File size: 27,273 Bytes
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaea4b9
 
 
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
aaea4b9
 
 
 
6cc79fe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
# Based on EVA, BEIT, timm and DeiT code bases
# https://github.com/baaivision/EVA
# https://github.com/rwightman/pytorch-image-models/tree/master/timm
# https://github.com/microsoft/unilm/tree/master/beit
# https://github.com/facebookresearch/deit/
# https://github.com/facebookresearch/dino
# --------------------------------------------------------'
import os
import math
import logging
from functools import partial
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.checkpoint as checkpoint
from timm.models.layers import drop_path, to_2tuple, trunc_normal_
from timm.models.registry import register_model

from utils.misc import download_cached_file


def _cfg(url='', **kwargs):
    return {
        'url': url,
        'num_classes': 1000, 'input_size': (3, 224, 224), 'pool_size': None,
        'crop_pct': .9, 'interpolation': 'bicubic',
        'mean': (0.5, 0.5, 0.5), 'std': (0.5, 0.5, 0.5),
        **kwargs
    }


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks).
    """
    def __init__(self, drop_prob=None):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training)
    
    def extra_repr(self):
        return 'p={}'.format(self.drop_prob)


class Mlp(nn.Module):
    def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
        super().__init__()
        out_features = out_features or in_features
        hidden_features = hidden_features or in_features
        self.fc1 = nn.Linear(in_features, hidden_features)
        self.act = act_layer()
        self.fc2 = nn.Linear(hidden_features, out_features)
        self.drop = nn.Dropout(drop)

    def forward(self, x):
        x = self.fc1(x)
        x = self.act(x)
        # x = self.drop(x)
        # commit this for the orignal BERT implement 
        x = self.fc2(x)
        x = self.drop(x)
        return x


class Local_MHRA(nn.Module):
    def __init__(self, d_model, dw_reduction=1.5, pos_kernel_size=3):
        super().__init__() 

        padding = pos_kernel_size // 2
        re_d_model = int(d_model // dw_reduction)
        self.pos_embed = nn.Sequential(
            nn.BatchNorm3d(d_model),
            nn.Conv3d(d_model, re_d_model, kernel_size=1, stride=1, padding=0),
            nn.Conv3d(re_d_model, re_d_model, kernel_size=(pos_kernel_size, 1, 1), stride=(1, 1, 1), padding=(padding, 0, 0), groups=re_d_model),
            nn.Conv3d(re_d_model, d_model, kernel_size=1, stride=1, padding=0),
        )

        # init zero
        # print('Init zero for Conv in pos_emb')
        nn.init.constant_(self.pos_embed[3].weight, 0)
        nn.init.constant_(self.pos_embed[3].bias, 0)

    def forward(self, x):
        out = self.pos_embed(x)
        return out


class Attention(nn.Module):
    def __init__(
            self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0.,
            proj_drop=0., window_size=None, attn_head_dim=None):
        super().__init__()
        self.num_heads = num_heads
        head_dim = dim // num_heads
        if attn_head_dim is not None:
            head_dim = attn_head_dim
        all_head_dim = head_dim * self.num_heads
        self.scale = qk_scale or head_dim ** -0.5

        self.qkv = nn.Linear(dim, all_head_dim * 3, bias=False)
        if qkv_bias:
            self.q_bias = nn.Parameter(torch.zeros(all_head_dim))
            self.v_bias = nn.Parameter(torch.zeros(all_head_dim))
        else:
            self.q_bias = None
            self.v_bias = None

        if window_size:
            self.window_size = window_size
            self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
            self.relative_position_bias_table = nn.Parameter(
                torch.zeros(self.num_relative_distance, num_heads))  # 2*Wh-1 * 2*Ww-1, nH
            # cls to token & token 2 cls & cls to cls

