = uint64_t;
38
- static_assert(sizeof(Type) == 8);
39
- };
40
-
41
- template<> struct BytesToType<4> {
42
- using Type = uint32_t;
43
- static_assert(sizeof(Type) == 4);
44
- };
45
-
46
- template<> struct BytesToType<2> {
47
- using Type = uint16_t;
48
- static_assert(sizeof(Type) == 2);
49
- };
50
-
51
- template<> struct BytesToType<1> {
52
- using Type = uint8_t;
53
- static_assert(sizeof(Type) == 1);
54
- };
55
-
56
- ////////////////////////////////////////////////////////////////////////////////////////////////////
57
-
58
- template<typename scalar_t, int N>
59
- struct Converter{
60
- static inline __device__ void to_float(const scalar_t (&src)[N], float (&dst)[N]) {
61
- #pragma unroll
62
- for (int i = 0; i < N; ++i) { dst[i] = src[i]; }
63
- }
64
- };
65
-
66
- template<int N>
67
- struct Converter<at::Half, N>{
68
- static inline __device__ void to_float(const at::Half (&src)[N], float (&dst)[N]) {
69
- static_assert(N % 2 == 0);
70
- auto &src2 = reinterpret_cast<const half2 (&)[N / 2]>(src);
71
- auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
72
- #pragma unroll
73
- for (int i = 0; i < N / 2; ++i) { dst2[i] = __half22float2(src2[i]); }
74
- }
75
- };
76
-
77
- #if __CUDA_ARCH__ >= 800
78
- template<int N>
79
- struct Converter<at::BFloat16, N>{
80
- static inline __device__ void to_float(const at::BFloat16 (&src)[N], float (&dst)[N]) {
81
- static_assert(N % 2 == 0);
82
- auto &src2 = reinterpret_cast<const nv_bfloat162 (&)[N / 2]>(src);
83
- auto &dst2 = reinterpret_cast<float2 (&)[N / 2]>(dst);
84
- #pragma unroll
85
- for (int i = 0; i < N / 2; ++i) { dst2[i] = __bfloat1622float2(src2[i]); }
86
- }
87
- };
88
- #endif
89
-
90
- ////////////////////////////////////////////////////////////////////////////////////////////////////
91
-
92
- // From https://stackoverflow.com/questions/9860711/cucomplex-h-and-exp
93
- // and https://forums.developer.nvidia.com/t/complex-number-exponential-function/24696
94
- __device__ __forceinline__ complex_t cexp2f(complex_t z) {
95
- float t = exp2f(z.real_);
96
- float c, s;
97
- sincosf(z.imag_, &s, &c);
98
- return complex_t(c * t, s * t);
99
- }
100
-
101
- __device__ __forceinline__ complex_t cexpf(complex_t z) {
102
- float t = expf(z.real_);
103
- float c, s;
104
- sincosf(z.imag_, &s, &c);
105
- return complex_t(c * t, s * t);
106
- }
107
-
108
- template<typename scalar_t> struct SSMScanOp;
109
-
110
- template<>
111
- struct SSMScanOp<float> {
112
- __device__ __forceinline__ float2 operator()(const float2 &ab0, const float2 &ab1) const {
113
- return make_float2(ab1.x * ab0.x, ab1.x * ab0.y + ab1.y);
114
- }
115
- };
116
-
117
- template<>
118
- struct SSMScanOp<complex_t> {
119
- __device__ __forceinline__ float4 operator()(const float4 &ab0, const float4 &ab1) const {
120
- complex_t a0 = complex_t(ab0.x, ab0.y);
121
- complex_t b0 = complex_t(ab0.z, ab0.w);
122
- complex_t a1 = complex_t(ab1.x, ab1.y);
123
- complex_t b1 = complex_t(ab1.z, ab1.w);
124
- complex_t out_a = a1 * a0;
125
- complex_t out_b = a1 * b0 + b1;
126
- return make_float4(out_a.real_, out_a.imag_, out_b.real_, out_b.imag_);
127
- }
128
- };
129
-
130
- // A stateful callback functor that maintains a running prefix to be applied
131
- // during consecutive scan operations.
132
- template <typename scalar_t> struct SSMScanPrefixCallbackOp {
133
- using scan_t = std::conditional_t<std::is_same_v<scalar_t, float>, float2, float4>;
134
- scan_t running_prefix;
135
- // Constructor
136
- __device__ SSMScanPrefixCallbackOp(scan_t running_prefix_) : running_prefix(running_prefix_) {}
137
- // Callback operator to be entered by the first warp of threads in the block.
138
- // Thread-0 is responsible for returning a value for seeding the block-wide scan.
139
- __device__ scan_t operator()(scan_t block_aggregate) {
140
- scan_t old_prefix = running_prefix;
141
- running_prefix = SSMScanOp<scalar_t>()(running_prefix, block_aggregate);
142
- return old_prefix;
143
- }
144
- };
145
-
146
- ////////////////////////////////////////////////////////////////////////////////////////////////////
147
-
148
- template<typename Ktraits>
149
- inline __device__ void load_input(typename Ktraits::input_t *u,
150
- typename Ktraits::input_t (&u_vals)[Ktraits::kNItems],
151
- typename Ktraits::BlockLoadT::TempStorage &smem_load,
152
- int seqlen) {
153
- if constexpr (Ktraits::kIsEvenLen) {
154
- auto& smem_load_vec = reinterpret_cast<typename Ktraits::BlockLoadVecT::TempStorage&>(smem_load);
155
- using vec_t = typename Ktraits::vec_t;
156
- Ktraits::BlockLoadVecT(smem_load_vec).Load(
157
- reinterpret_cast<vec_t*>(u),
158
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(u_vals)
159
- );
160
- } else {
161
- Ktraits::BlockLoadT(smem_load).Load(u, u_vals, seqlen, 0.f);
162
- }
163
- }
164
-
165
- template<typename Ktraits>
166
- inline __device__ void load_weight(typename Ktraits::input_t *Bvar,
167
- typename Ktraits::weight_t (&B_vals)[Ktraits::kNItems],
168
- typename Ktraits::BlockLoadWeightT::TempStorage &smem_load_weight,
169
- int seqlen) {
170
- constexpr int kNItems = Ktraits::kNItems;
171
- if constexpr (!Ktraits::kIsComplex) {
172
- typename Ktraits::input_t B_vals_load[kNItems];
173
- if constexpr (Ktraits::kIsEvenLen) {
174
- auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
175
- using vec_t = typename Ktraits::vec_t;
176
- Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
177
- reinterpret_cast<vec_t*>(Bvar),
178
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(B_vals_load)
179
- );
180
- } else {
181
- Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
182
- }
183
- // #pragma unroll
184
- // for (int i = 0; i < kNItems; ++i) { B_vals[i] = B_vals_load[i]; }
185
- Converter<typename Ktraits::input_t, kNItems>::to_float(B_vals_load, B_vals);
186
- } else {
187
- typename Ktraits::input_t B_vals_load[kNItems * 2];
188
- if constexpr (Ktraits::kIsEvenLen) {
189
- auto& smem_load_weight_vec = reinterpret_cast<typename Ktraits::BlockLoadWeightVecT::TempStorage&>(smem_load_weight);
190
- using vec_t = typename Ktraits::vec_t;
191
- Ktraits::BlockLoadWeightVecT(smem_load_weight_vec).Load(
192
- reinterpret_cast<vec_t*>(Bvar),
193
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads * 2]>(B_vals_load)
194
- );
195
- } else {
196
- Ktraits::BlockLoadWeightT(smem_load_weight).Load(Bvar, B_vals_load, seqlen, 0.f);
197
- }
198
- #pragma unroll
199
- for (int i = 0; i < kNItems; ++i) { B_vals[i] = complex_t(B_vals_load[i * 2], B_vals_load[i * 2 + 1]); }
200
- }
201
- }
202
-
203
- template<typename Ktraits>
204
- inline __device__ void store_output(typename Ktraits::input_t *out,
205
- const float (&out_vals)[Ktraits::kNItems],
206
- typename Ktraits::BlockStoreT::TempStorage &smem_store,
207
- int seqlen) {
208
- typename Ktraits::input_t write_vals[Ktraits::kNItems];
209
- #pragma unroll
210
- for (int i = 0; i < Ktraits::kNItems; ++i) { write_vals[i] = out_vals[i]; }
211
- if constexpr (Ktraits::kIsEvenLen) {
212
- auto& smem_store_vec = reinterpret_cast<typename Ktraits::BlockStoreVecT::TempStorage&>(smem_store);
213
- using vec_t = typename Ktraits::vec_t;
214
- Ktraits::BlockStoreVecT(smem_store_vec).Store(
215
- reinterpret_cast<vec_t*>(out),
216
- reinterpret_cast<vec_t(&)[Ktraits::kNLoads]>(write_vals)
217
- );
218
- } else {
219
- Ktraits::BlockStoreT(smem_store).Store(out, write_vals, seqlen);
220
- }
221
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_fwd_bf16.cu DELETED
@@ -1,10 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_fwd_kernel.cuh"
8
-
9
- template void selective_scan_fwd_cuda<at::BFloat16, float>(SSMParamsBase &params, cudaStream_t stream);
10
- template void selective_scan_fwd_cuda<at::BFloat16, complex_t>(SSMParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_fwd_fp16.cu DELETED
@@ -1,10 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_fwd_kernel.cuh"
8
-
9
- template void selective_scan_fwd_cuda<at::Half, float>(SSMParamsBase &params, cudaStream_t stream);
10
- template void selective_scan_fwd_cuda<at::Half, complex_t>(SSMParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_fwd_fp32.cu DELETED
@@ -1,10 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- // Split into multiple files to compile in paralell
6
-
7
- #include "selective_scan_fwd_kernel.cuh"
8
-
9
- template void selective_scan_fwd_cuda<float, float>(SSMParamsBase &params, cudaStream_t stream);
10
- template void selective_scan_fwd_cuda<float, complex_t>(SSMParamsBase &params, cudaStream_t stream);
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/selective_scan_fwd_kernel.cuh DELETED
@@ -1,345 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2023, Tri Dao.
3
- ******************************************************************************/
4
-
5
- #pragma once
6
-
7
- #include <c10/util/BFloat16.h>
8
- #include <c10/util/Half.h>
9
- #include <c10/cuda/CUDAException.h> // For C10_CUDA_CHECK and C10_CUDA_KERNEL_LAUNCH_CHECK
10
-
11
- #include <cub/block/block_load.cuh>
12
- #include <cub/block/block_store.cuh>
13
- #include <cub/block/block_scan.cuh>
14
-
15
- #include "selective_scan.h"
16
- #include "selective_scan_common.h"
17
- #include "static_switch.h"
18
-
19
- template<int kNThreads_, int kNItems_, int kNRows_, bool kIsEvenLen_,
20
- bool kIsVariableB_, bool kIsVariableC_,
21
- bool kHasZ_, typename input_t_, typename weight_t_>
22
- struct Selective_Scan_fwd_kernel_traits {
23
- static_assert(kNItems_ % 4 == 0);
24
- using input_t = input_t_;
25
- using weight_t = weight_t_;
26
- static constexpr int kNThreads = kNThreads_;
27
- // Setting MinBlocksPerMP to be 3 (instead of 2) for 128 threads improves occupancy.
28
- static constexpr int kMinBlocks = kNThreads < 128 ? 5 : 3;
29
- static constexpr int kNItems = kNItems_;
30
- static constexpr int kNRows = kNRows_;
31
- static constexpr int kNBytes = sizeof(input_t);
32
- static_assert(kNBytes == 2 || kNBytes == 4);
33
- static constexpr int kNElts = kNBytes == 4 ? 4 : std::min(8, kNItems);
34
- static_assert(kNItems % kNElts == 0);
35
- static constexpr int kNLoads = kNItems / kNElts;
36
- static constexpr bool kIsComplex = std::is_same_v<weight_t, complex_t>;
37
- static constexpr bool kIsEvenLen = kIsEvenLen_;
38
- static constexpr bool kIsVariableB = kIsVariableB_;
39
- static constexpr bool kIsVariableC = kIsVariableC_;
40
- static constexpr bool kHasZ = kHasZ_;
41
-
42
- static constexpr bool kDirectIO = kIsEvenLen && kNLoads == 1;
43
-
44
- using vec_t = typename BytesToType<kNBytes * kNElts>::Type;
45
- using scan_t = std::conditional_t<!kIsComplex, float2, float4>;
46
- using BlockLoadT = cub::BlockLoad<input_t, kNThreads, kNItems, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
47
- using BlockLoadVecT = cub::BlockLoad<vec_t, kNThreads, kNLoads,
48
- !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
49
- using BlockLoadWeightT = cub::BlockLoad<input_t, kNThreads, !kIsComplex ? kNItems : kNItems * 2, cub::BLOCK_LOAD_WARP_TRANSPOSE>;
50
- using BlockLoadWeightVecT = cub::BlockLoad<vec_t, kNThreads, !kIsComplex ? kNLoads : kNLoads * 2,
51
- !kDirectIO ? cub::BLOCK_LOAD_WARP_TRANSPOSE : cub::BLOCK_LOAD_DIRECT>;
52
- using BlockStoreT = cub::BlockStore<input_t, kNThreads, kNItems, cub::BLOCK_STORE_WARP_TRANSPOSE>;
53
- using BlockStoreVecT = cub::BlockStore<vec_t, kNThreads, kNLoads,
54
- !kDirectIO ? cub::BLOCK_STORE_WARP_TRANSPOSE : cub::BLOCK_STORE_DIRECT>;
55
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING_MEMOIZE>;
56
- // using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_RAKING>;
57
- using BlockScanT = cub::BlockScan<scan_t, kNThreads, cub::BLOCK_SCAN_WARP_SCANS>;
58
- static constexpr int kSmemIOSize = std::max({sizeof(typename BlockLoadT::TempStorage),
59
- sizeof(typename BlockLoadVecT::TempStorage),
60
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightT::TempStorage),
61
- (int(kIsVariableB) + int(kIsVariableC)) * sizeof(typename BlockLoadWeightVecT::TempStorage),
62
- sizeof(typename BlockStoreT::TempStorage),
63
- sizeof(typename BlockStoreVecT::TempStorage)});
64
- static constexpr int kSmemSize = kSmemIOSize + sizeof(typename BlockScanT::TempStorage);
65
- };
66
-
67
- template<typename Ktraits>
68
- __global__ __launch_bounds__(Ktraits::kNThreads, Ktraits::kMinBlocks)
69
- void selective_scan_fwd_kernel(SSMParamsBase params) {
70
- constexpr bool kIsComplex = Ktraits::kIsComplex;
71
- constexpr bool kIsVariableB = Ktraits::kIsVariableB;
72
- constexpr bool kIsVariableC = Ktraits::kIsVariableC;
73
- constexpr bool kHasZ = Ktraits::kHasZ;
74
- constexpr int kNThreads = Ktraits::kNThreads;
75
- constexpr int kNItems = Ktraits::kNItems;
76
- constexpr int kNRows = Ktraits::kNRows;
77
- constexpr bool kDirectIO = Ktraits::kDirectIO;
78
- using input_t = typename Ktraits::input_t;
79
- using weight_t = typename Ktraits::weight_t;
80
- using scan_t = typename Ktraits::scan_t;
81
-
82
- // Shared memory.