            # get pair-wise relative position index for each token inside the window
            coords_h = torch.arange(window_size[0])
            coords_w = torch.arange(window_size[1])
            coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
            coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
            relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
            relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
            relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
            relative_coords[:, :, 1] += window_size[1] - 1
            relative_coords[:, :, 0] *= 2 * window_size[1] - 1
            relative_position_index = \
                torch.zeros(size=(window_size[0] * window_size[1] + 1, ) * 2, dtype=relative_coords.dtype)
            relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
            relative_position_index[0, 0:] = self.num_relative_distance - 3
            relative_position_index[0:, 0] = self.num_relative_distance - 2
            relative_position_index[0, 0] = self.num_relative_distance - 1

            self.register_buffer("relative_position_index", relative_position_index)
        else:
            self.window_size = None
            self.relative_position_bias_table = None
            self.relative_position_index = None

        self.attn_drop = nn.Dropout(attn_drop)
        self.proj = nn.Linear(all_head_dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)

    def forward(self, x, rel_pos_bias=None):
        B, N, C = x.shape
        qkv_bias = None
        if self.q_bias is not None:
            qkv_bias = torch.cat((self.q_bias, torch.zeros_like(self.v_bias, requires_grad=False), self.v_bias))
        # qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
        qkv = F.linear(input=x, weight=self.qkv.weight, bias=qkv_bias)
        qkv = qkv.reshape(B, N, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
        q, k, v = qkv[0], qkv[1], qkv[2]   # make torchscript happy (cannot use tensor as tuple)

        q = q * self.scale
        attn = (q @ k.transpose(-2, -1))

        if self.relative_position_bias_table is not None:
            relative_position_bias = \
                self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                    self.window_size[0] * self.window_size[1] + 1,
                    self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
            relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww
            attn = attn + relative_position_bias.unsqueeze(0)

        if rel_pos_bias is not None:
            attn = attn + rel_pos_bias
        
        attn = attn.softmax(dim=-1)
        attn = self.attn_drop(attn)

        x = (attn @ v).transpose(1, 2).reshape(B, N, -1)
        x = self.proj(x)
        x = self.proj_drop(x)
        return x


class Block(nn.Module):
    def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
                 drop_path=0., init_values=None, act_layer=nn.GELU, norm_layer=nn.LayerNorm,
                 window_size=None, attn_head_dim=None,
                 no_lmhra=False, double_lmhra=True, lmhra_reduction=2.0, 
                 ):
        super().__init__()
        self.no_lmhra = no_lmhra
        self.double_lmhra = double_lmhra
        if not no_lmhra:
            self.lmhra1 = Local_MHRA(dim, dw_reduction=lmhra_reduction)
            if double_lmhra:
                self.lmhra2 = Local_MHRA(dim, dw_reduction=lmhra_reduction)

        self.norm1 = norm_layer(dim)
        self.attn = Attention(
            dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
            attn_drop=attn_drop, proj_drop=drop, window_size=window_size, attn_head_dim=attn_head_dim)
        # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
        self.norm2 = norm_layer(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)

        if init_values is not None and init_values > 0:
            self.gamma_1 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
            self.gamma_2 = nn.Parameter(init_values * torch.ones((dim)),requires_grad=True)
        else:
            self.gamma_1, self.gamma_2 = None, None

    def forward(self, x, rel_pos_bias=None, T=8):
        # Local MHRA
        if not self.no_lmhra:
            # x: BT, HW+1, C
            tmp_x = x[:, 1:, :]
            BT, N, C = tmp_x.shape
            B = BT // T
            H = W = int(N ** 0.5)
            tmp_x = tmp_x.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous()
            tmp_x = tmp_x + self.drop_path(self.lmhra1(tmp_x))
            tmp_x = tmp_x.view(B, C, T, N).permute(0, 2, 3, 1).contiguous().view(BT, N, C)
            x = torch.cat([x[:, :1, :], tmp_x], dim=1)

        # MHSA
        if self.gamma_1 is None:
            x = x + self.drop_path(self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))
        else:
            x = x + self.drop_path(self.gamma_1 * self.attn(self.norm1(x), rel_pos_bias=rel_pos_bias))

        # Local MHRA
        if not self.no_lmhra and self.double_lmhra:
            tmp_x = x[:, 1:, :]
            tmp_x = tmp_x.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous()
            tmp_x = tmp_x + self.drop_path(self.lmhra2(tmp_x))
            tmp_x = tmp_x.view(B, C, T, N).permute(0, 2, 3, 1).contiguous().view(BT, N, C)
            x = torch.cat([x[:, :1, :], tmp_x], dim=1)