83
- extern __shared__ char smem_[];
84
- // cast to lvalue reference of expected type
85
- // char *smem_loadstorescan = smem_ + 2 * MAX_DSTATE * sizeof(weight_t);
86
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_ + 2 * MAX_DSTATE * sizeof(weight_t));
87
- // auto& smem_load = reinterpret_cast<typename BlockLoadT::TempStorage&>(smem_loadstorescan);
88
- auto& smem_load = reinterpret_cast<typename Ktraits::BlockLoadT::TempStorage&>(smem_);
89
- auto& smem_load_weight = reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage&>(smem_);
90
- auto& smem_load_weight1 = *reinterpret_cast<typename Ktraits::BlockLoadWeightT::TempStorage*>(smem_ + sizeof(typename Ktraits::BlockLoadWeightT::TempStorage));
91
- auto& smem_store = reinterpret_cast<typename Ktraits::BlockStoreT::TempStorage&>(smem_);
92
- auto& smem_scan = *reinterpret_cast<typename Ktraits::BlockScanT::TempStorage*>(smem_ + Ktraits::kSmemIOSize);
93
- // weight_t *smem_a = reinterpret_cast<weight_t *>(smem_ + smem_loadstorescan_size);
94
- // weight_t *smem_bc = reinterpret_cast<weight_t *>(smem_a + MAX_DSTATE);
95
- scan_t *smem_running_prefix = reinterpret_cast<scan_t *>(smem_ + Ktraits::kSmemSize);
96
-
97
- const int batch_id = blockIdx.x;
98
- const int dim_id = blockIdx.y;
99
- const int group_id = dim_id / (params.dim_ngroups_ratio);
100
- input_t *u = reinterpret_cast<input_t *>(params.u_ptr) + batch_id * params.u_batch_stride
101
- + dim_id * kNRows * params.u_d_stride;
102
- input_t *delta = reinterpret_cast<input_t *>(params.delta_ptr) + batch_id * params.delta_batch_stride
103
- + dim_id * kNRows * params.delta_d_stride;
104
- weight_t *A = reinterpret_cast<weight_t *>(params.A_ptr) + dim_id * kNRows * params.A_d_stride;
105
- weight_t *B = reinterpret_cast<weight_t *>(params.B_ptr) + dim_id * kNRows * params.B_d_stride;
106
- input_t *Bvar = reinterpret_cast<input_t *>(params.B_ptr) + batch_id * params.B_batch_stride + group_id * params.B_group_stride;
107
- weight_t *C = reinterpret_cast<weight_t *>(params.C_ptr) + dim_id * kNRows * params.C_d_stride;
108
- input_t *Cvar = reinterpret_cast<input_t *>(params.C_ptr) + batch_id * params.C_batch_stride + group_id * params.C_group_stride;
109
- scan_t *x = reinterpret_cast<scan_t *>(params.x_ptr) + (batch_id * params.dim + dim_id * kNRows) * params.n_chunks * params.dstate;
110
-
111
- float D_val[kNRows] = {0};
112
- if (params.D_ptr != nullptr) {
113
- #pragma unroll
114
- for (int r = 0; r < kNRows; ++r) {
115
- D_val[r] = reinterpret_cast<float *>(params.D_ptr)[dim_id * kNRows + r];
116
- }
117
- }
118
- float delta_bias[kNRows] = {0};
119
- if (params.delta_bias_ptr != nullptr) {
120
- #pragma unroll
121
- for (int r = 0; r < kNRows; ++r) {
122
- delta_bias[r] = reinterpret_cast<float *>(params.delta_bias_ptr)[dim_id * kNRows + r];
123
- }
124
- }
125
-
126
- // for (int state_idx = threadIdx.x; state_idx < params.dstate; state_idx += blockDim.x) {
127
- // smem_a[state_idx] = A[state_idx * params.A_dstate_stride];
128
- // smem_bc[state_idx] = B[state_idx * params.B_dstate_stride] * C[state_idx * params.C_dstate_stride];
129
- // }
130
-
131
- constexpr int kChunkSize = kNThreads * kNItems;
132
- for (int chunk = 0; chunk < params.n_chunks; ++chunk) {
133
- input_t u_vals[kNRows][kNItems], delta_vals_load[kNRows][kNItems];
134
- __syncthreads();
135
- #pragma unroll
136
- for (int r = 0; r < kNRows; ++r) {
137
- if constexpr (!kDirectIO) {
138
- if (r > 0) { __syncthreads(); }
139
- }
140
- load_input<Ktraits>(u + r * params.u_d_stride, u_vals[r], smem_load, params.seqlen - chunk * kChunkSize);
141
- if constexpr (!kDirectIO) { __syncthreads(); }
142
- load_input<Ktraits>(delta + r * params.delta_d_stride, delta_vals_load[r], smem_load, params.seqlen - chunk * kChunkSize);
143
- }
144
- u += kChunkSize;
145
- delta += kChunkSize;
146
-
147
- float delta_vals[kNRows][kNItems], delta_u_vals[kNRows][kNItems], out_vals[kNRows][kNItems];
148
- #pragma unroll
149
- for (int r = 0; r < kNRows; ++r) {
150
- #pragma unroll
151
- for (int i = 0; i < kNItems; ++i) {
152
- float u_val = float(u_vals[r][i]);
153
- delta_vals[r][i] = float(delta_vals_load[r][i]) + delta_bias[r];
154
- if (params.delta_softplus) {
155
- delta_vals[r][i] = delta_vals[r][i] <= 20.f ? log1pf(expf(delta_vals[r][i])) : delta_vals[r][i];
156
- }
157
- delta_u_vals[r][i] = delta_vals[r][i] * u_val;
158
- out_vals[r][i] = D_val[r] * u_val;
159
- }
160
- }
161
-
162
- __syncthreads();
163
- for (int state_idx = 0; state_idx < params.dstate; ++state_idx) {
164
- weight_t A_val[kNRows];
165
- #pragma unroll
166
- for (int r = 0; r < kNRows; ++r) {
167
- A_val[r] = A[state_idx * params.A_dstate_stride + r * params.A_d_stride];
168
- // Multiply the real part of A with LOG2E so we can use exp2f instead of expf.
169
- constexpr float kLog2e = M_LOG2E;
170
- if constexpr (!kIsComplex) {
171
- A_val[r] *= kLog2e;
172
- } else {
173
- A_val[r].real_ *= kLog2e;
174
- }
175
- }
176
- // This variable holds B * C if both B and C are constant across seqlen. If only B varies
177
- // across seqlen, this holds C. If only C varies across seqlen, this holds B.
178
- // If both B and C vary, this is unused.
179
- weight_t BC_val[kNRows];
180
- weight_t B_vals[kNItems], C_vals[kNItems];
181
- if constexpr (kIsVariableB) {
182
- load_weight<Ktraits>(Bvar + state_idx * params.B_dstate_stride, B_vals,
183
- smem_load_weight, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
184
- if constexpr (!kIsVariableC) {
185
- #pragma unroll
186
- for (int r = 0; r < kNRows; ++r) {
187
- BC_val[r] = C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
188
- }
189
- }
190
- }
191
- if constexpr (kIsVariableC) {
192
- auto &smem_load_weight_C = !kIsVariableB ? smem_load_weight : smem_load_weight1;
193
- load_weight<Ktraits>(Cvar + state_idx * params.C_dstate_stride, C_vals,
194
- smem_load_weight_C, (params.seqlen - chunk * kChunkSize) * (!kIsComplex ? 1 : 2));
195
- if constexpr (!kIsVariableB) {
196
- #pragma unroll
197
- for (int r = 0; r < kNRows; ++r) {
198
- BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride];
199
- }
200
- }
201
- }
202
- if constexpr (!kIsVariableB && !kIsVariableC) {
203
- #pragma unroll
204
- for (int r = 0; r < kNRows; ++r) {
205
- BC_val[r] = B[state_idx * params.B_dstate_stride + r * params.B_d_stride] * C[state_idx * params.C_dstate_stride + r * params.C_d_stride];
206
- }
207
- }
208
-
209
- #pragma unroll
210
- for (int r = 0; r < kNRows; ++r) {
211
- if (r > 0) { __syncthreads(); } // Scan could be using the same smem
212
- scan_t thread_data[kNItems];
213
- #pragma unroll
214
- for (int i = 0; i < kNItems; ++i) {
215
- if constexpr (!kIsComplex) {
216
- thread_data[i] = make_float2(exp2f(delta_vals[r][i] * A_val[r]),
217
- !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i]);
218
- if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
219
- if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
220
- thread_data[i] = make_float2(1.f, 0.f);
221
- }
222
- }
223
- } else {
224
- // Pytorch's implementation of complex exp (which calls thrust) is very slow
225
- complex_t delta_a_exp = cexp2f(delta_vals[r][i] * A_val[r]);
226
- weight_t B_delta_u_val = !kIsVariableB ? delta_u_vals[r][i] : B_vals[i] * delta_u_vals[r][i];
227
- thread_data[i] = make_float4(delta_a_exp.real_, delta_a_exp.imag_, B_delta_u_val.real_, B_delta_u_val.imag_);
228
- if constexpr (!Ktraits::kIsEvenLen) { // So that the last state is correct
229
- if (threadIdx.x * kNItems + i >= params.seqlen - chunk * kChunkSize) {
230
- thread_data[i] = make_float4(1.f, 0.f, 0.f, 0.f);
231
- }
232
- }
233
- }
234
- }
235
- // Initialize running total
236
- scan_t running_prefix;
237
- if constexpr (!kIsComplex) {
238
- // If we use WARP_SCAN then all lane 0 of all warps (not just thread 0) needs to read
239
- running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float2(1.f, 0.f);
240
- // running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float2(1.f, 0.f);
241
- } else {
242
- running_prefix = chunk > 0 && threadIdx.x % 32 == 0 ? smem_running_prefix[state_idx + r * MAX_DSTATE] : make_float4(1.f, 0.f, 0.f, 0.f);
243
- // running_prefix = chunk > 0 && threadIdx.x == 0 ? smem_running_prefix[state_idx] : make_float4(1.f, 0.f, 0.f, 0.f);
244
- }
245
- SSMScanPrefixCallbackOp<weight_t> prefix_op(running_prefix);
246
- Ktraits::BlockScanT(smem_scan).InclusiveScan(
247
- thread_data, thread_data, SSMScanOp<weight_t>(), prefix_op
248
- );
249
- // There's a syncthreads in the scan op, so we don't need to sync here.
250
- // Unless there's only 1 warp, but then it's the same thread (0) reading and writing.
251
- if (threadIdx.x == 0) {
252
- smem_running_prefix[state_idx] = prefix_op.running_prefix;
253
- x[(r * params.n_chunks + chunk) * params.dstate + state_idx] = prefix_op.running_prefix;
254
- }
255
- #pragma unroll
256
- for (int i = 0; i < kNItems; ++i) {
257
- const weight_t C_val = !kIsVariableC
258
- ? BC_val[r]
259
- : (!kIsVariableB ? BC_val[r] * C_vals[i] : C_vals[i]);
260
- if constexpr (!kIsComplex) {
261
- out_vals[r][i] += thread_data[i].y * C_val;
262
- } else {
263
- out_vals[r][i] += (complex_t(thread_data[i].z, thread_data[i].w) * C_val).real_ * 2;
264
- }
265
- }
266
- }
267
- }
268
-
269
- input_t *out = reinterpret_cast<input_t *>(params.out_ptr) + batch_id * params.out_batch_stride
270
- + dim_id * kNRows * params.out_d_stride + chunk * kChunkSize;
271
- __syncthreads();
272
- #pragma unroll
273
- for (int r = 0; r < kNRows; ++r) {
274
- if constexpr (!kDirectIO) {
275
- if (r > 0) { __syncthreads(); }
276
- }
277
- store_output<Ktraits>(out + r * params.out_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
278
- }
279
-
280
- if constexpr (kHasZ) {
281
- input_t *z = reinterpret_cast<input_t *>(params.z_ptr) + batch_id * params.z_batch_stride
282
- + dim_id * kNRows * params.z_d_stride + chunk * kChunkSize;
283
- input_t *out_z = reinterpret_cast<input_t *>(params.out_z_ptr) + batch_id * params.out_z_batch_stride
284
- + dim_id * kNRows * params.out_z_d_stride + chunk * kChunkSize;
285
- #pragma unroll
286
- for (int r = 0; r < kNRows; ++r) {
287
- input_t z_vals[kNItems];
288
- __syncthreads();
289
- load_input<Ktraits>(z + r * params.z_d_stride, z_vals, smem_load, params.seqlen - chunk * kChunkSize);
290
- #pragma unroll
291
- for (int i = 0; i < kNItems; ++i) {
292
- float z_val = z_vals[i];
293
- out_vals[r][i] *= z_val / (1 + expf(-z_val));
294
- }
295
- __syncthreads();
296
- store_output<Ktraits>(out_z + r * params.out_z_d_stride, out_vals[r], smem_store, params.seqlen - chunk * kChunkSize);
297
- }
298
- }
299
-
300
- Bvar += kChunkSize * (!kIsComplex ? 1 : 2);
301
- Cvar += kChunkSize * (!kIsComplex ? 1 : 2);
302
- }
303
- }
304
-
305
- template<int kNThreads, int kNItems, typename input_t, typename weight_t>
306
- void selective_scan_fwd_launch(SSMParamsBase &params, cudaStream_t stream) {
307
- // Only kNRows == 1 is tested for now, which ofc doesn't differ from previously when we had each block
308
- // processing 1 row.
309
- constexpr int kNRows = 1;
310
- BOOL_SWITCH(params.seqlen % (kNThreads * kNItems) == 0, kIsEvenLen, [&] {
311
- BOOL_SWITCH(params.is_variable_B, kIsVariableB, [&] {
312
- BOOL_SWITCH(params.is_variable_C, kIsVariableC, [&] {
313
- BOOL_SWITCH(params.z_ptr != nullptr , kHasZ, [&] {
314
- using Ktraits = Selective_Scan_fwd_kernel_traits<kNThreads, kNItems, kNRows, kIsEvenLen, kIsVariableB, kIsVariableC, kHasZ, input_t, weight_t>;
315
- // constexpr int kSmemSize = Ktraits::kSmemSize;
316
- constexpr int kSmemSize = Ktraits::kSmemSize + kNRows * MAX_DSTATE * sizeof(typename Ktraits::scan_t);
317
- // printf("smem_size = %d\n", kSmemSize);
318
- dim3 grid(params.batch, params.dim / kNRows);
319
- auto kernel = &selective_scan_fwd_kernel<Ktraits>;
320
- if (kSmemSize >= 48 * 1024) {
321
- C10_CUDA_CHECK(cudaFuncSetAttribute(
322
- kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, kSmemSize));
323
- }
324
- kernel<<<grid, Ktraits::kNThreads, kSmemSize, stream>>>(params);
325
- C10_CUDA_KERNEL_LAUNCH_CHECK();
326
- });
327
- });
328
- });
329
- });
330
- }
331
-
332
- template<typename input_t, typename weight_t>
333
- void selective_scan_fwd_cuda(SSMParamsBase &params, cudaStream_t stream) {
334
- if (params.seqlen <= 128) {
335
- selective_scan_fwd_launch<32, 4, input_t, weight_t>(params, stream);
336
- } else if (params.seqlen <= 256) {
337
- selective_scan_fwd_launch<32, 8, input_t, weight_t>(params, stream);
338
- } else if (params.seqlen <= 512) {
339
- selective_scan_fwd_launch<32, 16, input_t, weight_t>(params, stream);
340
- } else if (params.seqlen <= 1024) {
341
- selective_scan_fwd_launch<64, 16, input_t, weight_t>(params, stream);
342
- } else {
343
- selective_scan_fwd_launch<128, 16, input_t, weight_t>(params, stream);
344
- }
345
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/static_switch.h DELETED
@@ -1,25 +0,0 @@
1
- // Inspired by https://github.com/NVIDIA/DALI/blob/main/include/dali/core/static_switch.h
2
- // and https://github.com/pytorch/pytorch/blob/master/aten/src/ATen/Dispatch.h
3
-
4
- #pragma once
5
-
6
- /// @param COND - a boolean expression to switch by
7
- /// @param CONST_NAME - a name given for the constexpr bool variable.
8
- /// @param ... - code to execute for true and false
9
- ///
10
- /// Usage:
11
- /// ```
12
- /// BOOL_SWITCH(flag, BoolConst, [&] {
13
- /// some_function<BoolConst>(...);
14
- /// });
15
- /// ```
16
- #define BOOL_SWITCH(COND, CONST_NAME, ...) \
17
- [&] { \
18
- if (COND) { \
19
- constexpr bool CONST_NAME = true; \
20
- return __VA_ARGS__(); \
21
- } else { \
22
- constexpr bool CONST_NAME = false; \
23
- return __VA_ARGS__(); \
24
- } \
25
- }()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/csrc/selective_scan/uninitialized_copy.cuh DELETED
@@ -1,69 +0,0 @@
1
- /******************************************************************************
2
- * Copyright (c) 2011-2022, NVIDIA CORPORATION. All rights reserved.
3
- *
4
- * Redistribution and use in source and binary forms, with or without
5
- * modification, are permitted provided that the following conditions are met:
6
- * * Redistributions of source code must retain the above copyright
7
- * notice, this list of conditions and the following disclaimer.
8
- * * Redistributions in binary form must reproduce the above copyright
9
- * notice, this list of conditions and the following disclaimer in the
10
- * documentation and/or other materials provided with the distribution.
11
- * * Neither the name of the NVIDIA CORPORATION nor the
12
- * names of its contributors may be used to endorse or promote products
13
- * derived from this software without specific prior written permission.
14
- *
15
- * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16
- * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18
- * ARE DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
19
- * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
20
- * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
21
- * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
22
- * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
23
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
24
- * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
25
- *
26
- ******************************************************************************/
27
-
28
- #pragma once
29
-
30
- #include <cub/config.cuh>
31
-
32
- #include <cuda/std/type_traits>
33
-
34
-
35
- namespace detail
36
- {
37
-
38
- #if defined(_NVHPC_CUDA)
39
- template <typename T, typename U>
40
- __host__ __device__ void uninitialized_copy(T *ptr, U &&val)
41
- {
42
- // NVBug 3384810
43
- new (ptr) T(::cuda::std::forward<U>(val));
44
- }
45
- #else
46
- template <typename T,
47
- typename U,
48
- typename ::cuda::std::enable_if<
49
- ::cuda::std::is_trivially_copyable<T>::value,
50
- int
51
- >::type = 0>
52
- __host__ __device__ void uninitialized_copy(T *ptr, U &&val)
53
- {
54
- *ptr = ::cuda::std::forward<U>(val);
55
- }
56
-
57
- template <typename T,
58
- typename U,
59
- typename ::cuda::std::enable_if<
60
- !::cuda::std::is_trivially_copyable<T>::value,
61
- int
62
- >::type = 0>
63
- __host__ __device__ void uninitialized_copy(T *ptr, U &&val)
64
- {
65
- new (ptr) T(::cuda::std::forward<U>(val));
66
- }
67
- #endif
68
-
69
- } // namespace detail
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/evals/lm_harness_eval.py DELETED
@@ -1,39 +0,0 @@
1
- import torch
2
-
3
- import transformers
4
- from transformers import AutoTokenizer
5
-
6
- from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
7
-
8
- from lm_eval.api.model import LM
9
- from lm_eval.models.huggingface import HFLM
10
- from lm_eval.api.registry import register_model
11
- from lm_eval.__main__ import cli_evaluate
12
-
13
-
14
- @register_model("mamba")
15
- class MambaEvalWrapper(HFLM):
16
-
17
- AUTO_MODEL_CLASS = transformers.AutoModelForCausalLM
18
-
19
- def __init__(self, pretrained="state-spaces/mamba-2.8b", max_length=2048, batch_size=None, device="cuda",
20
- dtype=torch.float16):
21
- LM.__init__(self)
22
- self._model = MambaLMHeadModel.from_pretrained(pretrained, device=device, dtype=dtype)
23
- self.tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b")
24
- self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
25
- self.vocab_size = self.tokenizer.vocab_size
26
- self._batch_size = batch_size if batch_size is None else 64
27
- self._max_length = max_length
28
- self._device = torch.device(device)
29
-
30
- @property
31
- def batch_size(self):
32
- return self._batch_size
33
-
34
- def _model_generate(self, context, max_length, stop, **generation_kwargs):
35
- raise NotImplementedError()
36
-
37
-
38
- if __name__ == "__main__":
39
- cli_evaluate()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/mamba_ssm/__init__.py DELETED
@@ -1,5 +0,0 @@
1
- __version__ = "1.0.1"
2
-
3
- from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn, bimamba_inner_fn
4
- from mamba_ssm.modules.mamba_simple import Mamba
5
- from mamba_ssm.models.mixer_seq_simple import MambaLMHeadModel
 
 
 
 
 
 
mamba/mamba_ssm/models/__init__.py DELETED
File without changes
mamba/mamba_ssm/models/mixer_seq_simple.py DELETED
@@ -1,233 +0,0 @@
1
- # Copyright (c) 2023, Albert Gu, Tri Dao.
2
-
3
- import math
4
- from functools import partial
5
-
6
- from collections import namedtuple
7
-
8
- import torch
9
- import torch.nn as nn
10
-
11
- from mamba_ssm.modules.mamba_simple import Mamba, Block
12
- from mamba_ssm.utils.generation import GenerationMixin
13
- from mamba_ssm.utils.hf import load_config_hf, load_state_dict_hf
14
-
15
- try:
16
- from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
17
- except ImportError:
18
- RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
19
-
20
-
21
- def create_block(
22
- d_model,
23
- ssm_cfg=None,
24
- norm_epsilon=1e-5,
25
- rms_norm=False,
26
- residual_in_fp32=False,
27
- fused_add_norm=False,
28
- layer_idx=None,
29
- device=None,
30
- dtype=None,
31
- ):
32
- if ssm_cfg is None:
33
- ssm_cfg = {}
34
- factory_kwargs = {"device": device, "dtype": dtype}
35
- mixer_cls = partial(Mamba, layer_idx=layer_idx, **ssm_cfg, **factory_kwargs)
36
- norm_cls = partial(
37
- nn.LayerNorm if not rms_norm else RMSNorm, eps=norm_epsilon, **factory_kwargs
38
- )
39
- block = Block(
40
- d_model,
41
- mixer_cls,
42
- norm_cls=norm_cls,
43
- fused_add_norm=fused_add_norm,
44
- residual_in_fp32=residual_in_fp32,
45
- )
46
- block.layer_idx = layer_idx
47
- return block
48
-
49
-
50
- # https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
51
- def _init_weights(
52
- module,
53
- n_layer,
54
- initializer_range=0.02, # Now only used for embedding layer.
55
- rescale_prenorm_residual=True,
56
- n_residuals_per_layer=1, # Change to 2 if we have MLP
57
- ):
58
- if isinstance(module, nn.Linear):
59
- if module.bias is not None:
60
- if not getattr(module.bias, "_no_reinit", False):
61
- nn.init.zeros_(module.bias)
62
- elif isinstance(module, nn.Embedding):
63
- nn.init.normal_(module.weight, std=initializer_range)
64
-
65
- if rescale_prenorm_residual:
66
- # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
67
- # > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
68
- # > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
69
- # > -- GPT-2 :: https://openai.com/blog/better-language-models/
70
- #
71
- # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
72
- for name, p in module.named_parameters():
73
- if name in ["out_proj.weight", "fc2.weight"]:
74
- # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
75
- # Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
76
- # We need to reinit p since this code could be called multiple times
77
- # Having just p *= scale would repeatedly scale it down
78
- nn.init.kaiming_uniform_(p, a=math.sqrt(5))
79
- with torch.no_grad():
80
- p /= math.sqrt(n_residuals_per_layer * n_layer)
81
-
82
-
83
- class MixerModel(nn.Module):
84
- def __init__(
85
- self,
86
- d_model: int,
87
- n_layer: int,
88
- vocab_size: int,
89
- ssm_cfg=None,
90
- norm_epsilon: float = 1e-5,
91
- rms_norm: bool = False,
92
- initializer_cfg=None,
93
- fused_add_norm=False,
94
- residual_in_fp32=False,
95
- device=None,
96
- dtype=None,
97
- ) -> None:
98
- factory_kwargs = {"device": device, "dtype": dtype}
99
- super().__init__()
100
- self.residual_in_fp32 = residual_in_fp32
101
-
102
- self.embedding = nn.Embedding(vocab_size, d_model, **factory_kwargs)
103
-
104
- # We change the order of residual and layer norm:
105
- # Instead of LN -> Attn / MLP -> Add, we do:
106
- # Add -> LN -> Attn / MLP / Mixer, returning both the residual branch (output of Add) and
107
- # the main branch (output of MLP / Mixer). The model definition is unchanged.
108
- # This is for performance reason: we can fuse add + layer_norm.
109
- self.fused_add_norm = fused_add_norm
110
- if self.fused_add_norm:
111
- if layer_norm_fn is None or rms_norm_fn is None:
112
- raise ImportError("Failed to import Triton LayerNorm / RMSNorm kernels")
113
-
114
- self.layers = nn.ModuleList(
115
- [
116
- create_block(
117
- d_model,
118
- ssm_cfg=ssm_cfg,
119
- norm_epsilon=norm_epsilon,
120
- rms_norm=rms_norm,
121
- residual_in_fp32=residual_in_fp32,
122
- fused_add_norm=fused_add_norm,
123
- layer_idx=i,
124
- **factory_kwargs,
125
- )
126
- for i in range(n_layer)
127
- ]
128
- )
129
-
130
- self.norm_f = (nn.LayerNorm if not rms_norm else RMSNorm)(
131
- d_model, eps=norm_epsilon, **factory_kwargs
132
- )
133
-
134
- self.apply(
135
- partial(
136
- _init_weights,
137
- n_layer=n_layer,
138
- **(initializer_cfg if initializer_cfg is not None else {}),
139
- )
140
- )
141
-
142
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
143
- return {
144
- i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
145
- for i, layer in enumerate(self.layers)
146
- }
147
-
148
- def forward(self, input_ids, inference_params=None):
149
- hidden_states = self.embedding(input_ids)
150
- residual = None
151
- for layer in self.layers:
152
- hidden_states, residual = layer(
153
- hidden_states, residual, inference_params=inference_params
154
- )
155
- if not self.fused_add_norm:
156
- residual = (hidden_states + residual) if residual is not None else hidden_states
157
- hidden_states = self.norm_f(residual.to(dtype=self.norm_f.weight.dtype))
158
- else:
159
- # Set prenorm=False here since we don't need the residual
160
- fused_add_norm_fn = rms_norm_fn if isinstance(self.norm_f, RMSNorm) else layer_norm_fn
161
- hidden_states = fused_add_norm_fn(
162
- hidden_states,
163
- self.norm_f.weight,
164
- self.norm_f.bias,
165
- eps=self.norm_f.eps,
166
- residual=residual,
167
- prenorm=False,
168
- residual_in_fp32=self.residual_in_fp32,
169
- )
170
- return hidden_states
171
-
172
-
173
- class MambaLMHeadModel(nn.Module, GenerationMixin):
174
-
175
- def __init__(
176
- self,
177
- d_model: int,
178
- n_layer: int,
179
- vocab_size: int,
180
- initializer_cfg=None,
181
- pad_vocab_size_multiple: int = 1,
182
- device=None,
183
- dtype=None,
184
- **backbone_kwargs,
185
- ) -> None:
186
- factory_kwargs = {"device": device, "dtype": dtype}
187
- super().__init__()
188
- if vocab_size % pad_vocab_size_multiple != 0:
189
- vocab_size += pad_vocab_size_multiple - (vocab_size % pad_vocab_size_multiple)
190
- self.backbone = MixerModel(
191
- d_model=d_model,
192
- n_layer=n_layer,
193
- vocab_size=vocab_size,
194
- initializer_cfg=initializer_cfg,
195
- **backbone_kwargs,
196
- **factory_kwargs,
197
- )
198
- self.lm_head = nn.Linear(d_model, vocab_size, bias=False, **factory_kwargs)
199
-
200
- # Initialize weights and apply final processing
201
- self.apply(
202
- partial(
203
- _init_weights,
204
- n_layer=n_layer,
205
- **(initializer_cfg if initializer_cfg is not None else {}),
206
- )
207
- )
208
- self.tie_weights()
209
-
210
- def tie_weights(self):
211
- self.lm_head.weight = self.backbone.embedding.weight
212
-
213
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
214
- return self.backbone.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
215
-
216
- def forward(self, input_ids, position_ids=None, inference_params=None, num_last_tokens=0):
217
- """
218
- "position_ids" is just to be compatible with Transformer generation. We don't use it.
219
- num_last_tokens: if > 0, only return the logits for the last n tokens
220
- """
221
- hidden_states = self.backbone(input_ids, inference_params=inference_params)
222
- if num_last_tokens > 0:
223
- hidden_states = hidden_states[:, -num_last_tokens:]
224
- lm_logits = self.lm_head(hidden_states)
225
- CausalLMOutput = namedtuple("CausalLMOutput", ["logits"])
226
- return CausalLMOutput(logits=lm_logits)
227
-
228
- @classmethod
229
- def from_pretrained(cls, pretrained_model_name, device=None, dtype=None, **kwargs):
230
- config = load_config_hf(pretrained_model_name)
231
- model = cls(**config, device=device, dtype=dtype, **kwargs)
232
- model.load_state_dict(load_state_dict_hf(pretrained_model_name, device=device, dtype=dtype))
233
- return model
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/mamba_ssm/modules/__init__.py DELETED
File without changes
mamba/mamba_ssm/modules/mamba_simple.py DELETED
@@ -1,418 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao, Albert Gu.