        # MLP
        if self.gamma_1 is None:
            x = x + self.drop_path(self.mlp(self.norm2(x)))
        else:
            x = x + self.drop_path(self.gamma_2 * self.mlp(self.norm2(x)))
        
        return x


class PatchEmbed(nn.Module):
    """ Image to Patch Embedding
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, temporal_downsample=False):
        super().__init__()
        img_size = to_2tuple(img_size)
        patch_size = to_2tuple(patch_size)
        num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0])
        self.patch_shape = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])
        self.img_size = img_size
        self.patch_size = patch_size
        self.num_patches = num_patches
        if temporal_downsample:
            self.proj = nn.Conv3d(
                in_chans, embed_dim, kernel_size=(3, patch_size[0], patch_size[1]), 
                stride=(2, patch_size[0], patch_size[1]), padding=(1, 0, 0)
            )
        else:
            self.proj = nn.Conv3d(
                in_chans, embed_dim, kernel_size=(1, patch_size[0], patch_size[1]), 
                stride=(1, patch_size[0], patch_size[1]), padding=(0, 0, 0)
            )

    def forward(self, x, **kwargs):
        B, C, T, H, W = x.shape
        # FIXME look at relaxing size constraints
        assert H == self.img_size[0] and W == self.img_size[1], \
            f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."
        x = self.proj(x)
        return x


class RelativePositionBias(nn.Module):
    def __init__(self, window_size, num_heads):
        super().__init__()
        self.window_size = window_size
        self.num_relative_distance = (2 * window_size[0] - 1) * (2 * window_size[1] - 1) + 3
        self.relative_position_bias_table = nn.Parameter(
            torch.zeros(self.num_relative_distance, num_heads))  # 2*Wh-1 * 2*Ww-1, nH
        # cls to token & token 2 cls & cls to cls

        # get pair-wise relative position index for each token inside the window
        coords_h = torch.arange(window_size[0])
        coords_w = torch.arange(window_size[1])
        coords = torch.stack(torch.meshgrid([coords_h, coords_w]))  # 2, Wh, Ww
        coords_flatten = torch.flatten(coords, 1)  # 2, Wh*Ww
        relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :]  # 2, Wh*Ww, Wh*Ww
        relative_coords = relative_coords.permute(1, 2, 0).contiguous()  # Wh*Ww, Wh*Ww, 2
        relative_coords[:, :, 0] += window_size[0] - 1  # shift to start from 0
        relative_coords[:, :, 1] += window_size[1] - 1
        relative_coords[:, :, 0] *= 2 * window_size[1] - 1
        relative_position_index = \
            torch.zeros(size=(window_size[0] * window_size[1] + 1,) * 2, dtype=relative_coords.dtype)
        relative_position_index[1:, 1:] = relative_coords.sum(-1)  # Wh*Ww, Wh*Ww
        relative_position_index[0, 0:] = self.num_relative_distance - 3
        relative_position_index[0:, 0] = self.num_relative_distance - 2
        relative_position_index[0, 0] = self.num_relative_distance - 1

        self.register_buffer("relative_position_index", relative_position_index)

        # trunc_normal_(self.relative_position_bias_table, std=.02)

    def forward(self):
        relative_position_bias = \
            self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
                self.window_size[0] * self.window_size[1] + 1,
                self.window_size[0] * self.window_size[1] + 1, -1)  # Wh*Ww,Wh*Ww,nH
        return relative_position_bias.permute(2, 0, 1).contiguous()  # nH, Wh*Ww, Wh*Ww


class Global_MHRA(nn.Module):
    def __init__(
            self, d_model, n_head, attn_mask=None,
            mlp_factor=4.0, drop_path=0., dropout=0.,
        ):
        super().__init__()
        print(f'Drop path rate: {drop_path}')
        self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()

        self.dpe = nn.Conv3d(d_model, d_model, kernel_size=3, stride=1, padding=1, bias=True, groups=d_model)
        nn.init.constant_(self.dpe.bias, 0.)

        self.attn = nn.MultiheadAttention(d_model, n_head)
        self.ln_1 = nn.LayerNorm(d_model)
        d_mlp = round(mlp_factor * d_model)
        self.mlp = nn.Sequential(OrderedDict([
            ("c_fc", nn.Linear(d_model, d_mlp)),
            ("gelu", nn.GELU()),
            ("dropout", nn.Dropout(dropout)),
            ("c_proj", nn.Linear(d_mlp, d_model))
        ]))
        self.ln_2 = nn.LayerNorm(d_model)
        self.ln_3 = nn.LayerNorm(d_model)
        self.attn_mask = attn_mask