2
-
3
- import math
4
- from typing import Optional
5
-
6
- import torch
7
- import torch.nn as nn
8
- import torch.nn.functional as F
9
- from torch import Tensor
10
-
11
- from einops import rearrange, repeat
12
-
13
- try:
14
- from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
15
- except ImportError:
16
- causal_conv1d_fn, causal_conv1d_update = None
17
-
18
- try:
19
- from mamba_ssm.ops.selective_scan_interface import selective_scan_fn, mamba_inner_fn, bimamba_inner_fn, mamba_inner_fn_no_out_proj
20
- except ImportError:
21
- selective_scan_fn, mamba_inner_fn, bimamba_inner_fn, mamba_inner_fn_no_out_proj = None, None, None, None, None
22
-
23
- try:
24
- from mamba_ssm.ops.triton.selective_state_update import selective_state_update
25
- except ImportError:
26
- selective_state_update = None
27
-
28
- try:
29
- from mamba_ssm.ops.triton.layernorm import RMSNorm, layer_norm_fn, rms_norm_fn
30
- except ImportError:
31
- RMSNorm, layer_norm_fn, rms_norm_fn = None, None, None
32
-
33
-
34
- class Mamba(nn.Module):
35
- def __init__(
36
- self,
37
- d_model,
38
- d_state=16,
39
- d_conv=4,
40
- expand=2,
41
- dt_rank="auto",
42
- dt_min=0.001,
43
- dt_max=0.1,
44
- dt_init="random",
45
- dt_scale=1.0,
46
- dt_init_floor=1e-4,
47
- conv_bias=True,
48
- bias=False,
49
- use_fast_path=True, # Fused kernel options
50
- layer_idx=None,
51
- device=None,
52
- dtype=None,
53
- bimamba=True,
54
- ):
55
- factory_kwargs = {"device": device, "dtype": dtype}
56
- super().__init__()
57
- self.d_model = d_model
58
- self.d_state = d_state
59
- self.d_conv = d_conv
60
- self.expand = expand
61
- self.d_inner = int(self.expand * self.d_model)
62
- self.dt_rank = math.ceil(self.d_model / 16) if dt_rank == "auto" else dt_rank
63
- self.use_fast_path = use_fast_path
64
- self.layer_idx = layer_idx
65
- self.bimamba = bimamba
66
-
67
- self.in_proj = nn.Linear(self.d_model, self.d_inner * 2, bias=bias, **factory_kwargs)
68
-
69
- self.conv1d = nn.Conv1d(
70
- in_channels=self.d_inner,
71
- out_channels=self.d_inner,
72
- bias=conv_bias,
73
- kernel_size=d_conv,
74
- groups=self.d_inner,
75
- padding=d_conv - 1,
76
- **factory_kwargs,
77
- )
78
-
79
- self.activation = "silu"
80
- self.act = nn.SiLU()
81
-
82
- self.x_proj = nn.Linear(
83
- self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
84
- )
85
- self.dt_proj = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
86
-
87
- # Initialize special dt projection to preserve variance at initialization
88
- dt_init_std = self.dt_rank**-0.5 * dt_scale
89
- if dt_init == "constant":
90
- nn.init.constant_(self.dt_proj.weight, dt_init_std)
91
- elif dt_init == "random":
92
- nn.init.uniform_(self.dt_proj.weight, -dt_init_std, dt_init_std)
93
- else:
94
- raise NotImplementedError
95
-
96
- # Initialize dt bias so that F.softplus(dt_bias) is between dt_min and dt_max
97
- dt = torch.exp(
98
- torch.rand(self.d_inner, **factory_kwargs) * (math.log(dt_max) - math.log(dt_min))
99
- + math.log(dt_min)
100
- ).clamp(min=dt_init_floor)
101
- # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
102
- inv_dt = dt + torch.log(-torch.expm1(-dt))
103
- with torch.no_grad():
104
- self.dt_proj.bias.copy_(inv_dt)
105
- # Our initialization would set all Linear.bias to zero, need to mark this one as _no_reinit
106
- self.dt_proj.bias._no_reinit = True
107
-
108
- # S4D real initialization
109
- # NOTE: why plus 1?
110
- A = repeat(
111
- torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
112
- "n -> d n",
113
- d=self.d_inner,
114
- ).contiguous()
115
- A_log = torch.log(A) # Keep A_log in fp32
116
- self.A_log = nn.Parameter(A_log)
117
- self.A_log._no_weight_decay = True
118
-
119
- # D "skip" parameter
120
- self.D = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
121
- self.D._no_weight_decay = True
122
-
123
- # bidirectional
124
- # forked from https://github.com/hustvl/Vim
125
- if self.bimamba:
126
- A_b = repeat(
127
- torch.arange(1, self.d_state + 1, dtype=torch.float32, device=device),
128
- "n -> d n",
129
- d=self.d_inner,
130
- ).contiguous()
131
- A_b_log = torch.log(A_b) # Keep A_b_log in fp32
132
- self.A_b_log = nn.Parameter(A_b_log)
133
- self.A_b_log._no_weight_decay = True
134
-
135
- self.conv1d_b = nn.Conv1d(
136
- in_channels=self.d_inner,
137
- out_channels=self.d_inner,
138
- bias=conv_bias,
139
- kernel_size=d_conv,
140
- groups=self.d_inner,
141
- padding=d_conv - 1,
142
- **factory_kwargs,
143
- )
144
-
145
- self.x_proj_b = nn.Linear(
146
- self.d_inner, self.dt_rank + self.d_state * 2, bias=False, **factory_kwargs
147
- )
148
- self.dt_proj_b = nn.Linear(self.dt_rank, self.d_inner, bias=True, **factory_kwargs)
149
-
150
- self.D_b = nn.Parameter(torch.ones(self.d_inner, device=device)) # Keep in fp32
151
- self.D_b._no_weight_decay = True
152
-
153
- self.out_proj = nn.Linear(self.d_inner, self.d_model, bias=bias, **factory_kwargs)
154
-
155
- def forward(self, hidden_states, inference_params=None, T=1):
156
- """
157
- hidden_states: (B, L, D)
158
- Returns: same shape as hidden_states
159
- """
160
- batch, seqlen, dim = hidden_states.shape
161
-
162
- conv_state, ssm_state = None, None
163
- if inference_params is not None:
164
- conv_state, ssm_state = self._get_states_from_cache(inference_params, batch)
165
- if inference_params.seqlen_offset > 0:
166
- # The states are updated inplace
167
- out, _, _ = self.step(hidden_states, conv_state, ssm_state)
168
- return out
169
-
170
- # We do matmul and transpose BLH -> HBL at the same time
171
- # NOTE: same as in_proj(hidden_states) but memory-efficient with the following operations
172
- xz = rearrange(
173
- self.in_proj.weight @ rearrange(hidden_states, "b l d -> d (b l)"),
174
- "d (b l) -> b d l",
175
- l=seqlen,
176
- )
177
- if self.in_proj.bias is not None:
178
- xz = xz + rearrange(self.in_proj.bias.to(dtype=xz.dtype), "d -> d 1")
179
-
180
- A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
181
- # In the backward pass we write dx and dz next to each other to avoid torch.cat
182
- if self.use_fast_path and inference_params is None: # Doesn't support outputting the states
183
- if self.bimamba:
184
- A_b = -torch.exp(self.A_b_log.float())
185
- out = mamba_inner_fn_no_out_proj(
186
- xz,
187
- self.conv1d.weight,
188
- self.conv1d.bias,
189
- self.x_proj.weight,
190
- self.dt_proj.weight,
191
- A,
192
- None, # input-dependent B
193
- None, # input-dependent C
194
- self.D.float(),
195
- delta_bias=self.dt_proj.bias.float(),
196
- delta_softplus=True,
197
- )
198
- out_b = mamba_inner_fn_no_out_proj(
199
- xz.flip([-1]),
200
- self.conv1d_b.weight,
201
- self.conv1d_b.bias,
202
- self.x_proj_b.weight,
203
- self.dt_proj_b.weight,
204
- A_b,
205
- None,
206
- None,
207
- self.D_b.float(),
208
- delta_bias=self.dt_proj_b.bias.float(),
209
- delta_softplus=True,
210
- )
211
- out = F.linear(rearrange(out + out_b.flip([-1]), "b d l -> b l d"), self.out_proj.weight, self.out_proj.bias)
212
- else:
213
- out = mamba_inner_fn(
214
- xz,
215
- self.conv1d.weight,
216
- self.conv1d.bias,
217
- self.x_proj.weight,
218
- self.dt_proj.weight,
219
- self.out_proj.weight,
220
- self.out_proj.bias,
221
- A,
222
- None, # input-dependent B
223
- None, # input-dependent C
224
- self.D.float(),
225
- delta_bias=self.dt_proj.bias.float(),
226
- delta_softplus=True,
227
- )
228
- else:
229
- x, z = xz.chunk(2, dim=1)
230
- # Compute short convolution
231
- if conv_state is not None:
232
- conv_state.copy_(x[:, :, -self.d_conv :]) # Update state (B D W)
233
- if causal_conv1d_fn is None:
234
- x = self.act(self.conv1d(x)[..., :seqlen])
235
- else:
236
- assert self.activation in ["silu", "swish"]
237
- x = causal_conv1d_fn(
238
- x,
239
- rearrange(self.conv1d.weight, "d 1 w -> d w"),
240
- self.conv1d.bias,
241
- self.activation,
242
- )
243
-
244
- # We're careful here about the layout, to avoid extra transposes.
245
- # We want dt to have d as the slowest moving dimension
246
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
247
- x_dbl = self.x_proj(rearrange(x, "b d l -> (b l) d")) # (bl d)
248
- dt, B, C = torch.split(x_dbl, [self.dt_rank, self.d_state, self.d_state], dim=-1)
249
- dt = self.dt_proj.weight @ dt.t()
250
- dt = rearrange(dt, "d (b l) -> b d l", l=seqlen)
251
- B = rearrange(B, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
252
- C = rearrange(C, "(b l) dstate -> b dstate l", l=seqlen).contiguous()
253
- assert self.activation in ["silu", "swish"]
254
- y = selective_scan_fn(
255
- x,
256
- dt,
257
- A,
258
- B,
259
- C,
260
- self.D.float(),
261
- z=z,
262
- delta_bias=self.dt_proj.bias.float(),
263
- delta_softplus=True,
264
- return_last_state=ssm_state is not None,
265
- )
266
- if ssm_state is not None:
267
- y, last_state = y
268
- ssm_state.copy_(last_state)
269
- y = rearrange(y, "b d l -> b l d")
270
- out = self.out_proj(y)
271
- return out
272
-
273
- def step(self, hidden_states, conv_state, ssm_state):
274
- dtype = hidden_states.dtype
275
- assert hidden_states.shape[1] == 1, "Only support decoding with 1 token at a time for now"
276
- xz = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
277
- x, z = xz.chunk(2, dim=-1) # (B D)
278
-
279
- # Conv step
280
- if causal_conv1d_update is None:
281
- conv_state.copy_(torch.roll(conv_state, shifts=-1, dims=-1)) # Update state (B D W)
282
- conv_state[:, :, -1] = x
283
- x = torch.sum(conv_state * rearrange(self.conv1d.weight, "d 1 w -> d w"), dim=-1) # (B D)
284
- if self.conv1d.bias is not None:
285
- x = x + self.conv1d.bias
286
- x = self.act(x).to(dtype=dtype)
287
- else:
288
- x = causal_conv1d_update(
289
- x,
290
- conv_state,
291
- rearrange(self.conv1d.weight, "d 1 w -> d w"),
292
- self.conv1d.bias,
293
- self.activation,
294
- )
295
-
296
- x_db = self.x_proj(x) # (B dt_rank+2*d_state)
297
- dt, B, C = torch.split(x_db, [self.dt_rank, self.d_state, self.d_state], dim=-1)
298
- # Don't add dt_bias here
299
- dt = F.linear(dt, self.dt_proj.weight) # (B d_inner)
300
- A = -torch.exp(self.A_log.float()) # (d_inner, d_state)
301
-
302
- # SSM step
303
- if selective_state_update is None:
304
- # Discretize A and B
305
- dt = F.softplus(dt + self.dt_proj.bias.to(dtype=dt.dtype))
306
- dA = torch.exp(torch.einsum("bd,dn->bdn", dt, A))
307
- dB = torch.einsum("bd,bn->bdn", dt, B)
308
- ssm_state.copy_(ssm_state * dA + rearrange(x, "b d -> b d 1") * dB)
309
- y = torch.einsum("bdn,bn->bd", ssm_state.to(dtype), C)
310
- y = y + self.D.to(dtype) * x
311
- y = y * self.act(z) # (B D)
312
- else:
313
- y = selective_state_update(
314
- ssm_state, x, dt, A, B, C, self.D, z=z, dt_bias=self.dt_proj.bias, dt_softplus=True
315
- )
316
-
317
- out = self.out_proj(y)
318
- return out.unsqueeze(1), conv_state, ssm_state
319
-
320
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
321
- device = self.out_proj.weight.device
322
- conv_dtype = self.conv1d.weight.dtype if dtype is None else dtype
323
- conv_state = torch.zeros(
324
- batch_size, self.d_model * self.expand, self.d_conv, device=device, dtype=conv_dtype
325
- )
326
- ssm_dtype = self.dt_proj.weight.dtype if dtype is None else dtype
327
- # ssm_dtype = torch.float32
328
- ssm_state = torch.zeros(
329
- batch_size, self.d_model * self.expand, self.d_state, device=device, dtype=ssm_dtype
330
- )
331
- return conv_state, ssm_state
332
-
333
- def _get_states_from_cache(self, inference_params, batch_size, initialize_states=False):
334
- assert self.layer_idx is not None
335
- if self.layer_idx not in inference_params.key_value_memory_dict:
336
- batch_shape = (batch_size,)
337
- conv_state = torch.zeros(
338
- batch_size,
339
- self.d_model * self.expand,
340
- self.d_conv,
341
- device=self.conv1d.weight.device,
342
- dtype=self.conv1d.weight.dtype,
343
- )
344
- ssm_state = torch.zeros(
345
- batch_size,
346
- self.d_model * self.expand,
347
- self.d_state,
348
- device=self.dt_proj.weight.device,
349
- dtype=self.dt_proj.weight.dtype,
350
- # dtype=torch.float32,
351
- )
352
- inference_params.key_value_memory_dict[self.layer_idx] = (conv_state, ssm_state)
353
- else:
354
- conv_state, ssm_state = inference_params.key_value_memory_dict[self.layer_idx]
355
- # TODO: What if batch size changes between generation, and we reuse the same states?
356
- if initialize_states:
357
- conv_state.zero_()
358
- ssm_state.zero_()
359
- return conv_state, ssm_state
360
-
361
-
362
- class Block(nn.Module):
363
- def __init__(
364
- self, dim, mixer_cls, norm_cls=nn.LayerNorm, fused_add_norm=False, residual_in_fp32=False
365
- ):
366
- """
367
- Simple block wrapping a mixer class with LayerNorm/RMSNorm and residual connection"
368
-
369
- This Block has a slightly different structure compared to a regular
370
- prenorm Transformer block.
371
- The standard block is: LN -> MHA/MLP -> Add.
372
- [Ref: https://arxiv.org/abs/2002.04745]
373
- Here we have: Add -> LN -> Mixer, returning both
374
- the hidden_states (output of the mixer) and the residual.
375
- This is purely for performance reasons, as we can fuse add and LayerNorm.
376
- The residual needs to be provided (except for the very first block).
377
- """
378
- super().__init__()
379
- self.residual_in_fp32 = residual_in_fp32
380
- self.fused_add_norm = fused_add_norm
381
- self.mixer = mixer_cls(dim)
382
- self.norm = norm_cls(dim)
383
- if self.fused_add_norm:
384
- assert RMSNorm is not None, "RMSNorm import fails"
385
- assert isinstance(
386
- self.norm, (nn.LayerNorm, RMSNorm)
387
- ), "Only LayerNorm and RMSNorm are supported for fused_add_norm"
388
-
389
- def forward(
390
- self, hidden_states: Tensor, residual: Optional[Tensor] = None, inference_params=None
391
- ):
392
- r"""Pass the input through the encoder layer.
393
-
394
- Args:
395
- hidden_states: the sequence to the encoder layer (required).
396
- residual: hidden_states = Mixer(LN(residual))
397
- """
398
- if not self.fused_add_norm:
399
- residual = (hidden_states + residual) if residual is not None else hidden_states
400
- hidden_states = self.norm(residual.to(dtype=self.norm.weight.dtype))
401
- if self.residual_in_fp32:
402
- residual = residual.to(torch.float32)
403
- else:
404
- fused_add_norm_fn = rms_norm_fn if isinstance(self.norm, RMSNorm) else layer_norm_fn
405
- hidden_states, residual = fused_add_norm_fn(
406
- hidden_states,
407
- self.norm.weight,
408
- self.norm.bias,
409
- residual=residual,
410
- prenorm=True,
411
- residual_in_fp32=self.residual_in_fp32,
412
- eps=self.norm.eps,
413
- )
414
- hidden_states = self.mixer(hidden_states, inference_params=inference_params)
415
- return hidden_states, residual
416
-
417
- def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
418
- return self.mixer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/mamba_ssm/ops/__init__.py DELETED
File without changes
mamba/mamba_ssm/ops/selective_scan_interface.py DELETED
@@ -1,709 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao, Albert Gu.
2
-
3
- import torch
4
- import torch.nn.functional as F
5
- from torch.cuda.amp import custom_bwd, custom_fwd
6
-
7
- from einops import rearrange, repeat
8
-
9
- from causal_conv1d import causal_conv1d_fn
10
- import causal_conv1d_cuda
11
- import selective_scan_cuda
12
-
13
-
14
- class SelectiveScanFn(torch.autograd.Function):
15
-
16
- @staticmethod
17
- def forward(ctx, u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
18
- return_last_state=False):
19
- if u.stride(-1) != 1:
20
- u = u.contiguous()
21
- if delta.stride(-1) != 1:
22
- delta = delta.contiguous()
23
- if D is not None:
24
- D = D.contiguous()
25
- if B.stride(-1) != 1:
26
- B = B.contiguous()
27
- if C.stride(-1) != 1:
28
- C = C.contiguous()
29
- if z is not None and z.stride(-1) != 1:
30
- z = z.contiguous()
31
- if B.dim() == 3:
32
- B = rearrange(B, "b dstate l -> b 1 dstate l")
33
- ctx.squeeze_B = True
34
- if C.dim() == 3:
35
- C = rearrange(C, "b dstate l -> b 1 dstate l")
36
- ctx.squeeze_C = True
37
- out, x, *rest = selective_scan_cuda.fwd(u, delta, A, B, C, D, z, delta_bias, delta_softplus)
38
- ctx.delta_softplus = delta_softplus
39
- ctx.has_z = z is not None
40
- last_state = x[:, :, -1, 1::2] # (batch, dim, dstate)
41
- if not ctx.has_z:
42
- ctx.save_for_backward(u, delta, A, B, C, D, delta_bias, x)
43
- return out if not return_last_state else (out, last_state)
44
- else:
45
- ctx.save_for_backward(u, delta, A, B, C, D, z, delta_bias, x, out)
46
- out_z = rest[0]
47
- return out_z if not return_last_state else (out_z, last_state)
48
-
49
- @staticmethod
50
- def backward(ctx, dout, *args):
51
- if not ctx.has_z:
52
- u, delta, A, B, C, D, delta_bias, x = ctx.saved_tensors
53
- z = None
54
- out = None
55
- else:
56
- u, delta, A, B, C, D, z, delta_bias, x, out = ctx.saved_tensors
57
- if dout.stride(-1) != 1:
58
- dout = dout.contiguous()
59
- # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
60
- # backward of selective_scan_cuda with the backward of chunk).
61
- # Here we just pass in None and dz will be allocated in the C++ code.
62
- du, ddelta, dA, dB, dC, dD, ddelta_bias, *rest = selective_scan_cuda.bwd(
63
- u, delta, A, B, C, D, z, delta_bias, dout, x, out, None, ctx.delta_softplus,
64
- False # option to recompute out_z, not used here
65
- )
66
- dz = rest[0] if ctx.has_z else None
67
- dB = dB.squeeze(1) if getattr(ctx, "squeeze_B", False) else dB
68
- dC = dC.squeeze(1) if getattr(ctx, "squeeze_C", False) else dC
69
- return (du, ddelta, dA, dB, dC,
70
- dD if D is not None else None,
71
- dz,
72
- ddelta_bias if delta_bias is not None else None,
73
- None,
74
- None)
75
-
76
-
77
- def selective_scan_fn(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
78
- return_last_state=False):
79
- """if return_last_state is True, returns (out, last_state)
80
- last_state has shape (batch, dim, dstate). Note that the gradient of the last state is
81
- not considered in the backward pass.
82
- """
83
- return SelectiveScanFn.apply(u, delta, A, B, C, D, z, delta_bias, delta_softplus, return_last_state)
84
-
85
-
86
- def selective_scan_ref(u, delta, A, B, C, D=None, z=None, delta_bias=None, delta_softplus=False,
87
- return_last_state=False):
88
- """
89
- u: r(B D L)
90
- delta: r(B D L)
91
- A: c(D N) or r(D N)
92
- B: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
93
- C: c(D N) or r(B N L) or r(B N 2L) or r(B G N L) or (B G N L)
94
- D: r(D)
95
- z: r(B D L)
96
- delta_bias: r(D), fp32
97
-
98
- out: r(B D L)
99
- last_state (optional): r(B D dstate) or c(B D dstate)
100
- """
101
- dtype_in = u.dtype
102
- u = u.float()
103
- delta = delta.float()
104
- if delta_bias is not None:
105
- delta = delta + delta_bias[..., None].float()
106
- if delta_softplus:
107
- delta = F.softplus(delta)
108
- batch, dim, dstate = u.shape[0], A.shape[0], A.shape[1]
109
- is_variable_B = B.dim() >= 3
110
- is_variable_C = C.dim() >= 3
111
- if A.is_complex():
112
- if is_variable_B:
113
- B = torch.view_as_complex(rearrange(B.float(), "... (L two) -> ... L two", two=2))
114
- if is_variable_C:
115
- C = torch.view_as_complex(rearrange(C.float(), "... (L two) -> ... L two", two=2))
116
- else:
117
- B = B.float()
118
- C = C.float()
119
- x = A.new_zeros((batch, dim, dstate))
120
- ys = []
121
- deltaA = torch.exp(torch.einsum('bdl,dn->bdln', delta, A))
122
- if not is_variable_B:
123
- deltaB_u = torch.einsum('bdl,dn,bdl->bdln', delta, B, u)
124
- else:
125
- if B.dim() == 3:
126
- deltaB_u = torch.einsum('bdl,bnl,bdl->bdln', delta, B, u)
127
- else:
128
- B = repeat(B, "B G N L -> B (G H) N L", H=dim // B.shape[1])
129
- deltaB_u = torch.einsum('bdl,bdnl,bdl->bdln', delta, B, u)
130
- if is_variable_C and C.dim() == 4:
131
- C = repeat(C, "B G N L -> B (G H) N L", H=dim // C.shape[1])
132
- last_state = None
133
- for i in range(u.shape[2]):
134
- x = deltaA[:, :, i] * x + deltaB_u[:, :, i]
135
- if not is_variable_C:
136
- y = torch.einsum('bdn,dn->bd', x, C)
137
- else:
138
- if C.dim() == 3:
139
- y = torch.einsum('bdn,bn->bd', x, C[:, :, i])
140
- else:
141
- y = torch.einsum('bdn,bdn->bd', x, C[:, :, :, i])
142
- if i == u.shape[2] - 1:
143
- last_state = x
144
- if y.is_complex():
145
- y = y.real * 2
146
- ys.append(y)
147
- y = torch.stack(ys, dim=2) # (batch dim L)
148
- out = y if D is None else y + u * rearrange(D, "d -> d 1")
149
- if z is not None:
150
- out = out * F.silu(z)
151
- out = out.to(dtype=dtype_in)
152
- return out if not return_last_state else (out, last_state)
153
-
154
-
155
- class MambaInnerFnNoOutProj(torch.autograd.Function):
156
-
157
- @staticmethod
158
- @custom_fwd
159
- def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
160
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
161
- C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
162
- """
163
- xz: (batch, dim, seqlen)
164
- """
165
- assert checkpoint_lvl in [0, 1]
166
- L = xz.shape[-1]
167
- delta_rank = delta_proj_weight.shape[1]
168
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
169
- if torch.is_autocast_enabled():
170
- x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
171
- delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
172
- if xz.stride(-1) != 1:
173
- xz = xz.contiguous()
174
- conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
175
- x, z = xz.chunk(2, dim=1)
176
- conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
177
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
178
- # We're being very careful here about the layout, to avoid extra transposes.
179
- # We want delta to have d as the slowest moving dimension
180
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
181
- x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
182
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
183
- ctx.is_variable_B = B is None
184
- ctx.is_variable_C = C is None
185
- ctx.B_proj_bias_is_None = B_proj_bias is None
186
- ctx.C_proj_bias_is_None = C_proj_bias is None
187
- if B is None: # variable B
188
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
189
- if B_proj_bias is not None:
190
- B = B + B_proj_bias.to(dtype=B.dtype)
191
- if not A.is_complex():
192
- # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
193
- B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
194
- else:
195
- B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
196
- else:
197
- if B.stride(-1) != 1:
198
- B = B.contiguous()
199
- if C is None: # variable C
200
- C = x_dbl[:, -d_state:] # (bl dstate)
201
- if C_proj_bias is not None:
202
- C = C + C_proj_bias.to(dtype=C.dtype)
203
- if not A.is_complex():
204
- # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
205
- C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
206
- else:
207
- C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
208
- else:
209
- if C.stride(-1) != 1:
210
- C = C.contiguous()
211
- if D is not None:
212
- D = D.contiguous()
213
- out, scan_intermediates, out_z = selective_scan_cuda.fwd(
214
- conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
215
- )
216
- ctx.delta_softplus = delta_softplus
217
- ctx.checkpoint_lvl = checkpoint_lvl
218
- if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
219
- conv1d_out, delta = None, None
220
- ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
221
- delta_proj_weight, conv1d_out, delta,
222
- A, B, C, D, delta_bias, scan_intermediates, out)
223
- # return rearrange(out_z, "b d l -> b l d")
224
- return out_z
225
-
226
- @staticmethod
227
- @custom_bwd
228
- def backward(ctx, dout):
229
- # dout: (batch, seqlen, dim)
230
- (xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight,
231
- conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
232
- L = xz.shape[-1]
233
- delta_rank = delta_proj_weight.shape[1]
234
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
235
- x, z = xz.chunk(2, dim=1)
236
- if dout.stride(-1) != 1:
237
- dout = dout.contiguous()
238
- if ctx.checkpoint_lvl == 1:
239
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
240
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
241
- "d (b l) -> b d l", l = L)
242
- # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
243
- # backward of selective_scan_cuda with the backward of chunk).
244
- dxz = torch.empty_like(xz) # (batch, dim, seqlen)
245
- dx, dz = dxz.chunk(2, dim=1)
246
- # dout_y = rearrange(dout, "b l d -> b d l") # because no arrange at end of forward, so dout shape is b d l
247
- dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
248
- conv1d_out, delta, A, B, C, D, z, delta_bias, dout, scan_intermediates, out, dz,
249
- ctx.delta_softplus,
250
- True # option to recompute out_z
251
- )
252
- dD = dD if D is not None else None
253
- dx_dbl = torch.empty_like(x_dbl)
254
- dB_proj_bias = None
255
- if ctx.is_variable_B:
256
- if not A.is_complex():
257
- dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
258
- else:
259
- dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
260
- dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
261
- dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
262
- dB = None
263
- dC_proj_bias = None
264
- if ctx.is_variable_C:
265
- if not A.is_complex():
266
- dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
267
- else:
268
- dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
269
- dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
270
- dx_dbl[:, -d_state:] = dC # (bl d)
271
- dC = None
272
- ddelta = rearrange(ddelta, "b d l -> d (b l)")
273
- ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
274
- dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
275
- dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
276
- dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
277
- dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
278
- dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
279
- # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
280
- # backward of conv1d with the backward of chunk).
281
- dx, dconv1d_weight, dconv1d_bias = causal_conv1d_cuda.causal_conv1d_bwd(
282
- x, conv1d_weight, conv1d_bias, dconv1d_out, dx, True
283
- )
284
- dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
285
- dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
286
- return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
287
- dA, dB, dC, dD,
288
- ddelta_bias if delta_bias is not None else None,
289
- dB_proj_bias, dC_proj_bias, None)
290
-
291
-
292
- class MambaInnerFn(torch.autograd.Function):
293
-
294
- @staticmethod
295
- @custom_fwd
296
- def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
297
- out_proj_weight, out_proj_bias,
298
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
299
- C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
300
- """
301
- xz: (batch, dim, seqlen)
302
- """
303
- assert checkpoint_lvl in [0, 1]
304
- L = xz.shape[-1]
305
- delta_rank = delta_proj_weight.shape[1]
306
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
307
- if torch.is_autocast_enabled():
308
- x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
309
- delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
310
- out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
311
- out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
312
- if out_proj_bias is not None else None)
313
- if xz.stride(-1) != 1:
314
- xz = xz.contiguous()
315
- conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
316
- x, z = xz.chunk(2, dim=1)
317
- conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
318
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
319
- # We're being very careful here about the layout, to avoid extra transposes.