        # zero init
        nn.init.xavier_uniform_(self.attn.in_proj_weight)
        nn.init.constant_(self.attn.out_proj.weight, 0.)
        nn.init.constant_(self.attn.out_proj.bias, 0.)
        nn.init.xavier_uniform_(self.mlp[0].weight)
        nn.init.constant_(self.mlp[-1].weight, 0.)
        nn.init.constant_(self.mlp[-1].bias, 0.)

    def attention(self, x, y, T):
        # x: 1, B, C
        # y: BT, HW+1, C
        BT, N, C = y.shape
        B = BT // T
        H = W = int(N ** 0.5)
        y = y.view(B, T, N, C)
        _, tmp_feats = y[:, :, :1], y[:, :, 1:]
        tmp_feats = tmp_feats.view(B, T, H, W, C).permute(0, 4, 1, 2, 3).contiguous()
        tmp_feats = self.dpe(tmp_feats.clone()).view(B, C, T, N - 1).permute(0, 2, 3, 1).contiguous()
        y[:, :, 1:] = y[:, :, 1:] + tmp_feats
        y = y.permute(1, 2, 0, 3).flatten(0, 1) # T(HW+1), B, C

        d_model = self.ln_1.weight.size(0)
        q = (x @ self.attn.in_proj_weight[:d_model].T) + self.attn.in_proj_bias[:d_model]

        k = (y @ self.attn.in_proj_weight[d_model:-d_model].T) + self.attn.in_proj_bias[d_model:-d_model]
        v = (y @ self.attn.in_proj_weight[-d_model:].T) + self.attn.in_proj_bias[-d_model:]
        Tx, Ty, N = q.size(0), k.size(0), q.size(1)
        q = q.view(Tx, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
        k = k.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
        v = v.view(Ty, N, self.attn.num_heads, self.attn.head_dim).permute(1, 2, 0, 3)
        aff = (q @ k.transpose(-2, -1) / (self.attn.head_dim ** 0.5))

        aff = aff.softmax(dim=-1)
        out = aff @ v
        out = out.permute(2, 0, 1, 3).flatten(2)
        out = self.attn.out_proj(out)
        return out

    def forward(self, x, y, T):
        x = x + self.drop_path(self.attention(self.ln_1(x), self.ln_3(y), T=T))
        x = x + self.drop_path(self.mlp(self.ln_2(x)))
        return x


class VisionTransformer(nn.Module):
    """ Vision Transformer with support for patch or hybrid CNN input stage
    """
    def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12,
                 num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop_rate=0., attn_drop_rate=0.,
                 drop_path_rate=0., norm_layer=nn.LayerNorm, init_values=None,
                 use_abs_pos_emb=True, use_rel_pos_bias=False, use_shared_rel_pos_bias=False,
                 use_mean_pooling=True, init_scale=0.001, use_checkpoint=False,
                 temporal_downsample=True,
                 no_lmhra=False, double_lmhra=True, lmhra_reduction=1.5, 
                 gmhra_layers=4, gmhra_drop_path_rate=0., gmhra_dropout=0.5, 
                 ):
        super().__init__()
        self.image_size = img_size
        self.num_classes = num_classes
        self.num_features = self.embed_dim = embed_dim  # num_features for consistency with other models

        print(f"Temporal downsample: {temporal_downsample}")
        self.patch_embed = PatchEmbed(
            img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim,
            temporal_downsample=temporal_downsample,
        )
        num_patches = self.patch_embed.num_patches

        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        if use_abs_pos_emb:
            self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + 1, embed_dim))
        else:
            self.pos_embed = None
        self.pos_drop = nn.Dropout(p=drop_rate)

        if use_shared_rel_pos_bias:
            self.rel_pos_bias = RelativePositionBias(window_size=self.patch_embed.patch_shape, num_heads=num_heads)
        else:
            self.rel_pos_bias = None
        self.use_checkpoint = use_checkpoint
        
        print(f'No L_MHRA: {no_lmhra}')
        print(f'Double L_MHRA: {double_lmhra}')
        dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]  # stochastic depth decay rule
        self.use_rel_pos_bias = use_rel_pos_bias
        self.blocks = nn.ModuleList([
            Block(
                dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,
                drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer,
                init_values=init_values, window_size=self.patch_embed.patch_shape if use_rel_pos_bias else None,
                no_lmhra=no_lmhra, double_lmhra=double_lmhra, lmhra_reduction=lmhra_reduction, 
            )
            for i in range(depth)])