320
- # We want delta to have d as the slowest moving dimension
321
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
322
- x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
323
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
324
- ctx.is_variable_B = B is None
325
- ctx.is_variable_C = C is None
326
- ctx.B_proj_bias_is_None = B_proj_bias is None
327
- ctx.C_proj_bias_is_None = C_proj_bias is None
328
- if B is None: # variable B
329
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
330
- if B_proj_bias is not None:
331
- B = B + B_proj_bias.to(dtype=B.dtype)
332
- if not A.is_complex():
333
- # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
334
- B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
335
- else:
336
- B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
337
- else:
338
- if B.stride(-1) != 1:
339
- B = B.contiguous()
340
- if C is None: # variable C
341
- C = x_dbl[:, -d_state:] # (bl dstate)
342
- if C_proj_bias is not None:
343
- C = C + C_proj_bias.to(dtype=C.dtype)
344
- if not A.is_complex():
345
- # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
346
- C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
347
- else:
348
- C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
349
- else:
350
- if C.stride(-1) != 1:
351
- C = C.contiguous()
352
- if D is not None:
353
- D = D.contiguous()
354
- out, scan_intermediates, out_z = selective_scan_cuda.fwd(
355
- conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
356
- )
357
- ctx.delta_softplus = delta_softplus
358
- ctx.out_proj_bias_is_None = out_proj_bias is None
359
- ctx.checkpoint_lvl = checkpoint_lvl
360
- if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
361
- conv1d_out, delta = None, None
362
- ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
363
- delta_proj_weight, out_proj_weight, conv1d_out, delta,
364
- A, B, C, D, delta_bias, scan_intermediates, out)
365
- return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
366
-
367
- @staticmethod
368
- @custom_bwd
369
- def backward(ctx, dout):
370
- # dout: (batch, seqlen, dim)
371
- (xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
372
- conv1d_out, delta, A, B, C, D, delta_bias, scan_intermediates, out) = ctx.saved_tensors
373
- L = xz.shape[-1]
374
- delta_rank = delta_proj_weight.shape[1]
375
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
376
- x, z = xz.chunk(2, dim=1)
377
- if dout.stride(-1) != 1:
378
- dout = dout.contiguous()
379
- if ctx.checkpoint_lvl == 1:
380
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
381
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
382
- "d (b l) -> b d l", l = L)
383
- # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
384
- # backward of selective_scan_cuda with the backward of chunk).
385
- dxz = torch.empty_like(xz) # (batch, dim, seqlen)
386
- dx, dz = dxz.chunk(2, dim=1)
387
- dout = rearrange(dout, "b l e -> e (b l)")
388
- dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
389
- dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z = selective_scan_cuda.bwd(
390
- conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates, out, dz,
391
- ctx.delta_softplus,
392
- True # option to recompute out_z
393
- )
394
- dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
395
- dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
396
- dD = dD if D is not None else None
397
- dx_dbl = torch.empty_like(x_dbl)
398
- dB_proj_bias = None
399
- if ctx.is_variable_B:
400
- if not A.is_complex():
401
- dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
402
- else:
403
- dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
404
- dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
405
- dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
406
- dB = None
407
- dC_proj_bias = None
408
- if ctx.is_variable_C:
409
- if not A.is_complex():
410
- dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
411
- else:
412
- dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
413
- dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
414
- dx_dbl[:, -d_state:] = dC # (bl d)
415
- dC = None
416
- ddelta = rearrange(ddelta, "b d l -> d (b l)")
417
- ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
418
- dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
419
- dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
420
- dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
421
- dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
422
- dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
423
- # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
424
- # backward of conv1d with the backward of chunk).
425
- dx, dconv1d_weight, dconv1d_bias = causal_conv1d_cuda.causal_conv1d_bwd(
426
- x, conv1d_weight, conv1d_bias, dconv1d_out, dx, True
427
- )
428
- dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
429
- dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
430
- return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
431
- dout_proj_weight, dout_proj_bias,
432
- dA, dB, dC, dD,
433
- ddelta_bias if delta_bias is not None else None,
434
- dB_proj_bias, dC_proj_bias, None)
435
-
436
-
437
- class BiMambaInnerFn(torch.autograd.Function):
438
-
439
- @staticmethod
440
- @custom_fwd
441
- def forward(ctx, xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
442
- out_proj_weight, out_proj_bias,
443
- A, A_b, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
444
- C_proj_bias=None, delta_softplus=True, checkpoint_lvl=1):
445
- """
446
- xz: (batch, dim, seqlen)
447
- """
448
- assert checkpoint_lvl in [0, 1]
449
- L = xz.shape[-1]
450
- delta_rank = delta_proj_weight.shape[1]
451
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
452
- if torch.is_autocast_enabled():
453
- x_proj_weight = x_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
454
- delta_proj_weight = delta_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
455
- out_proj_weight = out_proj_weight.to(dtype=torch.get_autocast_gpu_dtype())
456
- out_proj_bias = (out_proj_bias.to(dtype=torch.get_autocast_gpu_dtype())
457
- if out_proj_bias is not None else None)
458
- if xz.stride(-1) != 1:
459
- xz = xz.contiguous()
460
- conv1d_weight = rearrange(conv1d_weight, "d 1 w -> d w")
461
- x, z = xz.chunk(2, dim=1)
462
- conv1d_bias = conv1d_bias.contiguous() if conv1d_bias is not None else None
463
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
464
- # We're being very careful here about the layout, to avoid extra transposes.
465
- # We want delta to have d as the slowest moving dimension
466
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
467
- x_dbl = F.linear(rearrange(conv1d_out, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
468
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(), "d (b l) -> b d l", l = L)
469
- ctx.is_variable_B = B is None
470
- ctx.is_variable_C = C is None
471
- ctx.B_proj_bias_is_None = B_proj_bias is None
472
- ctx.C_proj_bias_is_None = C_proj_bias is None
473
- if B is None: # variable B
474
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl dstate)
475
- if B_proj_bias is not None:
476
- B = B + B_proj_bias.to(dtype=B.dtype)
477
- if not A.is_complex():
478
- # B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
479
- B = rearrange(B, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
480
- else:
481
- B = rearrange(B, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
482
- else:
483
- if B.stride(-1) != 1:
484
- B = B.contiguous()
485
- if C is None: # variable C
486
- C = x_dbl[:, -d_state:] # (bl dstate)
487
- if C_proj_bias is not None:
488
- C = C + C_proj_bias.to(dtype=C.dtype)
489
- if not A.is_complex():
490
- # C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
491
- C = rearrange(C, "(b l) dstate -> b 1 dstate l", l=L).contiguous()
492
- else:
493
- C = rearrange(C, "(b l) (dstate two) -> b 1 dstate (l two)", l=L, two=2).contiguous()
494
- else:
495
- if C.stride(-1) != 1:
496
- C = C.contiguous()
497
- if D is not None:
498
- D = D.contiguous()
499
- out_f, scan_intermediates_f, out_z_f = selective_scan_cuda.fwd(
500
- conv1d_out, delta, A, B, C, D, z, delta_bias, delta_softplus
501
- )
502
- assert not A_b.is_complex(), "A should not be complex!!"
503
- out_b, scan_intermediates_b, out_z_b = selective_scan_cuda.fwd(
504
- conv1d_out.flip([-1]), delta.flip([-1]), A_b, B.flip([-1]), C.flip([-1]), D, z.flip([-1]), delta_bias, delta_softplus,
505
- )
506
-
507
- out_z = out_z_f + out_z_b.flip([-1])
508
-
509
- ctx.delta_softplus = delta_softplus
510
- ctx.out_proj_bias_is_None = out_proj_bias is None
511
- ctx.checkpoint_lvl = checkpoint_lvl
512
- if checkpoint_lvl >= 1: # Will recompute conv1d_out and delta in the backward pass
513
- conv1d_out, delta = None, None
514
- ctx.save_for_backward(xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight,
515
- delta_proj_weight, out_proj_weight, conv1d_out, delta,
516
- A, A_b, B, C, D, delta_bias, scan_intermediates_f, scan_intermediates_b, out_f, out_b)
517
- return F.linear(rearrange(out_z, "b d l -> b l d"), out_proj_weight, out_proj_bias)
518
-
519
- @staticmethod
520
- @custom_bwd
521
- def backward(ctx, dout):
522
- # dout: (batch, seqlen, dim)
523
- (xz, conv1d_weight, conv1d_bias, x_dbl, x_proj_weight, delta_proj_weight, out_proj_weight,
524
- conv1d_out, delta, A, A_b, B, C, D, delta_bias, scan_intermediates_f, scan_intermediates_b, out_f, out_b) = ctx.saved_tensors
525
- L = xz.shape[-1]
526
- delta_rank = delta_proj_weight.shape[1]
527
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
528
- x, z = xz.chunk(2, dim=1)
529
- if dout.stride(-1) != 1:
530
- dout = dout.contiguous()
531
- if ctx.checkpoint_lvl == 1:
532
- conv1d_out = causal_conv1d_cuda.causal_conv1d_fwd(x, conv1d_weight, conv1d_bias, True)
533
- delta = rearrange(delta_proj_weight @ x_dbl[:, :delta_rank].t(),
534
- "d (b l) -> b d l", l = L)
535
- # The kernel supports passing in a pre-allocated dz (e.g., in case we want to fuse the
536
- # backward of selective_scan_cuda with the backward of chunk).
537
- dxz = torch.empty_like(xz) # (batch, dim, seqlen)
538
- dx, dz = dxz.chunk(2, dim=1)
539
- dout = rearrange(dout, "b l e -> e (b l)")
540
- dout_y = rearrange(out_proj_weight.t() @ dout, "d (b l) -> b d l", l=L)
541
- dconv1d_out, ddelta, dA, dB, dC, dD, ddelta_bias, dz, out_z_f = selective_scan_cuda.bwd(
542
- conv1d_out, delta, A, B, C, D, z, delta_bias, dout_y, scan_intermediates_f, out_f, dz,
543
- ctx.delta_softplus,
544
- True # option to recompute out_z
545
- )
546
- # flip one
547
- dz_b = torch.empty_like(dz)
548
- dconv1d_out_f_b, ddelta_f_b, dA_b, dB_f_b, dC_f_b, dD_b, ddelta_bias_b, dz_b, out_z_b = selective_scan_cuda.bwd(
549
- conv1d_out.flip([-1]), delta.flip([-1]), A_b, B.flip([-1]), C.flip([-1]), D, z.flip([-1]), delta_bias, dout_y.flip([-1]), scan_intermediates_b, out_b, dz_b,
550
- ctx.delta_softplus,
551
- True # option to recompute out_z
552
- )
553
-
554
- dconv1d_out = dconv1d_out + dconv1d_out_f_b.flip([-1])
555
- ddelta = ddelta + ddelta_f_b.flip([-1])
556
- dB = dB + dB_f_b.flip([-1])
557
- dC = dC + dC_f_b.flip([-1])
558
- dD = dD + dD_b
559
- ddelta_bias = ddelta_bias + ddelta_bias_b
560
- dz = dz + dz_b.flip([-1])
561
- out_z = out_z_f + out_z_b.flip([-1])
562
-
563
- dout_proj_weight = torch.einsum("eB,dB->ed", dout, rearrange(out_z, "b d l -> d (b l)"))
564
- dout_proj_bias = dout.sum(dim=(0, 1)) if not ctx.out_proj_bias_is_None else None
565
- dD = dD if D is not None else None
566
- dx_dbl = torch.empty_like(x_dbl)
567
- dB_proj_bias = None
568
- if ctx.is_variable_B:
569
- if not A.is_complex():
570
- dB = rearrange(dB, "b 1 dstate l -> (b l) dstate").contiguous()
571
- else:
572
- dB = rearrange(dB, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
573
- dB_proj_bias = dB.sum(0) if not ctx.B_proj_bias_is_None else None
574
- dx_dbl[:, delta_rank:delta_rank + d_state] = dB # (bl d)
575
- dB = None
576
- dC_proj_bias = None
577
- if ctx.is_variable_C:
578
- if not A.is_complex():
579
- dC = rearrange(dC, "b 1 dstate l -> (b l) dstate").contiguous()
580
- else:
581
- dC = rearrange(dC, "b 1 dstate (l two) -> (b l) (dstate two)", two=2).contiguous()
582
- dC_proj_bias = dC.sum(0) if not ctx.C_proj_bias_is_None else None
583
- dx_dbl[:, -d_state:] = dC # (bl d)
584
- dC = None
585
- ddelta = rearrange(ddelta, "b d l -> d (b l)")
586
- ddelta_proj_weight = torch.einsum("dB,Br->dr", ddelta, x_dbl[:, :delta_rank])
587
- dx_dbl[:, :delta_rank] = torch.einsum("dB,dr->Br", ddelta, delta_proj_weight)
588
- dconv1d_out = rearrange(dconv1d_out, "b d l -> d (b l)")
589
- dx_proj_weight = torch.einsum("Br,Bd->rd", dx_dbl, rearrange(conv1d_out, "b d l -> (b l) d"))
590
- dconv1d_out = torch.addmm(dconv1d_out, x_proj_weight.t(), dx_dbl.t(), out=dconv1d_out)
591
- dconv1d_out = rearrange(dconv1d_out, "d (b l) -> b d l", b=x.shape[0], l=x.shape[-1])
592
- # The kernel supports passing in a pre-allocated dx (e.g., in case we want to fuse the
593
- # backward of conv1d with the backward of chunk).
594
- dx, dconv1d_weight, dconv1d_bias = causal_conv1d_cuda.causal_conv1d_bwd(
595
- x, conv1d_weight, conv1d_bias, dconv1d_out, dx, True
596
- )
597
- dconv1d_bias = dconv1d_bias if conv1d_bias is not None else None
598
- dconv1d_weight = rearrange(dconv1d_weight, "d w -> d 1 w")
599
- return (dxz, dconv1d_weight, dconv1d_bias, dx_proj_weight, ddelta_proj_weight,
600
- dout_proj_weight, dout_proj_bias,
601
- dA, dA_b, dB, dC, dD,
602
- ddelta_bias if delta_bias is not None else None,
603
- dB_proj_bias, dC_proj_bias, None)
604
-
605
-
606
- def mamba_inner_fn(
607
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
608
- out_proj_weight, out_proj_bias,
609
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
610
- C_proj_bias=None, delta_softplus=True
611
- ):
612
- return MambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
613
- out_proj_weight, out_proj_bias,
614
- A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
615
-
616
- def bimamba_inner_fn(
617
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
618
- out_proj_weight, out_proj_bias,
619
- A, A_b, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
620
- C_proj_bias=None, delta_softplus=True
621
- ):
622
- return BiMambaInnerFn.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
623
- out_proj_weight, out_proj_bias,
624
- A, A_b, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
625
-
626
-
627
- def mamba_inner_fn_no_out_proj(
628
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
629
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
630
- C_proj_bias=None, delta_softplus=True
631
- ):
632
- return MambaInnerFnNoOutProj.apply(xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
633
- A, B, C, D, delta_bias, B_proj_bias, C_proj_bias, delta_softplus)
634
-
635
-
636
- def mamba_inner_ref(
637
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
638
- out_proj_weight, out_proj_bias,
639
- A, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
640
- C_proj_bias=None, delta_softplus=True
641
- ):
642
- L = xz.shape[-1]
643
- delta_rank = delta_proj_weight.shape[1]
644
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
645
- x, z = xz.chunk(2, dim=1)
646
- x = causal_conv1d_fn(x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, "silu")
647
- # We're being very careful here about the layout, to avoid extra transposes.