        # global MHRA
        self.gmhra_layers = gmhra_layers
        self.gmhra_layer_idx = [(depth - 1 - idx) for idx in range(gmhra_layers)]
        print(f"GMHRA index: {self.gmhra_layer_idx}")
        print(f"GMHRA dropout: {gmhra_dropout}")
        if gmhra_layers > 0:
            self.gmhra_cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        gmhra_dpr = [x.item() for x in torch.linspace(0, gmhra_drop_path_rate, gmhra_layers)]
        self.gmhra = nn.ModuleList([
            Global_MHRA(
                embed_dim, num_heads, mlp_factor=mlp_ratio, 
                drop_path=gmhra_dpr[i], dropout=gmhra_dropout,
            ) for i in range(gmhra_layers)
        ])

        if self.pos_embed is not None:
            trunc_normal_(self.pos_embed, std=.02)
        trunc_normal_(self.cls_token, std=.02)
        self.fix_init_weight()

    def fix_init_weight(self):
        def rescale(param, layer_id):
            param.div_(math.sqrt(2.0 * layer_id))

        for layer_id, layer in enumerate(self.blocks):
            rescale(layer.attn.proj.weight.data, layer_id + 1)
            rescale(layer.mlp.fc2.weight.data, layer_id + 1)

    def forward_features(self, x):
        x = self.patch_embed(x)
        B, C, T, H, W = x.shape
        x = x.permute(0, 2, 3, 4, 1).reshape(B * T, H * W, C)

        cls_tokens = self.cls_token.expand(B * T, -1, -1)  # stole cls_tokens impl from Phil Wang, thanks
        x = torch.cat((cls_tokens, x), dim=1)
        if self.pos_embed is not None:
            x = x + self.pos_embed
        x = self.pos_drop(x)

        # the input of global MHRA should be (THW+1)xBx1
        if self.gmhra_layers > 0:
            gmhra_cls_token = self.gmhra_cls_token.repeat(1, B, 1)

        rel_pos_bias = self.rel_pos_bias() if self.rel_pos_bias is not None else None
        j = -1
        for idx, blk in enumerate(self.blocks):
            if self.use_checkpoint:
                x = checkpoint.checkpoint(blk, x, rel_pos_bias, T=T)
            else:
                x = blk(x, rel_pos_bias, T=T)
            if idx in self.gmhra_layer_idx:
                j += 1
                tmp_x = x.clone()
                gmhra_cls_token = self.gmhra[j](gmhra_cls_token, tmp_x, T=T)
        z = torch.cat([x.view(B, -1, C), gmhra_cls_token.permute(1, 0, 2)], dim=1)
        return z

    def forward(self, x):
        x = self.forward_features(x)
        return x
    
    
def interpolate_pos_embed(model, checkpoint_model):
    if 'pos_embed' in checkpoint_model:
        pos_embed_checkpoint = checkpoint_model['pos_embed'].float()
        embedding_size = pos_embed_checkpoint.shape[-1]
        num_patches = model.patch_embed.num_patches
        num_extra_tokens = model.pos_embed.shape[-2] - num_patches
        # height (== width) for the checkpoint position embedding
        orig_size = int((pos_embed_checkpoint.shape[-2] - num_extra_tokens) ** 0.5)
        # height (== width) for the new position embedding
        new_size = int(num_patches ** 0.5)
        # class_token and dist_token are kept unchanged
        if orig_size != new_size:
            print("Position interpolate from %dx%d to %dx%d" % (orig_size, orig_size, new_size, new_size))
            extra_tokens = pos_embed_checkpoint[:, :num_extra_tokens]
            # only the position tokens are interpolated
            pos_tokens = pos_embed_checkpoint[:, num_extra_tokens:]
            pos_tokens = pos_tokens.reshape(-1, orig_size, orig_size, embedding_size).permute(0, 3, 1, 2)
            pos_tokens = torch.nn.functional.interpolate(
                pos_tokens, size=(new_size, new_size), mode='bicubic', align_corners=False)
            pos_tokens = pos_tokens.permute(0, 2, 3, 1).flatten(1, 2)
            new_pos_embed = torch.cat((extra_tokens, pos_tokens), dim=1)
            checkpoint_model['pos_embed'] = new_pos_embed
            