648
- # We want delta to have d as the slowest moving dimension
649
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
650
- x_dbl = F.linear(rearrange(x, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
651
- delta = delta_proj_weight @ x_dbl[:, :delta_rank].t()
652
- delta = rearrange(delta, "d (b l) -> b d l", l=L)
653
- if B is None: # variable B
654
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl d)
655
- if B_proj_bias is not None:
656
- B = B + B_proj_bias.to(dtype=B.dtype)
657
- if not A.is_complex():
658
- B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
659
- else:
660
- B = rearrange(B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
661
- if C is None: # variable B
662
- C = x_dbl[:, -d_state:] # (bl d)
663
- if C_proj_bias is not None:
664
- C = C + C_proj_bias.to(dtype=C.dtype)
665
- if not A.is_complex():
666
- C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
667
- else:
668
- C = rearrange(C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
669
- y = selective_scan_fn(x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True)
670
- return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)
671
-
672
-
673
- def bimamba_inner_ref(
674
- xz, conv1d_weight, conv1d_bias, x_proj_weight, delta_proj_weight,
675
- out_proj_weight, out_proj_bias,
676
- A, A_b, B=None, C=None, D=None, delta_bias=None, B_proj_bias=None,
677
- C_proj_bias=None, delta_softplus=True
678
- ):
679
- L = xz.shape[-1]
680
- delta_rank = delta_proj_weight.shape[1]
681
- d_state = A.shape[-1] * (1 if not A.is_complex() else 2)
682
- x, z = xz.chunk(2, dim=1)
683
- x = causal_conv1d_fn(x, rearrange(conv1d_weight, "d 1 w -> d w"), conv1d_bias, "silu")
684
- # We're being very careful here about the layout, to avoid extra transposes.
685
- # We want delta to have d as the slowest moving dimension
686
- # and L as the fastest moving dimension, since those are what the ssm_scan kernel expects.
687
- x_dbl = F.linear(rearrange(x, 'b d l -> (b l) d'), x_proj_weight) # (bl d)
688
- delta = delta_proj_weight @ x_dbl[:, :delta_rank].t()
689
- delta = rearrange(delta, "d (b l) -> b d l", l=L)
690
- if B is None: # variable B
691
- B = x_dbl[:, delta_rank:delta_rank + d_state] # (bl d)
692
- if B_proj_bias is not None:
693
- B = B + B_proj_bias.to(dtype=B.dtype)
694
- if not A.is_complex():
695
- B = rearrange(B, "(b l) dstate -> b dstate l", l=L).contiguous()
696
- else:
697
- B = rearrange(B, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
698
- if C is None: # variable B
699
- C = x_dbl[:, -d_state:] # (bl d)
700
- if C_proj_bias is not None:
701
- C = C + C_proj_bias.to(dtype=C.dtype)
702
- if not A.is_complex():
703
- C = rearrange(C, "(b l) dstate -> b dstate l", l=L).contiguous()
704
- else:
705
- C = rearrange(C, "(b l) (dstate two) -> b dstate (l two)", l=L, two=2).contiguous()
706
- y = selective_scan_fn(x, delta, A, B, C, D, z=z, delta_bias=delta_bias, delta_softplus=True)
707
- y_b = selective_scan_fn(x.flip([-1]), delta.flip([-1]), A_b, B.flip([-1]), C.flip([-1]), D, z.flip([-1]), delta_bias, delta_softplus=True)
708
- y = y + y_b.flip([-1])
709
- return F.linear(rearrange(y, "b d l -> b l d"), out_proj_weight, out_proj_bias)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
mamba/mamba_ssm/ops/triton/__init__.py DELETED
File without changes
mamba/mamba_ssm/ops/triton/layernorm.py DELETED
@@ -1,636 +0,0 @@
1
- # Copyright (c) 2023, Tri Dao.
2
- # Implement residual + layer_norm / rms_norm.
3
-
4
- # Based on the Triton LayerNorm tutorial: https://triton-lang.org/main/getting-started/tutorials/05-layer-norm.html
5
- # For the backward pass, we keep weight_grad and bias_grad in registers and accumulate.
6
- # This is faster for dimensions up to 8k, but after that it's much slower due to register spilling.
7
- # The models we train have hidden dim up to 8k anyway (e.g. Llama 70B), so this is fine.
8
-
9
- import math
10
-
11
- import torch
12
- import torch.nn.functional as F
13
- from torch.cuda.amp import custom_fwd, custom_bwd
14
-
15
- import triton
16
- import triton.language as tl
17
-
18
-
19
- def layer_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
20
- dtype = x.dtype
21
- if upcast:
22
- weight = weight.float()
23
- bias = bias.float() if bias is not None else None
24
- if upcast:
25
- x = x.float()
26
- residual = residual.float() if residual is not None else residual
27
- if residual is not None:
28
- x = (x + residual).to(x.dtype)
29
- out = F.layer_norm(x.to(weight.dtype), x.shape[-1:], weight=weight, bias=bias, eps=eps).to(
30
- dtype
31
- )
32
- return out if not prenorm else (out, x)
33
-
34
-
35
- def rms_norm_ref(x, weight, bias, residual=None, eps=1e-6, prenorm=False, upcast=False):
36
- dtype = x.dtype
37
- if upcast:
38
- weight = weight.float()
39
- bias = bias.float() if bias is not None else None
40
- if upcast:
41
- x = x.float()
42
- residual = residual.float() if residual is not None else residual
43
- if residual is not None:
44
- x = (x + residual).to(x.dtype)
45
- rstd = 1 / torch.sqrt((x.square()).mean(dim=-1, keepdim=True) + eps)
46
- out = (x * rstd * weight) + bias if bias is not None else (x * rstd * weight)
47
- out = out.to(dtype)
48
- return out if not prenorm else (out, x)
49
-
50
-
51
- @triton.autotune(
52
- configs=[
53
- triton.Config({}, num_warps=1),
54
- triton.Config({}, num_warps=2),
55
- triton.Config({}, num_warps=4),
56
- triton.Config({}, num_warps=8),
57
- triton.Config({}, num_warps=16),
58
- triton.Config({}, num_warps=32),
59
- ],
60
- key=["N", "HAS_RESIDUAL", "STORE_RESIDUAL_OUT", "IS_RMS_NORM", "HAS_BIAS"],
61
- )
62
- # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
63
- # @triton.heuristics({"HAS_RESIDUAL": lambda args: args["RESIDUAL"] is not None})
64
- @triton.jit
65
- def _layer_norm_fwd_1pass_kernel(
66
- X, # pointer to the input
67
- Y, # pointer to the output
68
- W, # pointer to the weights
69
- B, # pointer to the biases
70
- RESIDUAL, # pointer to the residual
71
- RESIDUAL_OUT, # pointer to the residual
72
- Mean, # pointer to the mean
73
- Rstd, # pointer to the 1/std
74
- stride_x_row, # how much to increase the pointer when moving by 1 row
75
- stride_y_row,
76
- stride_res_row,
77
- stride_res_out_row,
78
- N, # number of columns in X
79
- eps, # epsilon to avoid division by zero
80
- IS_RMS_NORM: tl.constexpr,
81
- BLOCK_N: tl.constexpr,
82
- HAS_RESIDUAL: tl.constexpr,
83
- STORE_RESIDUAL_OUT: tl.constexpr,
84
- HAS_BIAS: tl.constexpr,
85
- ):
86
- # Map the program id to the row of X and Y it should compute.
87
- row = tl.program_id(0)
88
- X += row * stride_x_row
89
- Y += row * stride_y_row
90
- if HAS_RESIDUAL:
91
- RESIDUAL += row * stride_res_row
92
- if STORE_RESIDUAL_OUT:
93
- RESIDUAL_OUT += row * stride_res_out_row
94
- # Compute mean and variance
95
- cols = tl.arange(0, BLOCK_N)
96
- x = tl.load(X + cols, mask=cols < N, other=0.0).to(tl.float32)
97
- if HAS_RESIDUAL:
98
- residual = tl.load(RESIDUAL + cols, mask=cols < N, other=0.0).to(tl.float32)
99
- x += residual
100
- if STORE_RESIDUAL_OUT:
101
- tl.store(RESIDUAL_OUT + cols, x, mask=cols < N)
102
- if not IS_RMS_NORM:
103
- mean = tl.sum(x, axis=0) / N
104
- tl.store(Mean + row, mean)
105
- xbar = tl.where(cols < N, x - mean, 0.0)
106
- var = tl.sum(xbar * xbar, axis=0) / N
107
- else:
108
- xbar = tl.where(cols < N, x, 0.0)
109
- var = tl.sum(xbar * xbar, axis=0) / N
110
- rstd = 1 / tl.sqrt(var + eps)
111
- tl.store(Rstd + row, rstd)
112
- # Normalize and apply linear transformation
113
- mask = cols < N
114
- w = tl.load(W + cols, mask=mask).to(tl.float32)
115
- if HAS_BIAS:
116
- b = tl.load(B + cols, mask=mask).to(tl.float32)
117
- x_hat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
118
- y = x_hat * w + b if HAS_BIAS else x_hat * w
119
- # Write output
120
- tl.store(Y + cols, y, mask=mask)
121
-
122
-
123
- def _layer_norm_fwd(
124
- x, weight, bias, eps, residual=None, out_dtype=None, residual_dtype=None, is_rms_norm=False
125
- ):
126
- if residual is not None:
127
- residual_dtype = residual.dtype
128
- M, N = x.shape
129
- assert x.stride(-1) == 1
130
- if residual is not None:
131
- assert residual.stride(-1) == 1
132
- assert residual.shape == (M, N)
133
- assert weight.shape == (N,)
134
- assert weight.stride(-1) == 1
135
- if bias is not None:
136
- assert bias.stride(-1) == 1
137
- assert bias.shape == (N,)
138
- # allocate output
139
- y = torch.empty_like(x, dtype=x.dtype if out_dtype is None else out_dtype)
140
- assert y.stride(-1) == 1
141
- if residual is not None or (residual_dtype is not None and residual_dtype != x.dtype):
142
- residual_out = torch.empty(M, N, device=x.device, dtype=residual_dtype)
143
- assert residual_out.stride(-1) == 1
144
- else:
145
- residual_out = None
146
- mean = torch.empty((M,), dtype=torch.float32, device="cuda") if not is_rms_norm else None
147
- rstd = torch.empty((M,), dtype=torch.float32, device="cuda")
148
- # Less than 64KB per feature: enqueue fused kernel
149
- MAX_FUSED_SIZE = 65536 // x.element_size()
150
- BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
151
- if N > BLOCK_N:
152
- raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
153
- # heuristics for number of warps
154
- with torch.cuda.device(x.device.index):
155
- _layer_norm_fwd_1pass_kernel[(M,)](
156
- x,
157
- y,
158
- weight,
159
- bias,
160
- residual,
161
- residual_out,
162
- mean,
163
- rstd,
164
- x.stride(0),
165
- y.stride(0),
166
- residual.stride(0) if residual is not None else 0,
167
- residual_out.stride(0) if residual_out is not None else 0,
168
- N,
169
- eps,
170
- is_rms_norm,
171
- BLOCK_N,
172
- residual is not None,
173
- residual_out is not None,
174
- bias is not None,
175
- )
176
- # residual_out is None if residual is None and residual_dtype == input_dtype
177
- return y, mean, rstd, residual_out if residual_out is not None else x
178
-
179
-
180
- @triton.autotune(
181
- configs=[
182
- triton.Config({}, num_warps=1),
183
- triton.Config({}, num_warps=2),
184
- triton.Config({}, num_warps=4),
185
- triton.Config({}, num_warps=8),
186
- triton.Config({}, num_warps=16),
187
- triton.Config({}, num_warps=32),
188
- ],
189
- key=["N", "HAS_DRESIDUAL", "STORE_DRESIDUAL", "IS_RMS_NORM", "HAS_BIAS"],
190
- )
191
- # @triton.heuristics({"HAS_BIAS": lambda args: args["B"] is not None})
192
- # @triton.heuristics({"HAS_DRESIDUAL": lambda args: args["DRESIDUAL"] is not None})
193
- # @triton.heuristics({"STORE_DRESIDUAL": lambda args: args["DRESIDUAL_IN"] is not None})
194
- @triton.heuristics({"RECOMPUTE_OUTPUT": lambda args: args["Y"] is not None})
195
- @triton.jit
196
- def _layer_norm_bwd_kernel(
197
- X, # pointer to the input
198
- W, # pointer to the weights
199
- B, # pointer to the biases
200
- Y, # pointer to the output to be recomputed
201
- DY, # pointer to the output gradient
202
- DX, # pointer to the input gradient
203
- DW, # pointer to the partial sum of weights gradient
204
- DB, # pointer to the partial sum of biases gradient
205
- DRESIDUAL,
206
- DRESIDUAL_IN,
207
- Mean, # pointer to the mean
208
- Rstd, # pointer to the 1/std
209
- stride_x_row, # how much to increase the pointer when moving by 1 row
210
- stride_y_row,
211
- stride_dy_row,
212
- stride_dx_row,
213
- stride_dres_row,
214
- stride_dres_in_row,
215
- M, # number of rows in X
216
- N, # number of columns in X
217
- eps, # epsilon to avoid division by zero
218
- rows_per_program,
219
- IS_RMS_NORM: tl.constexpr,
220
- BLOCK_N: tl.constexpr,
221
- HAS_DRESIDUAL: tl.constexpr,
222
- STORE_DRESIDUAL: tl.constexpr,
223
- HAS_BIAS: tl.constexpr,
224
- RECOMPUTE_OUTPUT: tl.constexpr,
225
- ):
226
- # Map the program id to the elements of X, DX, and DY it should compute.