            
def convert_weights_to_fp16(model: nn.Module):
    """Convert applicable model parameters to fp16"""
    def _convert_weights_to_fp16(l):
        if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)):
            l.weight.data = l.weight.data.half()
            if l.bias is not None:
                l.bias.data = l.bias.data.half()
        if isinstance(l, (nn.MultiheadAttention, Attention)):
            for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]:
                tensor = getattr(l, attr)
                if tensor is not None:
                    tensor.data = tensor.data.half()
    model.apply(_convert_weights_to_fp16)
    

def inflate_weight(weight_2d, time_dim, center=True):
    print(f'Init center: {center}')
    if center:
        weight_3d = torch.zeros(*weight_2d.shape)
        weight_3d = weight_3d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
        middle_idx = time_dim // 2
        weight_3d[:, :, middle_idx, :, :] = weight_2d
    else:
        weight_3d = weight_2d.unsqueeze(2).repeat(1, 1, time_dim, 1, 1)
        weight_3d = weight_3d / time_dim
    return weight_3d


def load_state_dict(model, state_dict, strict=True):
    state_dict_3d = model.state_dict()
    for k in state_dict.keys():
        if k in state_dict_3d.keys() and state_dict[k].shape != state_dict_3d[k].shape:
            if len(state_dict_3d[k].shape) <= 2:
                print(f'Ignore: {k}')
                continue
            print(f'Inflate: {k}, {state_dict[k].shape} => {state_dict_3d[k].shape}')
            time_dim = state_dict_3d[k].shape[2]
            state_dict[k] = inflate_weight(state_dict[k], time_dim)
    msg = model.load_state_dict(state_dict, strict=strict)
    return msg
    

def create_eva_vit_g(
        img_size=224, drop_path_rate=0.4, use_checkpoint=False,
        precision="fp16", vit_model_path=None,
        # UniFormerV2
        temporal_downsample=True,
        no_lmhra=False, 
        double_lmhra=False,
        lmhra_reduction=2.0, 
        gmhra_layers=8, 
        gmhra_drop_path_rate=0.,
        gmhra_dropout=0.5, 
    ):
    model = VisionTransformer(
        img_size=img_size,
        patch_size=14,
        use_mean_pooling=False,
        embed_dim=1408,
        depth=39,
        num_heads=1408//88,
        mlp_ratio=4.3637,
        qkv_bias=True,
        drop_path_rate=drop_path_rate,
        norm_layer=partial(nn.LayerNorm, eps=1e-6),
        use_checkpoint=use_checkpoint,
        temporal_downsample=temporal_downsample,
        no_lmhra=no_lmhra, 
        double_lmhra=double_lmhra,
        lmhra_reduction=lmhra_reduction, 
        gmhra_layers=gmhra_layers, 
        gmhra_drop_path_rate=gmhra_drop_path_rate,
        gmhra_dropout=gmhra_dropout, 
    )  
    if vit_model_path is not None and os.path.isfile(vit_model_path):
        cached_file = download_cached_file(
            vit_model_path, check_hash=False, progress=True
        )
        state_dict = torch.load(cached_file, map_location="cpu")    
        print(f"Load ViT model from: {vit_model_path}")
        interpolate_pos_embed(model, state_dict)
        msg = load_state_dict(model, state_dict, strict=False)
        print(msg)
    
    if precision == "fp16":
#         model.to("cuda") 
        convert_weights_to_fp16(model)
    return model


if __name__ == '__main__':
    import time
    from fvcore.nn import FlopCountAnalysis
    from fvcore.nn import flop_count_table
    import numpy as np

    seed = 4217
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    num_frames = 8

    model = create_eva_vit_g(
        img_size=224, drop_path_rate=0.4, use_checkpoint=False,
        precision="fp16", vit_model_path=None,
        temporal_downsample=True,
        no_lmhra=False, 
        double_lmhra=False,
        lmhra_reduction=2.0, 
        gmhra_layers=12,
        gmhra_drop_path_rate=0.,
        gmhra_dropout=0.5, 
    )
    video = torch.rand(1, 3, num_frames, 224, 224)
    flops = FlopCountAnalysis(model, video)
    s = time.time()
    print(flop_count_table(flops, max_depth=1))
    print(time.time()-s)