227
- row_block_id = tl.program_id(0)
228
- row_start = row_block_id * rows_per_program
229
- cols = tl.arange(0, BLOCK_N)
230
- mask = cols < N
231
- X += row_start * stride_x_row
232
- if HAS_DRESIDUAL:
233
- DRESIDUAL += row_start * stride_dres_row
234
- if STORE_DRESIDUAL:
235
- DRESIDUAL_IN += row_start * stride_dres_in_row
236
- DY += row_start * stride_dy_row
237
- DX += row_start * stride_dx_row
238
- if RECOMPUTE_OUTPUT:
239
- Y += row_start * stride_y_row
240
- w = tl.load(W + cols, mask=mask).to(tl.float32)
241
- if RECOMPUTE_OUTPUT and HAS_BIAS:
242
- b = tl.load(B + cols, mask=mask, other=0.0).to(tl.float32)
243
- dw = tl.zeros((BLOCK_N,), dtype=tl.float32)
244
- if HAS_BIAS:
245
- db = tl.zeros((BLOCK_N,), dtype=tl.float32)
246
- row_end = min((row_block_id + 1) * rows_per_program, M)
247
- for row in range(row_start, row_end):
248
- # Load data to SRAM
249
- x = tl.load(X + cols, mask=mask, other=0).to(tl.float32)
250
- dy = tl.load(DY + cols, mask=mask, other=0).to(tl.float32)
251
- if not IS_RMS_NORM:
252
- mean = tl.load(Mean + row)
253
- rstd = tl.load(Rstd + row)
254
- # Compute dx
255
- xhat = (x - mean) * rstd if not IS_RMS_NORM else x * rstd
256
- xhat = tl.where(mask, xhat, 0.0)
257
- if RECOMPUTE_OUTPUT:
258
- y = xhat * w + b if HAS_BIAS else xhat * w
259
- tl.store(Y + cols, y, mask=mask)
260
- wdy = w * dy
261
- dw += dy * xhat
262
- if HAS_BIAS:
263
- db += dy
264
- if not IS_RMS_NORM:
265
- c1 = tl.sum(xhat * wdy, axis=0) / N
266
- c2 = tl.sum(wdy, axis=0) / N
267
- dx = (wdy - (xhat * c1 + c2)) * rstd
268
- else:
269
- c1 = tl.sum(xhat * wdy, axis=0) / N
270
- dx = (wdy - xhat * c1) * rstd
271
- if HAS_DRESIDUAL:
272
- dres = tl.load(DRESIDUAL + cols, mask=mask, other=0).to(tl.float32)
273
- dx += dres
274
- # Write dx
275
- if STORE_DRESIDUAL:
276
- tl.store(DRESIDUAL_IN + cols, dx, mask=mask)
277
- tl.store(DX + cols, dx, mask=mask)
278
-
279
- X += stride_x_row
280
- if HAS_DRESIDUAL:
281
- DRESIDUAL += stride_dres_row
282
- if STORE_DRESIDUAL:
283
- DRESIDUAL_IN += stride_dres_in_row
284
- if RECOMPUTE_OUTPUT:
285
- Y += stride_y_row
286
- DY += stride_dy_row
287
- DX += stride_dx_row
288
- tl.store(DW + row_block_id * N + cols, dw, mask=mask)
289
- if HAS_BIAS:
290
- tl.store(DB + row_block_id * N + cols, db, mask=mask)
291
-
292
-
293
- def _layer_norm_bwd(
294
- dy,
295
- x,
296
- weight,
297
- bias,
298
- eps,
299
- mean,
300
- rstd,
301
- dresidual=None,
302
- has_residual=False,
303
- is_rms_norm=False,
304
- x_dtype=None,
305
- recompute_output=False,
306
- ):
307
- M, N = x.shape
308
- assert x.stride(-1) == 1
309
- assert dy.stride(-1) == 1
310
- assert dy.shape == (M, N)
311
- if dresidual is not None:
312
- assert dresidual.stride(-1) == 1
313
- assert dresidual.shape == (M, N)
314
- assert weight.shape == (N,)
315
- assert weight.stride(-1) == 1
316
- if bias is not None:
317
- assert bias.stride(-1) == 1
318
- assert bias.shape == (N,)
319
- # allocate output
320
- dx = (
321
- torch.empty_like(x)
322
- if x_dtype is None
323
- else torch.empty(M, N, dtype=x_dtype, device=x.device)
324
- )
325
- dresidual_in = torch.empty_like(x) if has_residual and dx.dtype != x.dtype else None
326
- y = torch.empty(M, N, dtype=dy.dtype, device=dy.device) if recompute_output else None
327
-
328
- # Less than 64KB per feature: enqueue fused kernel
329
- MAX_FUSED_SIZE = 65536 // x.element_size()
330
- BLOCK_N = min(MAX_FUSED_SIZE, triton.next_power_of_2(N))
331
- if N > BLOCK_N:
332
- raise RuntimeError("This layer norm doesn't support feature dim >= 64KB.")
333
- sm_count = torch.cuda.get_device_properties(x.device).multi_processor_count
334
- _dw = torch.empty((sm_count, N), dtype=torch.float32, device=weight.device)
335
- _db = (
336
- torch.empty((sm_count, N), dtype=torch.float32, device=bias.device)
337
- if bias is not None
338
- else None
339
- )
340
- rows_per_program = math.ceil(M / sm_count)
341
- grid = (sm_count,)
342
- with torch.cuda.device(x.device.index):
343
- _layer_norm_bwd_kernel[grid](
344
- x,
345
- weight,
346
- bias,
347
- y,
348
- dy,
349
- dx,
350
- _dw,
351
- _db,
352
- dresidual,
353
- dresidual_in,
354
- mean,
355
- rstd,
356
- x.stride(0),
357
- 0 if not recompute_output else y.stride(0),
358
- dy.stride(0),
359
- dx.stride(0),
360
- dresidual.stride(0) if dresidual is not None else 0,
361
- dresidual_in.stride(0) if dresidual_in is not None else 0,
362
- M,
363
- N,
364
- eps,
365
- rows_per_program,
366
- is_rms_norm,
367
- BLOCK_N,
368
- dresidual is not None,
369
- dresidual_in is not None,
370
- bias is not None,
371
- )
372
- dw = _dw.sum(0).to(weight.dtype)
373
- db = _db.sum(0).to(bias.dtype) if bias is not None else None
374
- # Don't need to compute dresidual_in separately in this case
375
- if has_residual and dx.dtype == x.dtype:
376
- dresidual_in = dx
377
- return (dx, dw, db, dresidual_in) if not recompute_output else (dx, dw, db, dresidual_in, y)
378
-
379
-
380
- class LayerNormFn(torch.autograd.Function):
381
- @staticmethod
382
- def forward(
383
- ctx,
384
- x,
385
- weight,
386
- bias,
387
- residual=None,
388
- eps=1e-6,
389
- prenorm=False,
390
- residual_in_fp32=False,
391
- is_rms_norm=False,
392
- ):
393
- x_shape_og = x.shape
394
- # reshape input data into 2D tensor
395
- x = x.reshape(-1, x.shape[-1])
396
- if x.stride(-1) != 1:
397
- x = x.contiguous()
398
- if residual is not None:
399
- assert residual.shape == x_shape_og
400
- residual = residual.reshape(-1, residual.shape[-1])
401
- if residual.stride(-1) != 1:
402
- residual = residual.contiguous()
403
- weight = weight.contiguous()
404
- if bias is not None:
405
- bias = bias.contiguous()
406
- residual_dtype = (
407
- residual.dtype
408
- if residual is not None
409
- else (torch.float32 if residual_in_fp32 else None)
410
- )
411
- y, mean, rstd, residual_out = _layer_norm_fwd(
412
- x, weight, bias, eps, residual, residual_dtype=residual_dtype, is_rms_norm=is_rms_norm
413
- )
414
- ctx.save_for_backward(residual_out, weight, bias, mean, rstd)
415
- ctx.x_shape_og = x_shape_og
416
- ctx.eps = eps
417
- ctx.is_rms_norm = is_rms_norm
418
- ctx.has_residual = residual is not None
419
- ctx.prenorm = prenorm
420
- ctx.x_dtype = x.dtype
421
- y = y.reshape(x_shape_og)
422
- return y if not prenorm else (y, residual_out.reshape(x_shape_og))
423
-
424
- @staticmethod
425
- def backward(ctx, dy, *args):
426
- x, weight, bias, mean, rstd = ctx.saved_tensors
427
- dy = dy.reshape(-1, dy.shape[-1])
428
- if dy.stride(-1) != 1:
429
- dy = dy.contiguous()
430
- assert dy.shape == x.shape
431
- if ctx.prenorm:
432
- dresidual = args[0]
433
- dresidual = dresidual.reshape(-1, dresidual.shape[-1])
434
- if dresidual.stride(-1) != 1:
435
- dresidual = dresidual.contiguous()
436
- assert dresidual.shape == x.shape
437
- else:
438
- dresidual = None
439
- dx, dw, db, dresidual_in = _layer_norm_bwd(
440
- dy,
441
- x,
442
- weight,
443
- bias,
444
- ctx.eps,
445
- mean,
446
- rstd,
447
- dresidual,
448
- ctx.has_residual,
449
- ctx.is_rms_norm,
450
- x_dtype=ctx.x_dtype,
451
- )
452
- return (
453
- dx.reshape(ctx.x_shape_og),
454
- dw,
455
- db,
456
- dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
457
- None,
458
- None,
459
- None,
460
- None,
461
- )
462
-
463
-
464
- def layer_norm_fn(
465
- x,
466
- weight,
467
- bias,
468
- residual=None,
469
- eps=1e-6,
470
- prenorm=False,
471
- residual_in_fp32=False,
472
- is_rms_norm=False,
473
- ):
474
- return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, is_rms_norm)
475
-
476
-
477
- def rms_norm_fn(x, weight, bias, residual=None, prenorm=False, residual_in_fp32=False, eps=1e-6):
478
- return LayerNormFn.apply(x, weight, bias, residual, eps, prenorm, residual_in_fp32, True)
479
-
480
-
481
- class RMSNorm(torch.nn.Module):
482
- def __init__(self, hidden_size, eps=1e-5, device=None, dtype=None):
483
- factory_kwargs = {"device": device, "dtype": dtype}
484
- super().__init__()
485
- self.eps = eps
486
- self.weight = torch.nn.Parameter(torch.empty(hidden_size, **factory_kwargs))
487
- self.register_parameter("bias", None)
488
- self.reset_parameters()
489
-
490
- def reset_parameters(self):
491
- torch.nn.init.ones_(self.weight)
492
-
493
- def forward(self, x, residual=None, prenorm=False, residual_in_fp32=False):
494
- return rms_norm_fn(
495
- x,
496
- self.weight,
497
- self.bias,
498
- residual=residual,
499
- eps=self.eps,
500
- prenorm=prenorm,
501
- residual_in_fp32=residual_in_fp32,
502
- # is_rms_norm=True,
503
- )
504
-
505
-
506
- class LayerNormLinearFn(torch.autograd.Function):
507
- @staticmethod
508
- @custom_fwd
509
- def forward(
510
- ctx,
511
- x,
512
- norm_weight,
513
- norm_bias,
514
- linear_weight,
515
- linear_bias,
516
- residual=None,
517
- eps=1e-6,
518
- prenorm=False,
519
- residual_in_fp32=False,
520
- is_rms_norm=False,
521
- ):
522
- x_shape_og = x.shape
523
- # reshape input data into 2D tensor
524
- x = x.reshape(-1, x.shape[-1])
525
- if x.stride(-1) != 1:
526
- x = x.contiguous()
527
- if residual is not None:
528
- assert residual.shape == x_shape_og
529
- residual = residual.reshape(-1, residual.shape[-1])
530
- if residual.stride(-1) != 1:
531
- residual = residual.contiguous()
532
- norm_weight = norm_weight.contiguous()
533
- if norm_bias is not None:
534
- norm_bias = norm_bias.contiguous()
535
- residual_dtype = (
536
- residual.dtype
537
- if residual is not None
538
- else (torch.float32 if residual_in_fp32 else None)
539
- )
540
- y, mean, rstd, residual_out = _layer_norm_fwd(
541
- x,
542
- norm_weight,
543
- norm_bias,
544
- eps,
545
- residual,
546
- out_dtype=None if not torch.is_autocast_enabled() else torch.get_autocast_gpu_dtype(),
547
- residual_dtype=residual_dtype,
548
- is_rms_norm=is_rms_norm,
549
- )
550
- y = y.reshape(x_shape_og)
551
- dtype = torch.get_autocast_gpu_dtype() if torch.is_autocast_enabled() else y.dtype
552
- linear_weight = linear_weight.to(dtype)
553
- linear_bias = linear_bias.to(dtype) if linear_bias is not None else None
554
- out = F.linear(y.to(linear_weight.dtype), linear_weight, linear_bias)
555
- # We don't store y, will be recomputed in the backward pass to save memory
556
- ctx.save_for_backward(residual_out, norm_weight, norm_bias, linear_weight, mean, rstd)
557
- ctx.x_shape_og = x_shape_og
558
- ctx.eps = eps
559
- ctx.is_rms_norm = is_rms_norm
560
- ctx.has_residual = residual is not None
561
- ctx.prenorm = prenorm
562
- ctx.x_dtype = x.dtype
563
- ctx.linear_bias_is_none = linear_bias is None
564
- return out if not prenorm else (out, residual_out.reshape(x_shape_og))
565
-
566
- @staticmethod
567
- @custom_bwd
568
- def backward(ctx, dout, *args):
569
- x, norm_weight, norm_bias, linear_weight, mean, rstd = ctx.saved_tensors
570
- dout = dout.reshape(-1, dout.shape[-1])
571
- dy = F.linear(dout, linear_weight.t())
572
- dlinear_bias = None if ctx.linear_bias_is_none else dout.sum(0)
573
- if dy.stride(-1) != 1:
574
- dy = dy.contiguous()
575
- assert dy.shape == x.shape
576
- if ctx.prenorm:
577
- dresidual = args[0]
578
- dresidual = dresidual.reshape(-1, dresidual.shape[-1])
579
- if dresidual.stride(-1) != 1:
580
- dresidual = dresidual.contiguous()
581
- assert dresidual.shape == x.shape
582
- else:
583
- dresidual = None
584
- dx, dnorm_weight, dnorm_bias, dresidual_in, y = _layer_norm_bwd(
585
- dy,
586
- x,
587
- norm_weight,
588
- norm_bias,
589
- ctx.eps,
590
- mean,
591
- rstd,
592
- dresidual,
593
- ctx.has_residual,
594
- ctx.is_rms_norm,
595
- x_dtype=ctx.x_dtype,
596
- recompute_output=True,
597
- )
598
- dlinear_weight = torch.einsum("bo,bi->oi", dout, y)
599
- return (
600
- dx.reshape(ctx.x_shape_og),
601
- dnorm_weight,
602
- dnorm_bias,
603
- dlinear_weight,
604
- dlinear_bias,
605
- dresidual_in.reshape(ctx.x_shape_og) if ctx.has_residual else None,
606
- None,
607
- None,
608
- None,
609
- None,
610
- )
611
-
612
-
613
- def layer_norm_linear_fn(
614
- x,
615
- norm_weight,
616
- norm_bias,
617
- linear_weight,
618
- linear_bias,
619
- residual=None,
620
- eps=1e-6,
621
- prenorm=False,
622
- residual_in_fp32=False,
623
- is_rms_norm=False,
624
- ):
625
- return LayerNormLinearFn.apply(
626
- x,
627
- norm_weight,
628
- norm_bias,
629
- linear_weight,
630
- linear_bias,
631
- residual,
632
- eps,
633
- prenorm,
634
- residual_in_fp32,
635
- is_rms_norm,
636
- )